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1 Convex Sets

1.1 Introduction
Let f : Rn → R be differentiable. Consider the problem

(P ) :
min f(x)

s.t. x ∈ C ⊆ Rn

In the special case, when C = Rn, the minimizers of f (if any) will occur at the critical points of
f , namely, x ∈ Rn such that

∇f(x) = 0

This is known as ”Fernat’s Rule”, which we will learn about more later.
In this course, we will discuss and learn ConVexity of sets and functions and how we can approach
problem (P ) in the more general settings of:

1. Absense of differentiability of the function f , f is convex (this is called the objective func-
tion) and/or

2. ∅ ∕= C ⊊ Rn, C convex (C is called the constraint set)
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1.2 Affine sets and affine subspaces in Rn

Definition 1

Let S ⊆ Rn. Then:

1. S is an affine set if

∀x, y ∈ S, ∀λ ∈ R,λx+ (1− λ)y ∈ S

Observe that, trivially, ∅,Rn are affines sets.

2. S is an affine subspace if
S ∕= ∅

and
∀x, y ∈ S, ∀λ ∈ R, λx+ (1− λ)y ∈ S

3. Let S ⊆ Rn. The affine hull of S, denoted by aff(S) is the intersection of all affine
sets containing S (i.e. the smallest affine set containing S)

Example: Affine Sets of Rn

1. L, where L ⊆ Rn is a linear subsapce

2. a+ L, where a ∈ Rn, L ⊆ Rn is a linear subsapce

3. ∅, Rn

Geometrically Speaking:
A nonempty subset S ⊂ Rn is affine if the line connecting any two points in the set lies entirely in
the set.
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1.3 Convex Sets in Rn

Definition 2

A subset C of Rn is convex if

∀x, y ∈ C, ∀λ ∈ (0, 1), λx+ (1− λ)y ∈ C

Example

Convex subsets of Rn

1. ∅, Rn

2. C, where C is a ball

3. C, where C is an affine set

4. C, where C is a half-space. i.e.

C := {x ∈ Rn|〈x, u〉 ! η}

where u ∈ Rn, η ∈ R are fixed

Geometrically Speaking:
A subset C ⊆ Rn is convex if given any two points x ∈ C, y ∈ C, the line segment joining x and
y, denoted by [x, y], lies entirely in C
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Theorem 1: Txtbook THM2.1

The intersection of an arbitrary collection of convex sets is convex.

Proof. Let I be an indexed set (not necessarily finite). Let (Ci)i∈I be a collecotion of convex
subsets of Rn. Set

C := ∩i∈ICi

Let λ ∈ (0, 1) and let (x, y) ∈ C × C.
Since Ci is convex (∀i ∈ I), we learn that

∀i ∈ I, λx+ (1− λ)y ∈ Ci

Hence,
λx+ (1− λ)y ∈ ∩i∈ICi = C

Hence, C is convex.

Corollary: Txtbook Cor 2.1.1

Let bi ∈ Rn, βi ∈ R for i ∈ I , where I is an arbitrary index set.
Then the set:

C = {x ∈ Rn|〈x, bi〉 ! βi, ∀i ∈ I}

is convex.

Proof. Set ∀i ∈ I ,
Ci = {x ∈ Rn|〈x, bi〉 ! βi}

We claim that ∀i ∈ I , Ci is convex.
Indeed, let i ∈ I , let (x, y) ∈ Ci × Ci, and let λ ∈ (0, 1). Set

z := λx+ (1− λ)y

Then

〈z, bi〉 = 〈λx+ (1− λ)y, bi〉
= λ〈x,bi〉

!βi

+ (1− λ)〈y,bi〉
!βi

! λβi + (1− λ)βi( Using 1 > λ > 0, x, y ∈ Ci)

= βi

Hence, z ∈ Ci

Consequently, Ci is convex, as claimed.
Now, combine with theorem 2.1
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1.4 Convex Combinations of Vectors:
Definition 3

A vector sum
λ1x1 + . . .+ λmxm

is called a convex combination of vectors x1, . . . , xm if ∀i ∈ {1, . . . ,m},λi " 0, and!m
i=1 λi = 1

Theorem 2: Txtbook THM2.2

A subset C of Rn is convex iff it contains all the convex combination of its elements

Proof. (⇐) Suppose C contains all the convex combinations of its elemtns.
Let λ ∈ (0, 1) and let x ∈ C, y ∈ C.
By assumption, the convex combination

λx+ (1− λ)y

lies in C.
Therefore, C is convex.
(⇒) Suppose C is convex.
We proceed by induction on m, where m is the number of elements in the convex combination.
Base case: when m = 2, the conclusion is clear by the convexity of C.
Now, suppose that for some m > 2 it holds that any convex combination of m vectors lies in C.
Let {x1, . . . , xm} ⊆ C, let λ1, . . . ,λm,λm+1 " 0, such that

m+1"

i=1

= 1

our goal is to show that

z :=
m+1"

i=1

λixi ∈ C

Observe that, there must exist at least one λi ∈ [0, 1) or else if all

λi = 1 ⇒ 1 =
m+1"

i=1

λi = m+ 1 > 3

which is a contradiction.
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Without loss of generality, we can and do assume that λm+1 ∈ [0, 1). Now:

z =
m+1"

i=1

λixi

=
m"

i=1

λixi + λm+1xm+1

= (1− λm+1)
m"

i=1

λi

1− λm+1

xi + λm+1xm+1

= (1− λm+1)
m"

i=1

λ′
ixi + λm+1xm+1

Observe that, λ′
i :=

λi

1−λm+1
" 0, and that

m"

i=1

λ′
i =

λ1 + . . .+ λm

1− λm+1

=
1− λm+1

1− λm+1

= 1

Using the inductive hypothesis, we learn that
m"

i=1

λi

1− λm+1

xi ∈ C

Hence,

z =

#

$$$$%
(1− λm+1)

m"

i=1

λi

1− λm+1

xi

& '( )
∈C

+λm+1 xm+1& '( )
∈C

*

++++,
∈ C

so C is convex.

Definition 4: Convex Hull

Let S ⊆ Rn. The intersection of all convex sets containing S is called the convex hull of S
and is denoted by conv(S).
By theorem 2.1, conv(S) is convex. In fact, it is the smallest convex set containing S.

Theorem 3: Txtbook THM2.3

Let S ⊆ Rn. Then conv(S) consists of all the convex combinations of the elements of S,
i.e.,

conv(S) =

-
"

i∈I

λixi|I is a finite index set, ∀i ∈ I, xi ∈ S,λi " 0,
"

i∈I

λi = 1

.
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Proof. Set

D :=

-
"

i∈I

λixi|I is a finite index set, ∀i ∈ I, xi ∈ S,λi " 0,
"

i∈I

λi = 1

.

First, clearly, S ⊆ D. Moreover, we want to show that D is convex. Indeed, let d1, d2 ∈ D, and let
λ ∈ (0, 1)
Then, there exist

λ1, . . . ,λk " 0,
k"

i=1

λi = 1

µ1, . . . , µr " 0,
r"

j=1

µj = 1

d1 =
k"

i=1

λixi, {x1, . . . , xk} ⊆ S

d2 =
r"

j=1

µjyj, {y1, . . . , yr} ⊆ S

Therefore,

λd1 + (1− λ)d2

=λλ1x1 + . . .+ λλkxk

+ (1− λ)µ1y1 + . . .+ (1− λ)µryr

Observe that
λλi, (1− λi)µi " 0, i ∈ {1, . . . , k}, j ∈ {1, . . . , r}

and that

λλ1 + . . .+ λλk + (1− λ)µ1 + . . .+ (1− λ)µr

=λ

k"

i=1

λi + (1− λ)
r"

j=1

µj

=λ(1) + (1− λ)(1) = λ+ 1− λ = 1

Although, we conclude that D is convex set ⊆ S. Hence, conv(S) ⊆ D
Secondly, observe that S ⊆ conv(S).
Now, combine with theorem 2.2 to learn that the convex combinations of elements of S lie in
conv(S)

Convex Hull: Examples
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1.5 Convex Sets: Best Approximation

Definition: Distance Function

Let S ⊆ Rn. The distance to S is the function

dS :Rn → [0,∞]

x → inf
s∈S

‖x− s‖

Definition: Projection onto a set

Let ∅ ∕= C ⊆ Rn, let x ∈ Rn, and let p ∈ C. Then p is a projection of x onto C, if

dC(x) = ‖x− p‖

If every point in Rn has exactly one projection onto C, the projection operator onto C, denoted by
PC , is the opearator that maps every point in Rn to its unique projection in C.

Recall:
Let (xn)n∈N be a sequence in Rn. Then (xn)n∈N is a Cauchy sequence if ‖xm − xn‖→ 0 as
min{m,n} → ∞

Fact:
In Rn, every Cauchy sequence converges.

Recall:
Let f : Rn → R and let x ∈ Rn. Then f is continuous at x if and only if for every sequence
(xn)n∈N such that xn → x we have

f(xn) → f(x)

Fact:
Let y ∈ Rn, and let ‖·‖ be the Euclidean norm on Rn. Then the function

f : Rn → R : x → ‖x− y‖

is continuous.

Proof. Only for illustration, you don’t need to know the proof.
Let (xn)n∈N be a sequence in Rn such that xn → x. Now:

f(xn)− f(x) = ‖xn − y‖−‖x− y‖
= ‖xn − x+ x− y‖−‖x− y‖
! ‖xn − x‖+‖x− y‖−‖x− y‖
= ‖xn − x‖
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Similarly,

f(x)− f(xn) = ‖x− y‖−‖xn − y‖
! ‖x− xn‖+‖xn − y‖−‖xn − y‖
= ‖x− xn‖

Altogether, we have
0 ! |f(xn)− f(x)|! ‖xn − x‖

Now, take the limit as n → ∞ to learn that

|f(xn)− f(x)|→ 0

equivalently,
f(xn) → f(x)

Explicitly, this means (∀y ∈ Rn) if xm → x, then

‖xm − y‖→ ‖x− y‖
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Lemma 4

Let x, y, z be vectors in Rn. Then

‖x− y‖2= 2‖z − x‖2+2‖z − y‖2−4‖z − x+ y

2
‖2

Proof.

2‖z − x‖2 = 2‖z‖2−4 〈z, x〉+ 2‖x‖2 (1.1)
2‖z − y‖2 = 2‖z‖2−4 〈z, y〉+ 2‖y‖2 (1.2)

4‖z − x+ y

2
‖2 = 4‖z‖2+‖x+ y‖2−4 〈z, x〉 − 4 〈z, y〉 (1.3)

R.H.S = (1.1) + (1.2)− (1.3)

= 2‖x‖2+2‖y‖2−‖x+ y‖2

= 2‖x‖2+2‖y‖2−‖x‖2−‖y‖2−2 〈x, y〉
= ‖x‖2+‖y‖2−2 〈x, y〉
= ‖x− y‖2= L.H.S

Lemma 5

Let x ∈ Rn, y ∈ Rn. Then

〈x, y〉 ! 0 ⇐⇒ (∀λ ∈ [0, 1]), ‖x‖! ‖x− λy‖

Proof. Observe that

‖x− λy‖2−‖x‖2 = ‖x‖2−2λ 〈x, y〉+ λ2‖y‖2−‖x‖2

= λ(λ‖y‖2−2 〈x, y〉) . . . (∗)
(⇒) Suppose 〈x, y〉 ! 0. Then

‖x− λy‖2−‖x‖2= λ(λ‖y‖2−2 〈x, y〉) " 0

(⇐) Suppose that for every λ ∈ (0, 1], ‖x− λy‖" ‖x‖. Then (∗) implies 〈x, y〉 ! λ
2
‖y‖2. Taking

the limit as λ ↓ 0 yields the desired result.

Theorem 6: The projection theorem

Let C be a nonempty, closed, convex subset of Rn. Then the following hold:

1. (∀x ∈ Rn) the projection of x onto C exists and is unique.

2. For every x ∈ Rn and every p ∈ Rn:

p = PCx ⇔ [p ∈ C and (∀y ∈ C) 〈y − p, x− p〉 ! 0]
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Proof. Let x ∈ Rn.

1. Our goal is to show that x has a unique projection onto C.
Existence:
Recall that (∀x ∈ Rn)

dC(x) = inf
c∈C

‖x− c‖

Therefore, there exists a sequence (cn)n∈N in C such that

dC(x) = lim
n→∞

‖cn − x‖. . . (1)

Now, let m and n be in N. By convexity of C ,we know that

1

2
(cm + cn) ∈ C

Hence,

dC(x) = inf
c∈C

‖x− c‖! ‖x− 1

2
(cm + cn)‖

Applying the auxuliary Lemma 1 with (x, y, z) replaced by (cm, cn, x) we learn that :

‖cn − cm‖2 = 2‖cn − x‖2+2‖cm − x‖2−4‖x− cn + cm
2

‖2

! 2‖cn − x‖2+2‖cm − x‖2−4d2C(x)

Letting m → ∞, n → ∞, we learn that

0 ! ‖cn − cm‖2! 2d2C(x) + 2d2C(x)− 4d2C(x) = 0

That is ‖cn − cm‖2→ 0, hence (cn)n∈N is a Cauchy sequence in C, hence (cn)n∈N converges
to some point say p ∈ C (by the closedness of C).
We will now show that

dC(x) = ‖x− p‖
Observe that, ‖x− ·‖ is continuous. Combining with cn → p and (1), we learn that dC(x) ←
‖x− cn‖→ ‖x− p‖, hence

dC(x) = ‖x− p‖
This proves the existence.
Uniqueness:
Suppose that q ∈ C satisfies that dC(x) = ‖q − x‖. By convexity of C,

1

2
(p+ q) ∈ C

Now, using the auxiliary lemma 1 with (x, y, z) replaced by (p, q, 1
2
(p+ q)) we learn that:

0 ! ‖p− q‖2

= 2‖p− x‖2+2‖q − x‖2−4‖x− p+ q

2
‖2

! 2d2C(x) + 2d2C(x)− 4d2C(x)

= 0

Hence, ‖p− q‖= 0; equivalently p = q. This proves uniqueness.
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2. We want to show that, for every x ∈ Rn and every p ∈ Rn,

p = PC(x) ⇔ [p ∈ C and (∀y ∈ C) 〈y − p, x− p〉 ! 0]

Indeed, p = PC(x) ⇔ [p ∈ C and ‖x− p‖2= d2C(x)].
Observe that, for every y ∈ C, α ∈ [0, 1],

yα := αy + (1− α)p ∈ C

Therefore,

‖x− p‖2= d2C(x)

⇔ ∀y ∈ C, ∀α ∈ [0, 1]‖x− p‖2! ‖x− yα‖2

⇔ ∀y ∈ C, ∀α ∈ [0, 1]‖x− p‖2! ‖x− p− α(y − p)‖2

⇔ ∀y ∈ C, 〈x− p, y − p〉 ! 0 (by the lemma 2)

Example

Let ε > 0, and let C = ball(0, ε) = {c ∈ Rn|‖x‖2! ε2}, i.e., the closed ball in Rn centered
at 0 with radius ε. Show that

∀x ∈ Rn, PC(x) =
ε

max{‖x‖, ε}x

Proof. Let x ∈ Rn and set p = ε
max{‖x‖,ε}x. Using the projection theorem, it suffices to show that:

1. p ∈ C

2. ∀y ∈ C, 〈x− p, y − p〉 ! 0

We examine two cases, show p ∈ C

1. ‖x‖! ε. Then x ∈ C and p = ε
ε
x = x ∈ C

2. ‖x‖> ε, and ‖p‖= ε‖x‖‖x‖ = ε, hence p ∈ C

Then, we show ∀y ∈ C,
〈x− p, y − p〉 ! 0

Indeed, let y ∈ C.

1. ‖x‖! ε ⇒ p = x and
0 = 〈x− p, y − p〉 ! 0

14



2. ‖x‖> ε ⇒= ε
‖x‖x.

Moreover,

〈x− p, y − p〉 =
/
x− ε

‖x‖x, y −
ε

‖x‖x
0

=

1
1− ε

‖x‖

2/
x, y − ε

‖x‖x
0

=

1
1− ε

‖x‖

21
〈x, y〉 − ε

‖x‖‖x‖
2

2

=

1
1− ε

‖x‖

2
(〈x, y〉 − ε‖x‖)

!
1
1− ε

‖x‖

2
(‖x‖‖y‖−ε‖x‖)

!
1
1− ε

‖x‖

2

& '( )
"0

3

4‖x‖ ε&'()
‖y‖!ε,y∈C

−ε‖x‖

5

6

= 0
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Definition: Minkowski sum of two sets

Let C and D be two subsets of Rn. The Minkowski sum of C and D, denoted by C +D is

C +D := {c+ d|c ∈ C, d ∈ D}

Theorem 7: Minkowski sum of Convex sets, Txtbook THM3.1

Let C1, C2 be convex subsets of Rn. Then C1 + C2 is convex.

Proof. If C1 = ∅ or C2 = ∅, then C1 + C2 = ∅ and the conclusion follows.
Now suppose that C1 ∕= ∅, C2 ∕= ∅ ⇒ C1 + C2 ∕= ∅
Let x, y be in C1 + C2 and let λ ∈ (0, 1).
Since x ∈ C1 + C2, there exist x1 ∈ C1, x2 ∈ C2 such that

x = x1 + x2

.
Similarly, there exists y1 ∈ C1, y2 ∈ C2 such that y = y1 + y2.
Now,

λx+ (1− λ)y = λ(x1 + x2) + (1− λ)(y1 + y2)

= λx1 + (1− λ)y2 + λx1 + (1− λ)y2

∈ C1 + C2

The proof is complete.

Proposition 8

Let C and D be nonempty, closed convex subsets of Rn such that D is bounded. Then

C +D is nonempty, closed, convex

Proof.
C ∕= ∅, D ∕= ∅ =⇒ C +D ∕= ∅

C convex, D convex =⇒ C +D is convex by theorem 3.1
It remains to show taht C +D is closed.
Take a convergent sequence (xn + yn)n∈N in C +D such that (xn)n∈N lies in C, (yn)n∈N lies in D
and xn + yn → z (say). Our goal is to show that z ∈ C +D.
By assumption, D is bounded, hence (yn)n∈N is bounded.
Using Bolzano-Weierstrass, we know that there exists a subsequence

(ykn)n∈N, ykn → y ∈ D

Therefore, z − y ← xkn → x ∈ C
That is, z ∈ C + y ⊆ C +D

Quesion: What happens if we drop the assumption that D is bounded?
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Example 1

Let

C1 = R× {0}
C2 = {(x, y) ∈ R2

++|xy " 1}

Then C1, C2 are closed and convex. However,

C1 + C2 = R× R++

which is convex but open.

Proof. We have:

• (⊆), C1 + C2 ⊆ R× R++

Indeed, let (z1, z2) ∈ C1 + C2. Then, there exists (x1, x2) ∈ C1, (y1, 0) ∈ C2, such
that

z1 = x1 + y1, z2 = x2

Clearly, z1 = x1 + y1 ∈ R. And z2 = x2 > 0. Hence,

C1 + C2 ⊆ R× R++

• (⊇), C1 + C2 ⊇ R× R++

Let (x, y) ∈ R× R++, set

c1 :=

1
x− 1

y
, 0

2
, c2 :=

1
1

y
, y

2

Then we have c1 ∈ C1, c2 ∈ C2 and

(x, y) = c1 + c2 ∈ C1 + C2

17



Theorem 9: Txtbook THM3.2

Let C to be a convex set, let λ1 " 0 and let λ2 " 0. Then

(λ1 + λ2)C = λ1C + λ2C

Proof. We prove two directions:

• (⊆): Obvious. Indeed, let x ∈ (λ1 + λ2)C. Then ∃c ∈ C, such that

x = (λ1 + λ2)c = λ1c+ λ2 ∈ λ1C + λ2C

This direction is always true even in the absence of convexity.

• (⊇): Without loss of generality, we can and do assume that λ1 + λ2 > 0 (o/w, the condition
is trivial)
Now, by convexity we have

λ1

λ1 + λ2

C +
λ2

λ1 + λ2

C ⊆ C

Equivalently, λ1C + λ2C ⊆ (λ1 + λ2)C

18



1.6 Convex Sets: Topological properties
Throughout this course we use:

B(x, ε) = {y ∈ Rn| ‖y − x‖2! ε}

and
B := B(0, 1) = {y ∈ Rn| ‖y‖! 1}

i.e., the closed unit ball.
Let C ⊆ Rn,
the interior of C is

int(C) = {x|∃ε > 0, s.t. x+ εB ⊆ C}

the closure of C is C (textbook uses cl(C),

C = cl(C) = ∩{C + εB|ε > 0}

The relative interior of a convex set C is

ri(C) = {x ∈ aff(C)|∃ε > 0, s.t. (x+ εB) ∩ aff(C) ⊆ C}
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Example 2

• On the real line:

1.

C1 = {0} ⊆ R
int(C1) = ∅, C1 = {0}
ri(C1) = {0}

2.

C2 = [a, b)

int(C2) = (a, b), C2 = [a, b]

ri(C2) = (a, b)

• in R2:

1. C1 = {(0, 0)}, int(C1) = ∅, C1 = {(0, 0)}, and ri(C1) = {(0, 0)}

2. even for x ∈ Rn, say C = {x}, int(C) = ∅, C = ri(C) = {x}
3. C2 = [a, b]× {0}

int(C2) = ∅
C2 = C2

= [a, b]× {0}
ri(C2) = (a, b)× {0}

4. C3 = [−1.1]× [−1.1], then

int(C3) = (−1, 1)× (−1, 1)

C3 = C3

ri(C3) = int(C3)

= (−1, 1)× (−1, 1)

Remark. 1. Let C ⊆ Rn. Suppose that int(C) ∕= ∅. Then int(C) = ri(C)

Proof. Let x ∈ int(C). Then ∃ε > 0 such that

B(x; ε) ⊆ C

Hence,
Rn = aff(B; ε)) ⊆ aff(C) ⊆ Rn
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Therefore, aff(C) = Rn, and the conclusion follows by recalling that

ri(C) = {x ∈ aff(C)|∃ε > 0, s.t. (x+ εB) ∩ aff(C) ⊆ C}
= {x ∈ Rn|∃ε > 0, s.t. (x+ εB) ∩ Rn ⊆ C}
= {x|∃ε > 0, s.t. x+ εB ⊆ C}
= int(C)

2. Let C ∕= ∅ be convex. The dimension of C, denoted dim(c), is the dimension of the affine
hull of C ”aff(C)”. Observe that

L := aff(C)− aff(C)

is a linear subspace
dim(aff(C)) = dimL

Proposition 10: *

Let C be a convex set in Rn. Then ∀x ∈ int(C), ∀y ∈ C

[x, y) ⊆ int(C)

Proof. The above statement is equivalent to ∀x ∈ int(C), ∀y ∈ C, ∀λ ∈ [0, 1),

(1− λ)x+ λy ∈ int(C)

Let x ∈ int(C), y ∈ C,λ ∈ [0, 1). We need to show that

(1− λ)x+ λy + εB ⊆ C

for some ε > 0.
Observe that, because y ∈ C,

∀ε > 0, y ∈ C + εB

Hence, for every ε > 0, we have

(1− λ)x+ λy + εB

⊆ (1− λ)x+ λ(C + εB) + εB

= (1− λ)x+ λC + λεB + εB

= (1− λ)x+ λC + (1 + λ)εB

= (1− λ)

#

% x&'()
∈int(C)

+
1 + λ

1− λ
εB

*

,+ λC

⊆ (1− λ)C + λC (for suff. small ε)
= C

21



Theorem 11: Txtbook THM6.1

Let C be a convex set in Rn. Then ∀x ∈ ri(C), ∀y ∈ C

[x, y) ⊆ ri(C)

Proof. We have just shown that if int(C) ∕= ∅, then ∀x ∈ int(C), ∀y ∈ C

[x, y) ⊆ int(C)

1. int(C) ∕= ∅.
Combine the previous proposition and remark 1, int(C) = ri(C)

2. int(C) = ∅
In this case we must have dimC = m < n.
Let L = aff(C) − aff(C), then L is a linear subspace whose dimension = m. Hence, L
can be regarded as a copy of Rm

After translating C with −c ∈ C (if necessary), we can and do assume that C ⊆ Rm, and
the interiors of C − c with respect to Rm is ri(C) (in Rn). Now, apply case 1).

Theorem 12

Let C be a convex subset of Rn, then the following hold:

1. C is convex

2. int(C) is convex

3. Suppose that int(C) ∕= ∅. Then int(C) = int(C) and C = int(C)

Proof. We prove each of the above:

1. Let x, y ∈ C, and let λ ∈ (0, 1). Then there exist sequences (xn)n∈N and (yn)n∈N in C such
that

xn → x, yn → y

Consequently,
C ∋ λxn + (1− λ)yn −→ λx+ (1− λ)y

which implies
λx+ (1− λ)y ∈ C

Hence, c is convex.
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2. If int(C) = ∅, the conclusion is clear. Otherwise, use the previous proposition with x, y ∈
int(C) ⊆ C. Observe that:

[x, y] = [x, y) ∪ {y}
⊆ int(C) ∪ int(C)

= int(C)

3. Clearly, C ⊆ C. Hence,
int(C) ⊆ int(C)

Conversely, let y ∈ int(C).
Then ∃ε > 0, such that B(y, ε) ⊆ C. Now, let x ∈ int(C),λ > 0 such that x ∕= y, and
y + λ(y − x) ∈ B(y; ε) ⊆ C. By the proposition ∗ applied with y replace by y + λ(y − x),
we learn that

y ∈ [x, y + λ(y − x)) ⊆ int(C)

To see y ∈ [x, y + λ(y − x)): set α := 1
1+λ

∈ (0, 1)
Observe that

y = (1− α)x+ α(y + λ(y − x))

∕= y + λ(y − x)

Indeed,

(1− α)x+ α(y + λ(y − x))

= (1− α(1 + λ))x+ α(1 + λ)y

= y

Therefore, int(C) ⊆ int(C)
Altogether, int(C) = int(C We now turn to the second identity. Clearly int(C) ⊆ C.
Conversely, let y ∈ C and let x ∈ int(C).
Define, ∀λ ∈ [0, 1)

yλ = (1− λ)x+ λy

Again, proposition ∗ tells us that the (yλ)λ∈[0,1) lies in [x, y) ⊆ int(C) Hence, y = limλ↓0 yλ ∈
int(C). That is,

C ⊆ int(C)

Altogether, we learn that
C = int(C)

Fact(textbook THM6.2):
Let C be a convex subset of Rn. Then ri(C) and C are convex subsets of Rn. Moreover,

C ∕= ∅ ⇔ ri(C) ∕= ∅
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2 Separation Theorems

Definition 5

Let C1, C2 be subsets of Rn. Then C1 and C2 are separated if ∃b ∈ Rn \ {0} such that

sup
c1∈C1

〈c1, b〉 ! inf
c2∈C2

〈c2, b〉

C1 and C2 are strongly separated if ∃b ∈ Rn \ {0} such that

sup
c1∈C1

〈c1, b〉 < inf
c2∈C2

〈c2, b〉

We say that x ∈ Rn is (strongly) separated from C ⊆ Rn if the set {x} is (strongly) separated
from C.

Theorem 13

Let C be a nonempty, closed, convex subset of Rn and suppose that x /∈ C. Then x is
strongly separated from C.

Proof. We need to guarantee the existence of Rn ∋ b ∕= 0 such that

sup 〈c, b〉 < inf 〈x, b〉 = 〈x, b〉

Set
b := x− PCx ∕= 0 ⇔ PCx = x− b ∕= x (x /∈ C)

Let y ∈ C. By the projection theorem we have

p = PCx ⇔ [p ∈ C and ∀y ∈ C, 〈y − p, x− p〉 ! 0]
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〈y − (x− b), x− (x− b)〉 ! 0

⇔〈y − x+ b, b〉 ! 0

⇔〈y − x, b〉 ! −〈b, b〉 = −‖b‖2

Consequently,
sup
y∈C

〈y, b〉 − 〈x, b〉 ! −‖b‖2< 0

Hence,
sup
y∈C

〈y, b〉 < 〈x, b〉

Corollary 14

Let C1, C2 be nonempty subsets of Rn such that C1 ∩ C2 = ∅ and C1 − C2 is closed and
convex. Then C1 and C2 are strongly separated.

Proof. Observe that by definition C1, C2 are strongly separated if and only if C1 − C2 and 0 are
strongly separated.
Indeed, C1 − C2 and 0 are strongly separated ⇔ ∃b ∕= 0 such that

sup
c1∈C1
c2∈C2

〈c1 − c2, b〉 < inf 〈0, b〉 = 0

⇔ sup
c1∈C1
c2∈C2

{〈c1, b〉+ 〈−c2, b〉} < 0

⇔ sup
c1∈C1

〈c1, b〉+ sup
c2∈C2

〈−c2, b〉 < 0

⇔ sup
c1∈C1

〈c1, b〉 < − sup
c2∈C2

〈−c2, b〉 = inf
c2∈C2

〈c2, b〉

The conclusion follows by noting that C1 ∩ C2 = ∅ ⇒ 0 /∈ C1 − C2, and combining with the
previous theorem(12).

Corollary 15

Let C1, C2 be nonempty closed convex subsets of Rn such that C1 ∩ C2 = ∅ and C2 is
bounded. Then C1 and C2 are strongly separated.

Proof. Observe that −C2 is nonempty closed and convex. Therefore, by proposition ∗, C1 −
C2 is nonempty, closed and convex. Now we combine with the last corollary and get what’s
required.
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Theorem 16

Suppose that C1 and C2 are nonempty closed convex subsets of Rn such that C1 ∩ C2 = ∅.
Then C1 and C2 are separated.

Proof. Set (∀n ∈ N)
Dn = C2 ∩B(0;n)

Observe that (∀n ∈ N),
C1 ∩Dn = ∅

Indeed, Dn ⊆ C2. Hence, C1 ∩Dn ⊆ C1 ∩ C2 = ∅
Dn is bounded, because Dn ⊆ B(0;n)
Apply the corollary(15) from the previous lecture with C2 replaced by Dn we learn that (∀n ∈ N,
there exists a hyperplane that strongly separates C1 and Dn. Equivalently.

∀n ∈ N, ∃un ∈ Rn \ {0}, ‖un‖= 1

and
sup 〈C1, un〉 < inf 〈Dn, un〉

Because (un)n∈N is bounded, there exists a convergent subsequence (uKn)n∈N of (un)n∈N such that
uKn → u (say), and ‖u‖= 1.
Now let x ∈ C1, y ∈ C2. Then, eventually y ∈ B(0;Kn), hence eventually y ∈ DKn and by
sup 〈C1, un〉 < inf 〈Dn, un〉, we have

7
x&'()

∈C1

, uKn

8
<

7
y&'()

∈DKn

, uKn

8

Taking the limit as n → ∞, we learn that 〈x, u〉 ! 〈y, u〉. The proof is complete.
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2.1 More Convex Sets: Cones
Definition 6

Let C be a subset of Rn, then

1. C is a cone if
C = R++C

2. The conical hull of C, denoted by cone(C), is the intersection of all the cones of Rn

containing C. It is the smallest cone in Rn containing C.

3. The closed conical hull of C, denoted by cone(C) is the smallest closed cone in Rn

containing C.

The definition of cone above means that

∀x ∈ C, ∀α ∈ R++,αx ∈ C =⇒ C is a cone
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Example 3

1.
K1 = {(x1, . . . , xn) ∈ Rn|xi " 0, 1 ! i ! n}

It’s a closed convex cone.

2.
K2 = {(x1, . . . , xn) ∈ Rn|xi > 0, 1 ! i ! n}

It’s a convex cone.

3.
K3 = ({0}× R+) ∪ (R+ × {0}) ⊆ R2

It’s a closed cone but not convex

4.
K4 = ({0}× R++) ∪ (R−− × {0})

It’s a closed cone but it’s not closed nor convex.

28



Proposition 17

Let C be a subset of Rn. Then the following hold:

1. cone(C) = R++C

2. cone(C) = cone(C)

3. cone(conv(C)) = conv(cone(C))

4. cone(conv(C)) = conv(cone(C))

Proof. If C = ∅, then the conclusion is obvious. Now, suppose that C ∕= ∅.

1. Set D = R++C, and observe that C ⊆ D, and D is a cone.

=⇒ cone(C) ⊆ cone(D) = D = R++C

Conversely, let y ∈ D. Then ∃λ > 0, c ∈ C such that

y = λc

Then y ∈ cone(C). Hence,
R++C = D ⊆ cone(C)

Altogether,
cone(C) = R++C

2. Observe that cone(C) is closed cone. Clearly, C ⊆ cone(C). Hence,

cone(C) ⊆ cone(cone(C)) = cone(C)

Conversely, since cone(c) is a cone ,

cone(C) ⊆ cone(C)

Altogether,
cone(C) = cone(C)

3. We want to show that
cone(conv(C)) = conv(cone(C))

• (⊆) let x ∈ cone(conv(C)). Then by 1), ∃λ > 0 and y ∈ conv(C) such that

x = λy

Since y ∈ conv(C), there exist λ1, . . . ,λm ∈ R++,
!m

i=1 λi = 1, x1, . . . , xm ∈ C,
such that

y =
m"

i=1

λixi
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Hence

x = λ

m"

i=1

λixi

=
m"

i=1

λi( λxi&'()
∈cone(C)

)

∈ conv(cone(C))

• (⊇), conversely, let x ∈ conv(cone(C)). In view of 1) cone(C) = R++C, we
learn that there exist λ1, . . . ,λm > 0, there exist µ1, . . . , µm > 0 with

!m
i=1 µi =

1, {x1, . . . , xm} ⊆ C such that

x =
m"

i=1

µiλixi

=

9
m"

i=1

λiµi

:

& '( )
:=α

#

$$$%

m"

i=1

λiµi!
λiµi& '( )

:=βi

xi

*

+++,

= α
m"

i=1

βixi

Then α > 0, βi > 0, ∀i ∈ {1, . . . ,m} and
!m

i=1 βi = 1. Hence

x = α
m"

i=1

βixi

& '( )
∈conv(C)

∈ cone(conv(C))

4. This is a direct consequence of 3) and 2),

cone(conv(C)) = conv(cone(C))

Lemma 18

Let C be a convex subset of Rn such that int(C) ∕= ∅ and 0 ∈ C. Then the following are
equivalent.

1. 0 ∈ int(C)

2. cone(C) = Rn

3. cone(C) = Rn
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Proof. • 1) =⇒ 2): Indeed, 0 ∈ int(c) ⇔ ∃ε > 0 such that B(0; ε) ⊆ C. Hence,

Rn = cone(B(0; ε))

⊆ cone(C) ⊆ Rn

=⇒ cone(c) = Rn

• 2) =⇒ 3) By an earlier Proposition

cone(C) = cone(C)

Nowe,
Rn 2)

= cone(c) ⊆ cone(C) = coneC

• 3) =⇒ 1): cone(C) = Rn ??⇒ 0 ∈ int(C)
By an earlier result, we proved that for any set C we have

cone(conv(C)) = conv(cone(C))

Since C is convex, we have
C = conv(C)

Hence,
cone(C) = conv(cone(C))

implies that cone(C) is convex. By assumption

∅ ∕= int(C) ⊆ int(cone(C))

Hence, cone(C) is a convex set,

int(cone(C)) ∕= ∅

By an earlier result

int(cone(C)) = int(cone(C)) = int(cone(C))

Hence,

Rn = int(Rn)

= int(cone(C))

= int(cone(C))

= cone(int(C))

=⇒ 0 ∈ cone(int(C))

=⇒ 0 ∈ λint(C), for some λ > 0

=⇒ 0 ∈ int(C)

Fact: Let C be a convex subset of Rn such that int(C) ∕= ∅ and 0 ∈ C, then

int(cone(C)) = cone(int(C))
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Definition 7: Tangent and Normal Cones

Let C be a nonempty convex subset of Rn and let x ∈ Rn.
The tangent cone to C at x is

Tc(x) =

-
cone(C − x) = ∪λ∈R++λ(C − x), x ∈ C;

∅, x /∈ C

and the normal cone of C at x is

Nc(x) =

-
{u ∈ Rn|supc∈C 〈c− x, u〉 ! 0}, x ∈ C;

∅, x /∈ C

Example 4

Let C = B = B(0; 1) ⊆ Rn.

TC(x) =

;
<=

<>

{y ∈ Rn|〈x, y〉 ! 0}, ‖x‖= 1;

Rn, ‖x‖< 1;

∅, otherwise

Theorem 19

Let C be a nonempty closed convex subset of Rn and let x ∈ Rn. Prove that NC(x), TC(x)
are closed convex cones.

Proof. See A2.
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Lemma 20

Let C be a nonempty closed convex subset of Rn and let x ∈ C. Then

n ∈ NC(x) ⇔ ∀t ∈ TC(x), 〈n, t〉 ! 0

Proof. • (→) Let n ∈ NC(x), and let t ∈ TC(x). Recall that

TC(x) = cone(C − x)

Therefore, there exists λK > 0, (tK)k∈N in Rn such that

∀k ∈ N, x+ λktk ∈ C, tk → t

Since n ∈ NC(x), and x+ λktk ∈ C, we learn that

∀k ∈ N, 〈n,λtk〉
= 〈n, x+ λktk − x〉 ! 0

λk>0⇒ ∀k ∈ N, 〈n, tk〉 ! 0

Letting k → ∞,
=⇒ 〈n, t〉 ! 0

• (⇐) Suppose that ∀t ∈ TC(x), we have 〈n, t〉 ! 0.
Let y ∈ C and observe that

y − x ∈ TC(x)

(y − x ∈ C − x ⊆ cone(C − x) ⊆ cone(C − x))

Therefore,
〈n, y − x〉 ! 0 =⇒ n ∈ NC(x)

Theorem 21

Let C be a convex subset of Rn such that int(C) ∕= ∅, and let x ∈ C. Then,

x ∈ int(C)
(1)⇔ TC(x) = Rn (2)⇔ NC(x) = {0}

Proof. • (1) Observe that
x ∈ int(C) ⇔ 0 ∈ int(C − x)

Applying the earlier result (lemma 18) with C replaced by C − x.

0 ∈ int(C − x) ⇔ cone(C − x) = Rn ⇔ TC(x) = Rn
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• (2) Recalling the earlier Lemma 20
Let TC(x) = Rn.

n ∈ NC(x) ⇔ ∀t ∈ TC(x) = Rn, 〈n, t〉 ! 0

=⇒ 〈n, n〉 ! 0

⇔ ‖n‖2= 0 ⇔ n = 0

Hence, NC(x) ⊆ {0}. Clearly, {0} ⊆ NC(x).
Hence, NC(x) = {0} as claimed.
Conversely, if NC(x) = {0}, for simplicity, set K = TC(x). Recall that K is a closed convex
cone , 0 ∈ K.
Let x ∈ Rn and set p = PK(x).
By the projection theorem

∀y ∈ K, 〈x− p, y − p〉 ! 0

In particular,

〈x− p,−p〉 ! 0 By setting y = 0

〈x− p, p〉 ! 0 By setting y = 2p ∈ K as K is a cone
=⇒ 〈x− p, p〉 = 0

Hence the projection theorem gives

∀y ∈ K, 〈x− p, y〉 ! 0

It follows from the lemma 20 that x− p ∈ NC(x) = {0}.
Hence, x− p = 0; equivalently

x = p = PK(x) ∈ K

so Rn ⊆ K =⇒ Rn = K = TC(x)
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3 Convex Function
Definition 8: Epigraph

Let f : Rn → [−∞,∞]. The epigraph of f is

epi(f) = {(x,α)|f(x) ! α} ⊆ Rn × R

Example 5
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Definition 9

Let f : Rn → [−∞,∞]. Then

dom(f) = {x ∈ Rn|f(x) < ∞}

f is proper if dom(f) ∕= ∅ and

∀x ∈ Rn, f(x) > −∞

Example 6

• Let f : Rm → (−∞,∞) be continuous. Then f is proper.

• Let C be a subset of Rm. The indicator function of C at x ∈ Rm (see txtbook p
28) is

δC(x) =

-
0, x ∈ C

∞, o/w

Clearly, δC is proper whenever C ∕= ∅.

f is lower semicontinuous (l.s.c) if epi(f) is closed.

f is convex if epi(f) is convex
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Proposition 22: L5-1

Let f : Rm → [−∞,∞] be convex. Then dom(f) = {x ∈ Rn|f(x) < ∞} is convex.

Proof. Fact: Let C be subset of Rn and let A : Rn → Rm be a linear transformation. If C is a
convex subset of Rn then A(C) is a convex subset of Rm

Recall that
epi(f) = {(x,α)|f(x) ! α} ⊆ Rn+1

Consider the linear map (transformation)

L : Rn+1 → Rn : (x,α) → x

Then dom(f) = L(epi(f)), and the conclusion follows in view of the above Fact.

Theorem 23: L5-2

Let f : Rm → [−∞,∞]. Then f is convex if and only if

∀x, y ∈ dom(f), ∀λ ∈ (0, 1), f(λx+ (1− λ)y) ! λf(x) + (1− λ)f(y)

Proof. Observe that f = ∞ ⇔ epi(f) = ∅ ⇔ dom(f) = ∅ and the conclusion follows.
Now, suppose dom(f) ∕= ∅,

• ( =⇒ ) Let (x, y) ∈ dom(f) × dom(f) and let λ ∈ (0, 1). Observe that (x, f(x)) ∈
epi(f), (y, f(y)) ∈ epi(f). By convexity of epi(f) we have

λ(x, f(x)) + (1− λ)(y, f(y)) = (λx+ (1− λ)y,λf(x) + (1− λ)f(y)) ∈ epi(f)

=⇒ f(λx+ (1− λ)y) ! λf(x) + (1− λ)f(y)

• ( ⇐= ). Let (x,α) ∈ epi(f), (y, β) ∈ epi(f),λ ∈ (0, 1)
Observe that this implies that

f(x) ! α, f(y) ! β

Now,

f(λx+ (1− λ)y) ! λf(x) + (1− λ)f(y)

! λα + (1− λ)β

Hence,
(λx+ (1− λ)y,λα + (1− λ)β) ∈ epi(f)

which implies
λ(x,α) + (1− λ)(y, β) ∈ epi(f)

That is, epi(f) is convex. Equivalent, f is convex.
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3.1 Lower Semicontinuity

Definition 10: Lower semicontinuity(Alter. Defn)

Let f : Rm → [−∞,∞], and let x ∈ Rm. Then f is lower semicontinuous (l.s.c.) at x if ,
for every sequence (xn)n∈N in Rm,

xn → x =⇒ f(x) ! lim inf f(xn)

Moreover, f is l.s.c. if f is l.s.c. at every point in Rm.

Remark. 1. If f is continuous then f is l.s.c.

2. One can show the equivalence of the definition(s) of l.s.c. However, we will omit the proof.

Example 7: The indicator function

Let C ⊆ Rm. Then indicator function δC : Rm :→ (−∞,∞] of C is defined by

δC(x) =

-
0, x ∈ C

∞, x /∈ C

Theorem 24: L5-3

Let C ⊆ Rm. Then the following hold

1. C ∕= ∅ ⇐⇒ δC is proper

2. C is convex ⇐⇒ δC is convex

3. C is closed ⇐⇒ δC is l.s.c

Proof. 1. See A2

2. See A2

3. Observe that C = ∅ ⇐⇒ epi(δC) = ∅ which is closed. Now suppose C ∕= ∅

• ( =⇒ ) Suppose C is closed.
We want to show that epi(δC) is closed. Let ((xn,αn))n∈N be a sequence in epi(δC),
such that (xn,αn) → (x,α).
Observe that:

(xn)n∈N is a sequence in C, xn → x

Hence, x ∈ C (C closed). And (αn)n∈N is a sequence in [0,∞), αn → α. Hence
α " 0. Indeed,

∀n ∈ N, 0 = δC(xn) ! αn
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Consequently,

0 = δC(x) ! α

=⇒ (x,α) ∈ epi(δC)

• ( ⇐= ) Conversely, suppose that δC is l.s.c. Let (xn)n∈N be a sequence in C, xn → x.
We want to show that x ∈ C. By definition of δC , it is sufficient to show that δC(x) = 0.
Observe that

0 ! δC(x) ! lim inf δC(xn) = 0

Hence, δC(x) = 0 =⇒ x ∈ C
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Why optimizers like indicator functions? Consider the problem

(P )min f(x), s.t. x ∈ C ⊆ Rm

f convex, l.s.c proper, C convex closed ∕= ∅

Then (P ) is equivalent to
min
x∈Rm

h(x) := f(x) + δC(x)

where h(x) =

-
f(x), x ∈ C

∞, x /∈ C
.

The problem is now ”unconstrained” minimization of ”a sum of two” functions.

• f is not necessarily smooth

• δC is Not smooth (whenever C ∕= Rm)
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Proposition 25: L5-4

let I be an indexed set and let (fi)i∈I be a family of l.s.c convex functions on Rn. Then
supi∈I fi is convex and l.s.c

Proof. Set F = supi∈I fi
We claim that

epi(F ) = ∩i∈Iepi(fi) . . . (∗)

Indeed, let (x,α) ∈ Rm × R. Then

(x,α) ∈ epi(F ) ⇐⇒ sup
i∈I

fi(x) ! α

⇐⇒ ∀i ∈ I, fi(x) ! α

⇐⇒ ∀i ∈ I, (x,α) ∈ epi(fi)

⇐⇒ (x,α) ∈ ∩i∈Iepi(fi)

This proves (∗)

• F is l.s.c.
Since ∀i ∈ I , fi is l.s.c., we conclude that ∀i ∈ I , epi(fi) is closed. Now combine with (∗)
to learn that

epi(F ) = ∩i∈Iepi(fi) is closed =⇒ F is l.s.c

• F is convex
Since ∀i ∈ I , fi is convex, we conclude that ∀i ∈ I , epi(fi) is convex. Now combine with
(∗) and an earlier result to learn that

epi(F ) = ∩i∈Iepi(fi) is convex
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3.2 The Support Function (txtbook p-28)

Definition 11

Let C be a subset of Rm. The support function of C is

σ : Rm :→ [−∞,∞]

: u :→ sup
c∈C

〈c, u〉

Proposition 26: L5-5

Let C be a nonempty subset of Rn Then σC is convex, l.s.c and proper

Proof. Let c ∈ C and set
fC : Rm :→ R : x :→ 〈x, c〉

Then fC is proper, l.s.c and convex (In fact, fC is linear). Moreover,

σC = sup
c∈C

fc

Now combine with the earlier result (L5-4) to learn that σC is convex and l.s.c.
Finally, observe that, since C ∕= ∅,

σC(0) = sup
c∈C

〈0, c〉 = 0 < ∞

Hence, 0 ∈ dom(σC) ∕= ∅. Moreover, let c ∈ C. Then ∀u ∈ Rm,

σC(u) = sup
c∈C

〈u, c〉

" 〈u, c〉
> −∞

Hence, σC is proper.
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Example 8: L5-6

Let C = [a, b] ⊆ R+. Then ∀x ∈ R

σC(x) = sup
c∈[a,b]

cx =

-
bx, x " 0

ax, x < 0

Example

Let C = [0,∞) ⊆ R. We examine two cases:

1. x ! 0, then
σC(x) = sup

c∈[0,∞)

cx = 0

2. x > 0, then
supc∈[0,∞)cx = ∞

Hence dom(σC) = (−∞, 0]. Moreover,

∀x ∈ (−∞, 0], σC(x) = 0

Definition 12

Let f : Rm :→ (−∞,∞] be proper. Then f is

1. Strictly convex if

∀x, y ∈ dom(f), x ∕= y,λ ∈ (0, 1) =⇒ f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y)

2. strongly convex with constant β, if for some β > 0 we have:

∀x, y ∈ dom(f), x ∕= y,λ ∈ (0, 1)

=⇒ f(λx+ (1− λ)y) ! λf(x) + (1− λ)f(y)− β

2
λ(1− λ)‖x− y‖2

Clearly,
Strong Convexity =⇒ Strict Convexity =⇒ Convexity

and example for f being strictly convex but not strongly convex is f(x) = ex.

44



3.3 Operations That Preserves Convexity

Proposition 27: L6-1

Let I be a finite indexed set, let (fi)i∈I be a family of Convex functions from Rm to
[−∞,∞], then "

i∈I

fi is convex

Proof. See A2

Proposition 28: L6-2

Let f be convex and l.s.c and let λ > 0. Then λf is convex and l.s.c

Proof. See A2

Definition 13: Minimizers of Functions

Let f : Rn :→ (−∞,∞] be proper and let x ∈ Rm. Then x is a (global) minimizer of f if

f(x) = min f(Rm) ∈ R

Throughout this course we will use argmin f to denote the set of minimizers of f .

Definition 14: Local and Global Minimizers/Maximizers

Let f : Rm :→ (−∞,∞] be proper and let x ∈ Rm. Then:

• x is a local minimum of f if ∃δ > 0 such that

‖x− x‖< δ =⇒ f(x) ! f(x)

• x is a global minimum of f if

∀x ∈ dom(f), f(x) ! f(x)

Analogously, we define local/global max.
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Example 9: L6-3

Why do we ”love” convex functions?

Proposition 29: L6-4

Let f : Rm :→ (−∞,∞] be proper and convex. Then every local minimizer of f is a global
minimizer.

Proof. Let x be a local minimizer of f . Then ∃p > 0 such that

f(x) = min f(B(x; p))

Let y ∈ dom(f) and observe that if y ∈ B(x; p) (i.e. ‖x− y‖! p) then f(x) ! f(y).
Now, suppose that y ∈ dom(f) \B(x; p). Observe that λ := 1− p

‖x−y‖ ∈ (0, 1), set

z = λx+ (1− λ)y ∈ dom(f)
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note dom(f) is convex by L5-1. Moreover:

z − x = λx+ (1− λ)y − x

= (1− λ)y − (1− λ)x

= (1− λ)(y − x)

Hence,

‖z − x‖ = ‖(1− λ)(y − x)‖
= (1− λ)‖y − x‖

=
p

‖y − x‖‖y − x‖= p

Hence,
z ∈ B(x; p)

Moreover, because f is convex, it follows from Jensen’s Inequality that

f(x) ! f(z)

= f(λx+ (1− λ)y)

! λf(x) + (1− λ)f(y)

Hence,
(1− λ)f(x) ! (1− λ)f(y) =⇒ f(x) ! f(y)

Proposition 30: L6-5

let f : Rm :→ (−∞,∞] be proper and convex and let C be a subset of Rm. Suppose that x
is a minimizer of f over C such that x ∈ int(C). Then x is a minimizer of f

Proof. Since x ∈ int(C), ∃ε > 0 such that B(x; ε) ⊆ C.
Since x is a minimizer of f over C ⊇ B(xlε) we learn that

f(x) = inf f(B(x; ε))

That is, x is a local minimizer of f . Now we combine with (L6-4) to get the result.
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3.4 Conjugates of Convex Functions

Definition 15: Conjugates of Convex Functions

Let f : Rm :→ [−∞,∞]. The Fenchel-Legendre/ConVex Conjugate of f is

f ∗ : Rm :→ [−∞,∞]

: u :→ sup
x∈Rm

(〈x, u〉 − f(x))

Geometrically Speaking:

Proposition 31: L6-6

Let f : Rm :→ [−∞,∞]. Then f ∗ is convex and l.s.c.

Proof. Observe that if f ≡ ∞ ⇐⇒ dom(f) = ∅. Hence, ∀u ∈ Rm,

f ∗(u) = sup
x∈Rm

(〈x, u〉 − f(x))

= sup
x∈dom(f)

(〈x, u〉 − f(x))

= −∞

i.e. f ∗ = −∞ which is l.s.c. and convex.
Now suppose that f ∕≡ ∞. we claim that ∀u ∈ Rm,

f ∗ = sup
(x,α)∈epi(f)

(〈x, u〉 − α) . . . (∗)
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f(x,α) := 〈x, ·〉 − α is an affine function.
Indeed, let u ∈ Rm.
On the one hand, ∀(x,α) ∈ epi(f), we have

〈x, u〉 − f(x) " 〈x, u〉 − α

Hence,
sup
x∈Rm

(〈x, u〉 − f(x)) " sup
(x,α)∈epi(f)

(〈x, u〉 − α)

On the other hand,
G = {(x, f(x))|x ∈ dom(f)} ⊆ epi(f)

Hence,

sup
x∈Rm

(〈x, u〉 − f(x)) = sup
x∈dom(f)

(〈x, u〉 − f(x))

= sup
(x,f(x))∈G

(〈x, u〉 − f(x))

! sup
(x,α)∈epi(f)

(〈x, u〉 − α)

Altogether, we learn that (∗) holds. This implies ∀u ∈ Rm,

f ∗(u) = sup
(x,α)∈epi(f)
⊆Rm×R

(f(x,α)(u))

Now by L5-4, we get required result.

Example 10: L6-7

let p > 1 and set q = p
p−1

. Let

f : R :→ R : x :→ |x|p
p

Then

f ∗ : R :→ R : u :→ |u|q
q

Proof. Observe that f(x) is differentiable on R, f(x) =

-
xp

p
, x " 0

(−x)p

p
, x < 0

.

Now, let u ∈ R

f ∗(u) = sup
x∈R

(xu− f(x))

= sup
x∈R

3

???4
xu− |x|p

p& '( )
:=g(x)

5

@@@6
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so

g′(x) = u−
-
xp−1, x " 0

−(−x)p−1, x < 0

If u " 0, then setting g′(x) = 0 yields xp−1 = u, and x " 0; equivalently

x = u1/(p−1)

If u < 0, then setting g′(x) = 0 yields u = −(|x|)p−1, and x < 0; equivalently

|u|= −u = |x|1/(p−1)

Altogether, |x|= |u|1/(p−1) and sign(x) = sign(u). Hence,

f ∗(u) = |u|
1

p−1 |u|− |u|
p

p−1

p

= (1− 1/p)|u|1/(1−p)+1

=
p− 1

p
|u|

p
p−1

=
|u|q
q

Example 11: L6-8

Let f : R :→ R, f(x) = ex. Then

f ∗(u) =

;
<=

<>

u ln(u)− u, u > 0

0, u = 0

∞, u < 0

Proof. Let u ∈ R, then
f ∗(u) = sup

x∈R
(xu− ex& '( )

:=g(x)

)

Hence,

If u = 0 =⇒ f ∗(u) = sup
x∈R

(−ex) = 0

If u > 0 =⇒ f ∗(u) = u ln(u)− u

Also, g′(x) = u− ex. Setting g′(x) = 0

=⇒ ex = u ⇐⇒ x = ln(u)

If u < 0 =⇒ g′(x) < 0, ∀x ∈ R. Therefore, g(x) is decreasing on R. Hence

sup
x∈R

g(x) = lim
x→−∞

g(x) = ∞
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Example 12: L6-9

Let C be a subset of Rm. Then δ∗c = σC .

Proof. Indeed, recall that:

δC(x) =

-
0, x ∈ C

∞, x /∈ C

σC(x) = sup
y∈C

〈x, y〉

Now,

δ∗C(u) = sup
y∈C

(〈x, y〉 − δC(y))

= sup
y∈C

〈x, y〉
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3.5 The Subdifferential Operator

Definition 16

Let f : Rm :→ (−∞,∞] be proper. The subdifferential of f is the set-valued operator

∂f : Rm # Rm

: x :→ {u ∈ Rm|∀y ∈ Rm, f(y) " f(x) + 〈u, y − x〉}

Let x ∈ Rm. Then f is subdifferentiable at x if ∂f(x) ∕= ∅. The elements of ∂f(x) are
called the subgradient of f at x.

Theorem 32: Fermat L6-10

Let f : Rm :→ (−∞,∞] be proper. Then

argmin f = {x ∈ Rm|0 ∈ ∂f(x)} := zero(∂f)

Proof. Indeed, let x ∈ Rm. Then

x ∈ argmin f ⇐⇒ ∀y ∈ Rm, f(x) ! f(y)

⇐⇒ ∀y ∈ Rm 〈0, y − x〉+ f(x) ! f(y)

⇐⇒ 0 ∈ ∂f(x)
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Example 13: L6-11

Let f : R :→ R : x :→ |x|, then

∂f(x) =

;
<=

<>

{−1}, x < 0

[−1, 1], x = 0

{1}, x > 0

Proof. See A2

Lemma 33: L6-12

f : Rm :→ (−∞,∞] proper =⇒ dom(∂f) ⊆ dom(f)

Proof. Indeed, if f(x) = ∞ =⇒ ∂f(x) = ∅.
”Contrapositive: x /∈ dom(f) =⇒ x /∈ dom(∂f)”

Example 14: L6-13

Let C be a convex closed nonempty subset of Rm. Let x ∈ Rm, then

∂δC(x) = NC(x)
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Proof. Indeed, let u ∈ Rm and let x ∈ C (dom(∂f) ⊆ dom(f)), then

u ∈ ∂δC(x)

⇐⇒ ∀y ∈ Rm, δC(y) " δC(x) + 〈u, y − x〉
⇐⇒ ∀y ∈ C, δC(y) " δC(x) + 〈u, y − x〉
⇐⇒ ∀y ∈ C, 0 " 〈u, y − x〉
⇐⇒ u ∈ NC(x)
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Casually Speaking
Recall the problem

(P )min f(x), s.t. x ∈ C ⊆ Rm

f convex, l.s.c proper, C convex closed ∕= ∅

Then (P ) is equivalent to
min
x∈Rm

h(x) := f(x) + δC(x)

where h(x) =

-
f(x), x ∈ C

∞, x /∈ C
.

In view of Fermat’s Theorem:

x is a minimizer of h(x) ⇐⇒ 0 ∈ ∂h(x)

Goal: Find x such that 0 ∈ ∂h(x)

∂h(x) = ∂(f + δC)(x)

= (∂f + ∂δC)(x) requires more assumptions
= ∂f(x) + ∂δC(x)

= ∂f(x) +NC(x)
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3.6 Calculus of Subdifferentials
Let f, g : Rm :→ (−∞,∞] be proper and let x ∈ Rm. Suppose that f, g are differentiable at x,
then

∇(f + g)(x) = ∇f(x) +∇g(x)

Question:
Let f.g : Rm :→ (−∞,∞] be proper, convex l.s.c let x ∈ Rm. Suppose that f, g are subdifferen-
tiable at x, then

∂(f + g)(x)
?
= ∂f(x) + ∂g(x)

Fact (L7-1):
Let f : Rm :→ (−∞,∞] be convex l.s.c and proper, then

∅ ∕= ri(dom(f)) ⊆ dom(∂f)

In particular,

ri(dom(f)) = ri(dom(∂f))

dom(f) = dom(∂f)

Separation Theorem revisited:
Let C1, C2 be nonempty subsets in Rm. Then,

• C1, C2 are separated if ∃b ∕= 0 such that

sup
c1∈C1

〈b, c1〉 ! inf
c2∈C2

〈b, c2〉

• C1, C2 are properly separated if ∃b ∕= 0 such that C1 and C2 are separated and

inf
c1∈C1

〈b, c1〉 < sup
c2∈C2

〈b, c2〉

56



57



Fact (L7-2): [txtbook Thm 11.3]
Let C1, C2 be nonempty convex subsets of Rm, then C1 and C2 are ”properly” separated if and
only if

ri(C1) ∩ ri(C2) = ∅

Fact (L7-3): [txtbook Cor 6.6.2]
Let C1, C2 be convex subsets of Rm, then

ri(C1 + C2) = ri(C1) + ri(C2)

Let λ ∈ R, then ri(λC) = λri(C)
Fact (L7-4): [txtbook top of page 49]
Let C1 ⊆ Rm, C2 ⊆ Rp be convex, then

ri(C1 ⊕ C2) = ri(C1)⊕ ri(C2)

and
C1 ⊕ C2 ≃ C1 × C2 = {(c1, c2)|c1 ∈ C1, c2 ∈ C2}

Theorem 34: L7-2

et C1, C2 be convex subsets of Rm such that ri(C1) ∩ ri(C2) ∕= ∅. Let x ∈ C1 ∩ C2, then

NC1∩C2(x) = NC1(x) +NC2(x)

Proof. • ” ⊇ ”, see A2

• ” ⊆ ”: Let x ∈ C1 ∩ C2 and let n ∈ NC1∩C2(x), then ∀y ∈ C1 ∩ C2, we have

〈n, y − x〉 ! 0

E1 = epi(δC1) = C1 × [0,∞) ⊆ Rm × R
E2 = {(y,α)|y ∈ C2,α ! 〈n, y − x〉} ⊆ Rm × R

Using Fact(L7-4), applied with C2 replaced by [0,∞) ⊆ R, we learn that

ri(E1) = ri(C1)× (0,∞)

One can also show that

ri(E2) = {(y,α)|y ∈ ri(C2),α < 〈n, y − x〉}

We claim that
ri(E1) ∩ ri(E2) = ∅ . . . (∗)

Indeed, suppose for eventual contradiction that

∃(z,α) ∈ ri(E1) ∩ ri(E2)
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The 0 < α < 〈n, z − x〉 ! 0, which is absend. Hence (∗) holds. Applying Fact L7-2 with
Ci’s replaced by Ei’s yield.
∃(b, γ) ∈ Rm × R \ {0} such that

∀(x,α) ∈ E1 ∀(y, β) ∈ E2

〈(x,α), (b, γ)〉 ! 〈(y, β), (b, γ)〉
〈x, b〉+ αγ ! 〈y, b〉+ βγ . . . (1)

Moreover, ∃(x,α) ∈ E1, ∃(y, β) ∈ E2 such that

〈x, b〉+ αγ < 〈y, b〉+ βγ . . . (2)

We claim that γ < 0. Indeed, observe that:

(x, 1) ∈ E1, (x, 0) ∈ E2 . . . (3)

Combining with we obtain

〈x, b〉+ γ ! 〈x, b〉
=⇒ γ ! 0

Next, we show that γ ∕= 0
Suppose on the contrary that γ = 0. Observe that this implies that (1) and (2), ∃b ∕= 0

∀(x,α) ∈ C1 ∀(y, β) ∈ C2

〈x, b〉 ! 〈y, b〉
∃x ∈ C1 ∃y ∈ C2

〈x, b〉 < 〈y, b〉

That is, C1, C2 are properly separated. By the earlier Fact(L7-2), we learn that ri(C1) ∩
ri(C2) = ∅, which is a contradiction.
Altogether,

γ < 0

We will show that,

NC1∩C2 ∋ n = − b

γ&'()
∈NC1

(x)

+ n+
b

γ& '( )
∈NC2

(x)

Recall
〈x, b〉+ αγ ! 〈y, b〉+ βγ . . . (1)

Next, we claim that ∀y ∈ C1,
〈b, y〉 ! 〈b, x〉 . . . (4)

Indeed, observe that ∀y ∈ C1, (y, 0) ∈ E1, and by (3) (x, 0) ∈ E2. Therefore, (1) yields (4).
This implies that b ∈ NC1(x). Hence,

− b

γ
= −1

γ
b ∈ NC1(x)
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Finally, using (3) (x, 0) ∈ E1, and

∀y ∈ C2, (y, 〈n, y − x〉) ∈ E2

Therefore, (1) yields
∀y ∈ C2, 〈b, x〉 ! 〈b, y〉+ γ 〈n, y − x〉

Eauivalently,

∀y ∈ C2,

/
b

γ
+ n, y − x

0
! 0

Therefore,
b

γ
+ n ∈ NC2(x)

Altogether, we conclude that

n = − b

γ
+

b

γ
+ n ∈ NC1(x) +NC2(x)
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Proposition 35: L7-3

Let f : Rm :→ (−∞,∞] be convex l.s.c and proper. Let x ∈ Rm and let u ∈ Rm then the
following are equivalent:

u ∈ ∂f(x) ⇐⇒ (u,−1) ∈ Nepi(f)(x, f(x))

Proof. Observe tha epi(f) ∕= ∅ and convex (because f is proper+convex). Now let u ∈ Rm, then

(u,−1) ∈ Nepi(f)(x, f(x))

⇐⇒ [x ∈ dom(f), and ∀(y, β) ∈ epi(f), 〈(y, β)− (x, f(x)), (u,−1)〉 ! 0]

⇐⇒ [x ∈ dom(f), and ∀(y, β) ∈ epi(f), 〈(y − x, β − f(x)), (u,−1)〉 ! 0]

⇐⇒ ∀(y, β) ∈ epi(f), 〈y − x, u〉+ f(x) ! β

⇐⇒
(?)

∀y ∈ dom(f), 〈y − x, u〉+ f(x) ! f(y)

For (? ), clearly =⇒ holds, so (y, f(y)) ∈ epi(f), and ⇐= hold because (y, β) ∈ epi(f) ⇐⇒
f(y) ! β, so

u ∈ ∂f(x)

Theorem 36: L7-4(txtbook THM 23.9)

Let f : Rm :→ (−∞,∞], g : Rm :→ (−∞,∞] be convex l.s.c. and proper. Suppose that
ri(dom(f)) ∩ ri(dom(g)) ∕= ∅. Then ∀x ∈ Rm, we have

∂f(x) + ∂g(x) = ∂(f + g)(x)

Proof. Let x ∈ Rm. If x /∈ dom(f) ∩ dom(g) ⊇ dom(∂f) ∩ dom(∂g),

=⇒ ∂f(x) + ∂g(x) = ∅

Also, ∂(f + g)(x) = ∅.
Now, let x ∈ dom(f) ∩ dom(g) = dom(f + g), one can easily verify that

∂f(x) + ∂g(x) ⊆ ∂(f + g)(x) . . . (A2)

We now verify the opposite inclusion.
Suppose that u ∈ ∂(f + g)(x),

∀y ∈ Rm, (f + g)(y) " (f + g)(x) + 〈u, y − x〉 . . . (1)

Consider the closed convex sets:

∅ ∕= E1 = {(x,α, β) ∈ Rm × R× R|f(x) ! α} = epi(f)× R
∅ ∕= E2 = {(x,α, β) ∈ Rm × R× R|g(x) ! β}
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We claim that
(u,−1,−1) ∈ NE1∩E2(x, f(x), g(x)) . . . (2)

Indeed, let (y,α, β) ∈ E1 ∩ E2, then f(y) ! α, g(y) ! β

=⇒ f(y)− α ! 0, g(y)− β ! 0

Now,

〈(u,−1,−1), (y,α, β)− (x, f(x), g(x))〉
= 〈u, y − x〉 − (α− f(x))− (β − g(x))

= 〈u, y − x〉+ f(x) + g(x)− α− β

= 〈u, y − x〉+ (f + g)(x)− (α + β)

! (f + g)(y)− α− β

= f(y)− α + g(y)− β

! 0

This proves (2).
Next we claim that:

ri(E1) ∩ ri(E2) ∕= ∅

Using that Fact (L7-4), we know that

ri(E1) = ri(epi(f)× R)
= ri(epi(f))× ri(R)
= ri(epi(f))× R

Moreover, we can show that

ri(E2) = {(x,α, β) ∈ Rm × R× R|g(x) < β}

Now, let z ∈ ri(dom(f)) ∩ ri(dom(g)), then

(z, f(z) + 1, g(z) + 1) ∈ ri(E1) ∩ ri(E2) ∕= ∅

Therefore, E1, E2 are nonempty closed convex,ri(E1)∩ ri(E2) ∕= ∅. Hence by Theorem L7-2, we
have

NE1∩E2(x, f(x), g(x)) = NE1(x, f(x), g(x)) +NE2(x, f(x), g(x))

Therefore,
(u,−1,−1) = (u1,−α, 0)& '( )

∈NE1
(x,f(x),g(x))

+ (u2, 0,−β)& '( )
∈NE2

(x,f(x),g(x))

Observe that E1 = epi(f)× R. Hence

NE1(x, f(x), g(x)) = Nepi(f)(x, f(x))×NR(g(x)) = Nepi(f)(x, f(x))× {0}
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This yield: u = u1 + u2, α = β = 1, hence,

(u1,−1) ∈ Nepi(f)(x, f(x))

(u2,−1) ∈ Nepi(f)(x, g(x))

Recalling Proposition L7-3, we conclude that

u1 ∈ ∂f(x), u2 ∈ ∂g(x)

Hence,
u = u1 + u2 ∈ ∂f(x) + ∂g(x)

The proof is complete.

Example 15: L7-5

Let f : Rm :→ (−∞,∞] be convex l.s.c. and proper and let ∅ ∕= C ⊆ Rm be convex and
closed. Suppose that

ri(C) ∩ ri(dom(f)) ∕= ∅

Consider the problem:
(P ) min f(x), s.t. x ∈ C

Let x ∈ Rm, then x solved (P ) if and only if (∂f(x)) ∩ (−NC(x)) ∕= ∅

Proof. Write (P ) as
min
x∈Rm

f(x) + δC(x)

Observe that f + δC is convex l.s.c. and proper.
By Fermat’s Theorem

x solves p ⇐⇒ 0 ∈ ∂(f + δC)(x)

Now,

ri(dom(f)) ∩ ri(dom(δC))

=ri(dom(f)) ∩ ri(C)

∕=∅

Therefore, by Theorem L7-4, we conclude that

x solves p ⇐⇒ 0 ∈ ∂(f + δC)(x) = ∂f(x) + ∂δC(x) = ∂f(x) +NC(x)

⇐⇒ ∃u ∈ ∂f(x), −u ∈ NC(x)

⇐⇒ ∂f(x) ∩ (−NC(x)) ∕= ∅
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Example 16: L7-6

Let d ∈ Rm, and let ∅ ∕= C ⊆ Rm be convex and closed. Consider the problem

(P ) min 〈d, x〉 , s.t. x ∈ C

Let x ∈ Rm. Then x solved
p ⇐⇒ −d ∈ NC(x)
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3.7 Differentiability of Convex Functions

Definition 17: L8-1

et f : Rm :→ (−∞,∞] be proper, and let x ∈ dom(f). The directional derivative of f at x
in the direction of d is

f ′(x; d) := lim
y↓0

f(x+ td) + f(x)

t

f is differentiable at x if there exists an operator ∇f(x) : Rm :→ Rm, called the derivative
(or gradient) of f at x that satisfies

lim
0 ∕=‖y‖→0

‖f(x+ y)− f(x)− 〈∇f(x), y〉 ‖
‖y‖ = 0

Remark. If f is differentiable at x, then the directional derivative of f at x in the direction of d is

f ′(x; d) = 〈∇f(x), d〉

Theorem 37: txtbook Thm 23.2

Let f : Rm :→ (−∞,∞] be convex and proper and let x ∈ dom(f). Let u ∈ Rm. Then u is
a subgradient of f at x of and only if

∀y ∈ Rm, f ′(x; y) " 〈u, y〉

Proof. Using the subgradient inequality we have

u ∈ ∂f(x) ⇐⇒ ∀y ∈ Rm,λ > 0, f(x+ λy) " f(x) + 〈u, x+ λy − x〉

⇐⇒ ∀y ∈ Rm,λ > 0,
f(x+ λy)− f(x)

λ
" 〈u, y〉

Taking the limit as λ ↓ 0 in view of Theorem 23.1 in the textbook yields the desired result.

Theorem 38: Txtbook 25.2

Let f : Rm :→ (−∞,∞] be convex and proper and let x ∈ dom(f). If f is differentiable at
x, then ∇f(x) is the unique subgradient of f at x.

Proof. Recall that ∀y ∈ Rm,
f ′(x; y) = 〈∇f(x), y〉

Let u ∈ Rm, using the previous theorem we have

u ∈ ∂f(x) ⇐⇒ ∀y ∈ Rm, f ′(x; y) " 〈u, y〉

Altogether,
u ∈ ∂f(x) ⇐⇒ ∀y ∈ Rm 〈∇f(x), y〉 " 〈u, y〉
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Clearly, we have {∇f(x)} ⊆ ∂f(x). Moreover, letting y = u−∇f(x) yields

‖u−∇f(x)‖2= 0

=⇒ u = ∇f(x)

=⇒ ∂f(x) ⊆ {∇f(x)}

Hence,
∂f(x) = {∇f(x)}

Lemma 39: L8-4

Let ϕ : R :→ (−∞,∞] be a proper function that is differentiable on a nonempty open
interval I ⊆ dom(ϕ), then:

ϕ′ is increasing on I =⇒ ϕ is convex on I

Proof. Fix x, y ∈ I , and λ ∈ (0, 1). Set

ψ : R :→ (−∞,∞]

: z :→ λϕ(x) + (1− λ)ϕ(z)− ϕ(λx+ (1− λ)z)

Then
ψ′(z) = (1− λ)ϕ′(z)− (1− λ)ϕ′(λx+ (1− λ)x)...(∗)

and ψ′(x) = 0ψ(x).
And (∗) implies that

ψ′(z) ! whenever z < x

ψ”(z) > 0 whenever z " x

Therefore, ψ achieves its infimum on I at x.
That is ∀y ∈ I,ψ(y) " ψ(x) = 0.
That is ∀y ∈ I ,

λϕ(x) + (1− λ)ϕ(y) " ϕ(λx+ (1− λ)y)

Proposition 40: L8-5

et f : Rm :→ (−∞,∞] be proper. Suppose that dom(f) is open and convex, and that f is
differentiable on dom(f). Then the following are equivalent:

1. f is convex

2. ∀x, y ∈ dom(f), 〈x− y,∇f(y)〉+ f(y) ! f(x)

3. ∀x, y ∈ dom(f), 〈x− y,∇f(x)−∇f(y)〉 " 0
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Proof. • 1) =⇒ 2): Combine the subgradient inequality with the previous result

• 2) =⇒ 3): See A2 for a proof in a more general setting

• 3) =⇒ 1): Fix x ∈ dom(f), y ∈ domf(f), z ∈ Rm. By assumption, dom(f) is open.
Therefore, ∃ε > 0 such that

y + (1 + ε)(x− y) = x+ ε(x− y) ∈ dom(f)

y − ε(x− y) = y + ε(y − x) ∈ dom(f)

Hence, by convexity of dom(f) we have

∀α ∈ (−ε, 1 + ε), x+ α(x− y) ∈ dom(f)

Set C = (−ε, 1 + ε) ⊆ R and set ϕ : R :→ (−∞,∞], where

ϕ(α) = f(y + α(x− y)) + δC(x)

Then ϕ is differentiable on C, and ∀α ∈ C,

ϕ′(α) = 〈∇f(y + α(x− y)), x− y〉

Now, take α ∈ C, β ∈ C, α < β. Set

yα = y + α(x− y)

yβ = y + β(x− y)

.
=⇒ yβ − yα = (β − α)(x− y)

Then,

ϕ′(β)− ϕ′(α) = 〈∇f(y + β(x− y)), x− y〉 − 〈∇f(y + α(x− y)), x− y〉
= 〈∇f(yβ)−∇f(yα), x− y〉

=

/
∇f(yβ)−∇f(yα),

yβ − yα
β − α

0

=
1

β − α
〈∇f(yβ)−∇f(yα), yβ − yα〉

" 0

That is ϕ′ is increasing on C. By lemma L8-4, we know ϕ is convex on C. Recalling

ϕ(α) = f(y + α(x− y)) + δC(α)

We learn that

f(αx+ (1− α)y) = ϕ(α)

! αϕ(1) + (1− α)ϕ(0)

= αf(x) + (1− α)f(y)
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Example 17: L8-5

Let A be m×m matrix, and set f : Rm :→ R, f(x) = 〈x,Ax〉. Then the followings hold:

1. ∇f(x) = (A+ AT )(x), ∀x ∈ Rm

2. f is convex if and only if A+ AT is positive semidefinite.

Proof. 1. See A3

2. Recall Prop L8-5. Therefore f is convex if and only if

∀x, y ∈ Rm 〈∇f(x)−∇f(y), x− y〉 " 0

⇐⇒ ∀x, y ∈ Rm
A
(A+ AT )x− (A+ AT )y, x− y

B
" 0

⇐⇒ ∀z ∈ |Rm
A
(A+ AT )z, z

B
" 0
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3.8 Subdifferentiability and Conjugacy
Recall that, for a function f : Rm :→ [−∞,∞], the Fenchel Conjugate of f is

f ∗ : Rm :→ [−∞,∞]

f ∗(u) = sup
x∈Rm

(〈x, u〉 − f(x))

Proposition 41: L8-6

Let f, g be functions from Rm to [−∞,∞]. Then

1. f ∗∗ := (f ∗)∗ ! f

2. f ! g =⇒ [f ∗ " g∗ and f ∗∗ ! g∗∗]

Proof. See A3

Proposition 42: L8-7

et f : Rm :→ (−∞,∞] be proper. Then ∀x, y ∈ Rm

f(x) + f ∗(u) " 〈x, u〉

Fenchel-Young inequality

Proof. Observe that the definition of f ∗ yields:

f ≡ ∞ ⇐⇒ f ∗ ≡ −∞

Therefore, by assumption we know that

∀u ∈ Rm, f ∗(u) ∕= −∞

Now let (x, u) ∈ Rm × Rm. If f(x) = ∞, the desired inequality clearly holds, else, if f(x) < ∞,
we have

f ∗(u) = sup
y∈Rm

(〈y, u〉 , f(u)) " 〈y, x〉 − f(x)

Proposition 43: L8-8

Let f : Rm :→ (−∞,∞] be convex l.s.c and proper. Let x ∈ Rm and let u ∈ Rm. Then the
following are equivalent:

u ∈ ∂f(x) ⇐⇒ f(x) + f ∗(u) = 〈x, u〉
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Proof.

u ∈ ∂f(x) ⇐⇒ ∀y ∈ dom(f), 〈y − x, u〉+ f(x) ! f(y)

⇐⇒ ∀y ∈ dom(f), 〈y, u〉 − f(y) ! 〈x, u〉 − f(x) ! f ∗(u)

⇐⇒ f ∗(u) = sup
y∈Rm

(〈y, u〉 − f(y)) ! 〈x, u〈 − f(x) ! f ∗(u)

⇐⇒ f(x) + f ∗(u) = 〈x, u〉

Proposition 44: L8-9

Let f : Rm :→ (−∞,∞] be convex and proper, let x ∈ Rm and suppose that ∂f(x) ∕= ∅.
Then

(f ∗)∗ := f ∗∗(x) = f(x)

where
f ∗∗(x) = sup

y∈Rm

{〈y, x〉 − f ∗(y)}

Proof. Let u ∈ ∂f(x). By Prop L8-8

〈u, x〉 = f(x) + f ∗(u)

=⇒ f(x) = 〈u, x〉 − f ∗(u)

Consequently,

f ∗∗(x) = sup
y∈Rm

{〈x, y〉 − f ∗(y)}

" 〈x, u〉 − f ∗(u)

= f(x)

Conversely,

f ∗∗(x) = sup
y∈Rm

{〈y, x〉 − f ∗(y)}

= sup
y∈Rm

{〈y, x〉 − sup
z∈Rm

{〈z, y〉 − f(z)}}

= sup
y∈Rm

{〈y, x〉+ inf
z∈Rm

{f(z)− 〈z, y〉}}

= sup
y∈Rm

{ inf
z∈Rm

{f(z) + 〈y, x− z〉}}

! sup
y∈Rm

{f(x) = 〈y, x− x〉}

= sup
y∈Rm

f(x)

= f(x)
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Altogether,
f(x) = f ∗∗(x)

Fact(L8-10) Let f : Rm :→ (−∞,∞] be proper. Then

[f is convex and l.s.c] ⇐⇒ f = f ∗∗

In this case, f ∗ is also proper.

Corollary 45

Let f : Rm :→ (−∞,∞] be convex l.s.c and proper. Then

1. f ∗ is convex l.s.c and proper

2. f ∗∗ = f

Proof. • Combine Fact L8-10 and Prop L6-6

• Follows from Fact L8-10

Proposition 46: L8-12

Let f : Rm :→ (−∞,∞] be convex l.s.c and proper. Then

u ∈ ∂f(x) ⇐⇒ x ∈ ∂f ∗(u)

Proof. Recall that
u ∈ ∂f(x) ⇐⇒ f(x) + f ∗(u) = 〈x, u〉

by Proposition L8-8.
Set g := f ∗. Then Corollary L8-11 imply that g is convex l.s.c and proper. Moreover, g∗ = f .
Hence,

u ∈ ∂f(x) ⇐⇒ f(x) + f ∗(u) = 〈x, u〉
⇐⇒ g∗(x) + g(u) = 〈x, u〉
⇐⇒ x ∈ ∂g(u) = ∂f ∗(u)
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Theorem 47: L9-1

Let f : Rm → R be proper, l.s.c and let C be a compact subset of Rm such that C ∩
dom(f) ∕= ∅. Then the following holds:

1. f is bounded below over C

2. f attains its minimal value over C

Proof.

1. Suppose for eventual contradiction that f is not bounded below over C. Then there exists a
sequence (xn)n∈N in C such that limn→∞ f(xn) = −∞. Recall that C is compact, equiv-
alently, C is closed and bounded (finite-dim). Since (xn)n∈N is a sequence in C, (xn)n∈N
must be bounded. By Bolzano-Weierstrass theorem, there exists a convergent subsequence
say xkn → x ∈ C because C is closed.
Since f is l.s.c, we learn that,

f(x) ! lim inf
n→∞

f(xkn)

but, f(x) ∈ R by definition, contradiction.

2. Let fmin be the minimal value of f over C. Then there exists a sequence (xn)n∈N in C such
that

f(xn) → fmin

AND C is bounded =⇒ (xn)n∈N is bounded.
Let x be a cluster point of (xn)n∈N, say xkn → x ∈ C. Then by l.s.c.

f(x) ! lim inf
n→∞

f(xkn) = fmin

Hence, x is a minimizer of f over C.

Definition 18: L9-2

Let f : Rm → (−∞,∞]. Then f is coercive if

lim
‖x‖→∞

f(x) = ∞

and f is super coercive if

lim
‖x‖→∞

f(x)

‖x‖ = ∞

Theorem 48: L9-3

Let f : Rm → (−∞,∞] be proper, l.s.c. and coercive and let C be a closed subset of Rm

satisfying that C ∩ dom(f) ∕= ∅. Then f attains its minimal value over C.
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Proof. Let x ∈ C ∩ dom(f). Since f is coercive, ∃M > 0 such that

f(y) > f(x) whenever‖y‖> M . . . (1)

observe that if x is a minimizer of f over C, we have f(x) ! f(x). In view of (1) above, we learn
that the set of minimizers of f over C is the same as the set of minimizers of f over C ∩B(0;M).
The latter is closed and bounded. Hence, it is compact, then apply the previous result with the set
C replaced by C ∩B(0;M) we conclude that f attains its minimal value over C ∩B(0;M) say at
x̃. Altogether, x̃ is a minimizer of f over C.
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3.9 Differentiability and Strong Convexity:

Definition 19: L9-4

Let T : Rm → Rm, and let L " 0. Then T is L-Lipschitz if ∀x ∈ Rm, ∀y ∈ Rm,

‖Tx− Ty‖! L‖x− y‖

Example 18: L9-5

Let f : Rm → R : x → 1
2
〈x,Ax〉 + 〈b, x〉 + c, where A $ 0 (A is positive semi-definite),

b ∈ Rm, C ∈ R. Then the following hold:

1. ∀x ∈ Rm, ∇f(x) = Ax+ b

2. ∇f is Lipschitz with a constant L = ‖A‖, where ‖A‖= max‖x‖∕=0
‖Ax‖
‖x‖

Proof.

1. It follows from lecture 8 that ∀x ∈ Rm,

∇f(x) =
1

2
(A+ AT )x+ b =

1

2
(A+ A)x+ b = Ax+ b

2. Indeed,

‖∇f(x)−∇f(y)‖ = ‖Ax− Ay‖
= ‖A(x− y)‖
! ‖A‖‖x− y‖

and the conclusion follows.

Example 19: L9-6

Let C be a nonempty closed convex subset of Rm. Then PC is Lipschitz Continuous with a
constant 1.

Proof. If C is a singleton, the conclusion is trivial. Now, suppose that C is not a singleton. Let
{x, y} ⊆ Rm, x ∕= y. If PC(x) = PC(y),

0 = ‖PC(x)− PC(y)‖! ‖x− y‖
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Else, if PC(x) ∕= PC(y), then,

‖PC(x)− PC(y)‖2= 〈PC(x)− PC(y), PC(x)− PC(y)〉
= 〈PC(x)− PC(y), PC(x)− x〉+ 〈PC(x)− PC(y), y − PC(y)〉
+ 〈PC(x)− PC(y), x− y〉

= 〈PC(x)− PC(y), PC(x)− x〉& '( )
!0

+ 〈PC(y)− PC(x), PC(y)− y〉& '( )
!0

+ 〈PC(x)− PC(y), x− y〉 by projection theorem
! 〈PC(x)− PC(y), x− y〉
!‖PC(x)− PC(y)‖‖x− y‖

so by ‖PC(x)− PC(y)‖∕= 0, we have

‖PC(x)− PC(y)‖! ‖x− y‖

Lemma 49: (descent lemma) L9-7

Let f : Rm → (−∞,∞] be differentiable on ∅ ∕= D ⊆ int(dom(f)) such that ∇f is
L-Lipschitz over D, D is convex. Then ∀x, y ∈ D,

f(y) ! f(x) + 〈∇f(x), y − x〉+ L

2
‖x− y‖2

Proof. Recall that the fundamental theorem of calculus implies that

f(y)− f(x) =

C 1

0

〈∇f(x+ t(y − x)), y − x〉 dt

= 〈∇f(x), y − x〉+
C 1

0

〈∇f(x+ t(y − x))−∇f(x), y − x〉 dt
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Hence,

|f(y)− f(x)− 〈∇f(x), y − x〉|

=

DDDD
C 1

0

〈∇f(x+ t(y − x))−∇f(x), y − x〉 dt
DDDD

!
C 1

0

|〈∇f(x+ t(y − x))−∇f(x), y − x〉| dt

!
C 1

0

‖∇f(x+ t(y − x))−∇f(x)‖‖y − x‖dt

!
C 1

0

L‖x+ t(y − x)− x‖‖y − x‖dt by ∇f is L-Lipschitz

=

C 1

0

tL‖y − x‖2dt

=L‖x− y‖2
C 1

0

tdt

=
L

2
‖x− y‖2

Hence,

f(y) ! f(x) + 〈∇f(x), y − x〉+ L

2
‖x− y‖2

Theorem 50: L9-8

Let f : Rm → R be convex and differentiable, and let L > 0. Then the followings are
equivalent:

1. ∇f is L-Lipschitz

2. ∀x, y ∈ Rm,

f(y) ! f(x) + 〈∇f(x), y − x〉+ L

2
‖x− y‖2

3. ∀x, y ∈ Rm,

f(y) " f(x) + 〈∇f(x), y − x〉+ 1

2L
‖∇f(x)−∇f(y)‖2

4. ∀x, y ∈ Rm,

〈∇f(x)−∇f(y), x− y〉 " 1

L
‖∇f(x)−∇f(y)‖2

Proof. • 1) =⇒ 2) This is the descent lemma applied with D = Rm
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• 2) =⇒ 3) Without loss of generality, we can and do assume that ∇f(x) ∕= ∇f(y).
Otherwise, the conclusion follows immediately using the subgradient inequality and the fact
that ∂f(X) = {∇f(x)}
Fix x ∈ Rm and set,

hx : Rm → R, hx(y) = f(y)− f(x)− 〈∇f(x), y − x〉

Observe that hx is convex, differentiable and

∇hx(y) = ∇f(y)−∇f(x)

We claim that ∀y, z ∈ Rm,

hx(z) ! hx(y) + 〈∇hx(y), z − y〉+ L

2
‖z − y‖2

Indeed,

hx(z) =f(z)− f(x)− 〈∇f(x), z − x〉

!f(y) + 〈∇f(y), z − y〉+ L

2
‖z − y‖2−f(x)− 〈∇f(x), z − x〉

=f(y)− f(x)− 〈∇f(x), y − x〉 − 〈∇f(x), z − y〉

+ 〈∇f(y), z − y〉+ L

2
‖z − y‖2

=f(y)− f(x)− 〈∇f(x), y − x〉+ 〈∇f(y)−∇f(x), z − y〉+ L

2
‖z − y‖2

=hx(y) + 〈∇hx(y), z − y〉+ L

2
‖z − y‖2. . . (1)

Observe that ∇hx(x) = ∇f(x) − ∇f(x) = 0. Hence, because hx is convex, x is a global
minimizer of hx.
That is, ∀z ∈ Rm,

hx(x) ! hx(z) . . . (2)

Let y ∈ Rm and let v ∈ Rm be such that ‖v‖= 1 and 〈∇hx(y), v〉 = ‖∇hx(y)‖. Set
z = y − ‖∇hx(y)‖

L
v . . . (3).

On the one hand applying (2) with z as defined in (3) yields

0 = hx(x) ! hx

1
y − ‖∇hx(y)‖

L
v

2
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On the other hand, (1) implies that

0 = hx(x)

! hx(y)−
‖∇hx(y)‖

L
〈∇hx(y), v〉+

1

2L
‖∇hx(y)‖2‖v‖2

= hx(y)−
‖∇hx(y)‖2

L
+

1

2L
‖∇hx(y)‖2

= hx(y)−
1

2L
‖∇hx(y)‖2

= f(y)− f(x)− 〈∇f(x), y − x〉 − 1

2L
‖∇f(x)−∇f(y)‖2

• 3) =⇒ 4): Using 3) we have

f(y) " f(x) + 〈∇f(x), y − x〉+ 1

2L
‖∇f(x)−∇f(y)‖2

f(x) " f(y) + 〈∇f(y), x− y〉+ 1

2L
‖∇f(y)−∇f(x)‖2

Adding the above two inequalities yield 4).

• 4) =⇒ 1), Without loss of generality we can and do assume that ∇f(x) ∕= ∇f(y) (other-
wise the conclusion is trivial). Now 4) implies

‖∇f(x)−∇f(y)‖2! L 〈∇f(x)−∇f(y), x− y〉 ! L‖∇f(x)−∇f(y)‖‖x− y‖

Since ∇f(x) ∕= ∇f(y),
‖∇f(x)−∇f(y)‖! L‖x− y‖
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Example 20: L10-1

Let C be nonempty closed convex subset of Rm. Then ∀x, y ∈ Rm,

‖PC(x)− PC(y)‖2! 〈PC(x)− PC(y), x− y〉 . . . (∗)

Proof. Observe that (∗) can be rewritten as:

〈PC(x)− PC(y), PC(x)− PC(y)− (x− y)〉 ! 0

Now:

〈PC(x)− PC(y), PC(x)− PC(y)− (x− y)〉
= 〈PC(x)− PC(y), PC(x)− x〉 − 〈PC(x)− PC(y), PC(y)− y〉
= 〈PC(x)− PC(y), PC(x)− x〉+ 〈PC(y)− PC(x), PC(y)− y〉
!0 by projection theorem

The above property is know as ”Firm nonexpansivenes” of the projection onto convex sets.

Example 21: L10-2

Let C be nonempty closed and convex subset of Rm. Consider the function f : Rm → R,
where f(x) = 1

2
d2C(x). Then the following holds:

1. f is differentiable over Rm and ∀x ∈ Rm,

∇f(x) = x− PC(x)

2. ∇f is 1-Lipschitz

Proof.

1. Let x ∈ Rm. Define ∀y ∈ Rm,

hx(y) = f(x+ y)− f(x)− 〈y, x− PC(x)〉

Clearly, hx is convex.
By the definition of ∇f(x), it is sufficient to show that

|hx(y)|
‖y‖ → 0 as y → 0

Observe that, ∀x ∈ Rm,

f(x) =
1

2
d2C(x) =

1

2
‖x− PC(x)‖2
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Now, on the one hand:

hx(y) =
1

2
‖(x+ y)− PC(x+ y)‖2−1

2
‖x− PC(x)‖2−〈y, x− PC(x)〉

! 1

2
‖(x+ y)− PC(x)‖2−

1

2
‖x− PC(x)‖2−〈y, x− PC(x)〉

=
1

2
‖x− PC(x)‖2+ 〈y, x− PC(x)〉+

1

2
‖y‖2−1

2
‖x− PC(x)‖2−〈y, x− PC(x)〉

=
1

2
‖y‖2. . . (1)

On the other hand, by the above argument hx(−y) ! 1
2
‖y‖2. Therefore,

0 = hx(0) = hx

1
1

2
(y + (−y))

2
! 1

2
hx(y) +

1

2
hx(−y)

=⇒ hx(y) " −hx(−y) " −1

2
‖y‖2. . . (2)

(1) and (2) imply |hx(y)|! 1
2
‖y‖2, and

|hx(y)|
‖y‖ =

1

2
‖y‖→ 0 as y → 0

2. To show that ∇f is 1-Lipschitz, let x, y ∈ Rm. Now:

‖∇f(x)−∇f(y)‖2 = ‖x− PC(x)− (y − PC(y))‖2

= ‖(x− y)− (PC(x)− PC(y))‖2

= ‖x− y‖2−2 〈x− y, PC(x)− PC(y)〉+ ‖PC(x)− PC(y)‖2

! ‖x− y‖2−2‖PC(x)− PC(y)‖2+‖PC(x)− PC(y)‖2

= ‖x− y‖2−‖PC(x)− PC(y)‖2

! ‖x− y‖2

Theorem 51: Second Order Characterization, L10-3

Let f : Rm → R be twice continuously differentiable over Rm, and let L " 0. Then the
following are equivalent:

1. ∇f is L-Lipschitz

2. ∀x ∈ Rm, ‖∇2f(x)‖! L

Proof.
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• 1) =⇒ 2). Suppose that ∇f is L-Lipschitz continuous. Observe that for any y ∈ Rm,
α > 0, we have

‖∇f(x+ αy)−∇f(x)‖! L‖x+ αy − x‖= aL‖y‖

That is,

‖∇2f(x)(y)‖ = lim
α↓0

‖∇f(x+ αy)−∇f(x)‖
α

! lim
α↓0

L‖x+ αy − x‖
α

= lim
α↓0

αL‖y‖
α

= L‖y‖

Equivalently, ‖∇2f(x)‖! L as desired.

• 2) =⇒ 1): Suppose that for any x ∈ Rm, ‖∇2f(x)‖! L. Using the fundamental theorem
of calculus we have ∀x, y ∈ Rm,

∇f(x) = ∇f(y) +

C 1

0

∇2f(y + α(x− y))(x− y)dα

= ∇f(y) +

EC 1

0

∇2f(y + α(x− y))dα

F
(x− y)

Hence,

‖∇f(x)−∇f(y)‖ =

GGGG

EC 1

0

∇2f(y + α(x− y))dα

F
(x− y)

GGGG

!
GGGG
C 1

0

∇2f(y + α(x− y))dα

GGGG ‖(x− y)‖

!
C 1

0

GG∇2f(y + α(x− y))
GG dα ‖(x− y)‖

! L‖x− y‖

Fact(L10-4):
Ket A be an m × m symmetric matrix. Then ‖A‖= sup‖x‖=1‖Ax‖= max1!i!m|λi| , where
λ1, . . . ,λm are the eigenvalues of A.
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Proposition 52: L10-5

Let f : Rm → R be twice continuously differentiable. Then f is convex if and only if
∀x ∈ Rm,∇2f(x) is positive semi-definite.

Proof. See A3.

Corollary 53: L10-6

Let f : Rm → R be convex and twice continuously differentiable and let L " 0. Then ∇f
is L-Lipschitz ⇐⇒ ∀x ∈ Rm, λmax(∇2f(x)) ! L.

Proof. Since f is convex and twice continuouly differentiable, we have ∀x ∈ Rm,∇2f(x) is
positive semi-definite. Now combine with earlier result 1 to learn that

L " ‖∇2f(x)‖= |λmax(∇2f(x))|= λmax(∇2f(x))

Example 22: L10-7

Let f : Rm → R be given by ∀x ∈ Rm,

f(x) =
H

1 + ‖x‖2

Prove that:

1. f is convex

2. ∇f is L-Lipschitz

Proof. See A3

Strong Convexity:
Recall that a function f : Rm → R is strongly convex(2) with constant β, if for some β > 0 we
have: ∀x, y ∈ dom(f), ∀λ ∈ (0, 1),

f(λx+ (1− λ)y) ! λf(x) + (1− λ)f(y)− β

2
λ(1− λ)‖x− y‖2

Proposition 54: L10-8

Let β > 0, f : Rm → (−∞,∞] is β-strongly convex ⇐⇒ f − β
2
‖·‖2 is convex.

Proof. See A3
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Proposition 55: L10-9

Let f : Rm → (−∞,∞], g : Rm → (−∞,∞] and let β > 0. Suppose that f is β-strongly
convex and that g is convex. Then f + g is β-strongly convex.

Proof. Set

h = f + g − β

2
‖·‖2=

3

??4 f − β

2
‖·‖2

& '( )
convex by prev. prop.

5

@@6+ g

Then h is convex being the sum of two convex functions (see A2). Therefore, applying the previous
proposition again with f replaced by f + g yields the desired result.

Fact (L10-10):
Let f : Rm → (−∞,∞] be strongly convex l.s.c. and proper. Then has a unique minimizer.
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3.10 The Proximal Operator

Definition 20: L10-11

Let f : Rm → (−∞,∞]. The proximal point mapping of f is the operator

Proxf : Rm # Rm

given by

Proxf (x) = argminu∈Rm

I
f(u) +

1

2
‖u− x‖2

J

Theorem 56: L10-12

Let f : Rm → (−∞,∞] be convex l.s.c. and proper. Then ∀x ∈ Rm, Proxf (x) is a
singleton.

Proof. Observe that for a fixed x ∈ Rm. hx := 1
2
‖· − x‖2 is β-strongly convex for every β < 1.

Set gx := f + hx, we learn that gx is strongly convex for every x ∈ Rm. Using A2, we know that
∀x ∈ Rm, gx is l.s.c (because f is l.s.c. and hx is l.s.c). And, ∀x ∈ Rm, gx is proper (because f, h
are proper and dom(f) ∩ dom(hx) = dom(f) ∩ Rm ∕= ∅). Therefore, applying earlier Fact, we
learn that ∀x ∈ Rm, argminu∈Rm gx = Proxf (x) exists and is unique.

Example 23: L10-13

Let C be a nonempty closed convex subset of Rm. Then ProxδC = PC

Proof. Let x ∈ Rm. By definition,

p = ProxδC (x)

⇐⇒ p = argminu∈Rm

I
δC(x) +

1

2
‖x− u‖2

J

⇐⇒ ∀u ∈ Rm, δC(p) +
1

2
‖x− p‖2! δC(u) +

1

2
‖x− u‖2

⇐⇒ p ∈ C, ∀u ∈ C, ‖x− p‖2! ‖x− u‖2

⇐⇒ p ∈ C, ∀v ∈ C, ‖x− p‖! ‖x− u‖
⇐⇒ p = PC(x)

Proposition 57: L10-14

Let f : Rm → (−∞,∞] be convex l.s.c. and proper. Let x ∈ Rm, let p ∈ Rm. Then

p = Proxf (x) ⇐⇒ ∀y ∈ Rm, 〈y − p, x− p〉+ f(p) ! f(y)
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Proof. Let y ∈ Rm.

• ( =⇒ ) Suppose that p = Proxf (x) and set ∀λ ∈ (0, 1), Pλ = λy + (1− λ)p. Then

f(p) +
1

2
‖x− p‖2! f(pλ) +

1

2
‖x− pλ‖2

which implies that

f(p) ! f(pλ) +
1

2
‖x− pλ‖2−

1

2
‖x− p‖2

= f(pλ) +
1

2
‖x− λy − (1− λ)p‖2−1

2
‖x− p‖2

= f(pλ) +
1

2
〈x− p− λ(y − p)− (x− p), x− p− λ(y − p) + (x− p)〉

= f(pλ) +
1

2
〈−λ(y − p), 2(x− p)− λ(y − p)〉

= f(pλ) +
λ2

2
‖y − p‖2−λ 〈x− p, y − p〉

= f(λy + (1− λ)p) +
λ2

2
‖y − p‖2−λ 〈x− p, y − p〉

By convexity of f we have for every λ ∈ (0, 1),

f(p) ! λf(y) + (1− λ)f(p) +
λ2

2
‖y − p||2−λ 〈x− p, y − p〉

Rearranging yields

λ 〈x− p, y − p〉+ λf(p) ! λf(y) +
λ2

2
‖y − p‖2

Dividing by λ and taking the limit as λ → 0 yields the desired inequality.

• ( ⇐= ) Suppose that
〈y − p, x− p〉+ f(p) ! f(y)

Then
f(p) ! f(y)− 〈y − p, x− p〉 = f(y) + 〈x− p, p− y〉

Therefore,

f(p) +
1

2
‖x− p‖2 ! f(y) + 〈x− p, p− y〉+ 1

2
‖x− p‖2

! f(y) + 〈x− p, p− y〉+ 1

2
‖x− p‖2+1

2
‖p− y‖2

= f(y) +
1

2
‖(x− p) + (p− y)‖2

= f(y) +
1

2
‖x− y‖2
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Example 24: L10-15

Let f : R → R : x → |x|, then

Proxf (x) =

;
<=

<>

x− 1, x > 1

0, −1 ! x ! 1

x+ 1, x < −1

Proof. Let p ∈ R. Recall that p = Prox|·|(x)

⇐⇒ ∀y ∈ R, (y − p)(x− p) + |p|! |y|. . . (1)

Setting y = 0, y = 2p respectively yield

−p(x− p) + |p|! 0, p(x− p) + |p|! 2|p|
=⇒ p(x− p) " |p|, p(x− p) ! |p|

=⇒ p(x− p) = |p|. . . (2)
Therefore, (1) becomes

∀y ∈ R, (y − p)(x− p) + p(x− p) ! |y|
=⇒ ∀y ∈ R, y(x− p) ! |y|
=⇒ x− p ! 1, x− p " −1

=⇒ p " x− 1, p ! x+ 1 . . . (3)

• If x > 1: Then (3) implies p " x− 1 > 0. Hence, (2) implies that x− p = 1. Equivalently,
p = x− 1.

• If x < −1: Proceed similar to the above case

• If −1 ! x ! 1: It follows from (3) that

x− p ! 1, x− p " −1 =⇒ (x− p)2 = |x− p|2" 1

Now, using (1) with y = x yields

|x|" |p|+(x− p)2 " |p|+1

That is
[0 ! |p|! |x|−1 ! 1− 1 ! 0] ⇐⇒ p = 0

Proposition 58: L10-16

Let f : Rm → (−∞,∞] be convex l.s.c. and proper. Then

x minimizes f over Rm ⇐⇒ x = Proxf (x)
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Proof. Recall the prop L10-14. Let x ∈ Rm, then

x = Proxf (x)

⇐⇒ ∀y ∈ Rm, 〈y − x, x− x〉+ f(x) ! f(y)

⇐⇒ ∀y ∈ Rm, f(x) ! f(y)
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3.11 More on Proximal Operators
Why Proximal Operators of convex functions are really ”nice”? Consider the functions f, g, h
defined on the real line:

∀x ∈ R,λ > 0

f(x) = 0

g(x) =

-
0, x ∕= 0

−λ, x = 0

h(x) =

-
0, x ∕= 0

λ, x = 0

Clearly, f is convex, but

• Proxf : Let x ∈ R. Proxf (x) is the ”unique” minimizer of the function 1
2
(y − x)2 " 0.

Clearly, ∀x ∈ R, Proxf (x) = x

• Proxg: g(x) =

-
0, x ∕= 0

−λ, x = 0
. Let x ∈ R. Proxg(x) is the minimizer of function

k(y) = g(y) +
1

2
(y − x)2

=

-
1
2
(y − x)2, y ∕= 0

1
2
x2 − λ, y = 0

Let kopt be the minimum value of k(y). Observe that if x2 " 2λ, then kopt " 0.
If x2 > 2λ (equivalently |x|>

√
2λ), then kopt = 0 and is attained ⇐⇒ y = x.

If x2 = 2λ (equivalently |x|=
√
2λ), then kopt = 0 and is attained ⇐⇒ y ∈ {0, x}.

If x2 < 2λ (equivalently |x|<
√
2λ), then kopt =

1
2
x2 − 2λ and is attained ⇐⇒ y = 0

Therefore,

Proxg(x) =

;
<=

<>

{x}, |x|>
√
2λ

{0, x}, |x|=
√
2λ

{0}, |x|<
√
2λ
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which shows that Proxg is NOT necessarily single valued.

•

Proxh(x) =

-
{x}, x ∕= 0

∅, x = 0

i.e., Proxh(x) is not defined at x = 0.

So convexity is critical for the Proximal Operator to be well defined.

Proof. See A3

Example 25: L11-1

Let f : R → R : x → λ|x|, λ " 0. Then f is convex. We claim that ∀x ∈ R

Proxf (x) =

;
<=

<>

x− λ, x > λ

0, −λ ! x ! λ

x+ λ, x < −λ

This is know as the soft threshold. The above formula is often written as

Proxf (x) = sgn(x)(|x|−λ)+

where ∀y ∈ R,

sgn(y) =

-
1, y " 0

−1, y < 0

(y)+ =

-
y, y " 0

0, y < 0

= max{y, 0}

Theorem 59: L11-2

Let f : Rm → (−∞,∞] be given by ∀x = (x1, . . . , xm) ∈ Rm,

f(x1, x2, . . . , xm) =
m"

i=1

fi(xi)

where ∀i ∈ {1, . . . ,m},

fi : R → (−∞,∞] is convex l.s.c and proper

Then ∀x = (x1, . . . , xm) ∈ Rm,

Proxf (x) = (Proxfi(xi))
m
i=1 = (Proxf1(x1), . . . , P roxfm(xm))
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Proof. It follows from A2 that f is convex l.s.c and proper.
Let p = (p1, p2, . . . , pm) ∈ Rm. Then

p = Proxf (x)

⇐⇒ ∀y = (y1, . . . , ym) ∈ Rm,

f(y) " f(p) + 〈y − p, x− p〉 by L10-14
⇐⇒ ∀{y1, . . . , ym} ⊆ R,

f1(y1) + . . . fm(ym) " f1(p1) + . . . fm(pm) + (y1 − p1)(x1 − p1) + . . .+ (ym − pm)(xm − pm)

Setting ∀i ∈ {2, . . . ,m}, yi = pi, we learn that ∀y1 ∈ R,

f1(y1) " f1(p1) + (y1 − p1)(x1 − p1) ⇐⇒ p1 = Proxf1(x1)

Similar arguments yield
∀i ∈ {1, . . . ,m}, pi = Proxfi(x)

The proof is complete.

Example 26: L11-3

Let g : Rm → (−∞,∞] be given by α > 0,

g(x) =

-
−α

!m
i=1 log(xi), x > 0

∞, otherwise

Then,

Proxg(x) =

9
xi +

H
x2
i + 4α

2

:m

i=1

Proof. Consider the function f : R → (−∞,∞] where ∀x ∈ R,

f(x) =

-
−α log(x), x > 0

∞, otherwise

Then f is convex, l.s.c and proper.
Indeed,

∀x > 0, f is differentiable =⇒ l.s.c

∀x > 0, f ′′(x) =
α

x2
> 0 =⇒ convex

∀x > 0, f(x) > −∞, dom(f) ∕= ∅ =⇒ proper

We claim that ∀x ∈ R,

Proxf (x) =
x+

√
x2 + 4λ

2
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Indeed, recall that p = Proxf (x) is the unique minimizer of the function.

h(y) = f(y) +
1

2
(y − x)2

=

-
−α log(y) + 1

2
(y − x)2, y > 0

∞, otherwise

Clearly, h is differentiable on its domain = (0,∞). Therefore,

p = Proxf (x) ⇐⇒ h′(p) = 0

⇐⇒ (−α log(p) +
1

2
(p− x)2)′ = 0

⇐⇒ −α

p
+ p− x = 0

⇐⇒ p2 − xp− α = 0, p > 0

⇐⇒ p > 0, p =
x±

√
x2 + 4α

2

=⇒ p =
x+

√
x2 + 4α

2

Now combine with L11− 2,
f1 = f2 = . . . = fm = f

Theorem 60: L11-4

Let g : Rm → (−∞,∞] be proper, let c > 0, let a ∈ Rm, let γ ∈ R, and set ∀x ∈ Rm,

f(x) = g(x) +
c

2
‖x‖2+ 〈a, x〉+ γ

Then ∀x ∈ Rm,

Proxf (x) = Prox 1
c+1

g

1
x− a

c+ 1

2

Proof. Indeed, recall that

Proxf (x) = argminu∈Rm

I
f(u) +

1

2
‖u− x‖2

J

= argminu∈Rm

;
<<=

<<>
g(u) +

c

2
‖u‖2+ 〈a, u〉+ γ +

1

2
‖u− x‖2

& '( )
(1)

K
<<L

<<M
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Now,

c

2
‖u‖2+ 〈a, u〉+ 1

2
‖u− x‖2

=
c

2
‖u‖2+ 〈a, u〉+ 1

2
‖u‖2−〈u, x〉+ 1

2
‖x‖2

=
c+ 1

2
‖u‖2−〈u, x− a〉+ 1

2
‖x‖2

=
c+ 1

2

E
‖u‖2−2

/
u,

x− a

c+ 1

0
+

1

c+ 1
‖x‖2

F

=
c+ 1

2

NGGGGu− x− a

c+ 1

GGGG
2

− ‖x− a‖2
(c+ 1)2

+
1

c+ 1
‖x‖2

O
. . . (2)

Observe that for any function h, c ∈ R,α > 0,

argminu∈Rm{αh(u) + c} = argminu∈Rm{h(u)}

Combining (1), (2),

Proxf (x) = argminu∈Rm

-
g(u) +

c+ 1

2

GGGGu− x− a

c+ 1

GGGG
2

+ γ − ‖x− a‖2
(c+ 1)2

+
1

c+ 1
‖x‖2

.

= argminu∈Rm

-
g(u) +

c+ 1

2

GGGGu− x− a

c+ 1

GGGG
2
.

= argminu∈Rm

-
(c+ 1)

N
1

c+ 1
g(u) +

1

2

GGGGu− x− a

c+ 1

GGGG
2
O.

= argminu∈Rm

-
1

c+ 1
g(u) +

1

2

GGGGu− x− a

c+ 1

GGGG
2
.

= Prox 1
c+1

g

1
x− a

c+ 1

2

Example 27: L11-5

Let α ∈ [0,∞), let C = [0,α], set f = δC . Then ∀x ∈ R,

Proxf (x) = PC(x)

=

;
<=

<>

0, x ! 0

x, 0 < x < α

α, x " α

= min{max{x, 0},α}
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Proof. Recall L10-13: If C is a nonempty, closed convex subset of Rm, then ProxδC = PC .

Example 28: L11-6

Let f : R → (−∞,∞] be given by ∀x ∈ R,

f(x) =

-
µx, 0 ! x ! α

∞, otherwise

where µ ∈ R,α " 0.
Then ∀x ∈ R,

f(x) = µx+ δ[0,α](x) . . . (1)

Moreover,
Proxf (x) = min{max{x− µ, 0},α}

Proof. (1) follows from the definition of

δ[0,α](x) =

-
0, x ∈ [0,α]

∞, otherwise

f is proper, convex and l.s.c.
Then apply Theorem L11-4 with c = γ = 0, g = δ[0,α], a = µ, C = [0,α]. In the view of L11-5,
we yield

Proxf (x) = Proxg(x− µ) = PC(x− µ) = min{max{x− µ, 0},α}
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Theorem 61: L12-1

Let g : R → (−∞,∞] be convex l.s.c and proper such that dom(g) ⊆ [0,∞) and let
f : Rm → R be given by

f(x) = g(‖x‖)

Then

Proxf (x) =

-
Proxg(‖x‖) x

‖x‖ , x ∕= 0

{u ∈ Rm|‖u‖= Proxg(0)}, x = 0

Proof.

• x = 0: By definition we have Proxf (0) is the set:

argminu∈Rm

I
f(u) +

1

2
‖u‖2

J

Using the change of variable, w = ‖u‖, the above set of minimizers is the same as

argminw∈R

I
g(w) +

1

2
w2

J
= Proxg(0)

That is,
Proxf (0) = {u ∈ Rm|‖u‖= Proxg(0)}

• x ∕= 0: In this case Proxf (x) is the set of solutions of the problem

min
u∈Rm

I
g(‖u‖) + 1

2
‖u− x‖2

J

= min
u∈Rm

I
g(‖u‖) + 1

2
‖u‖2−〈u, x〉+ 1

2
‖x‖2

J

=min
α"0

min
u∈Rm

‖u‖=α

I
g(α) +

1

2
α2 − 〈u, x〉+ 1

2
‖x‖2

J

Observe that
−〈u, x〉 = −‖u‖‖x‖cos(θu,x) " −‖u‖‖x‖

Therefore,
min
u∈Rm

‖u‖=α

−〈u, x〉 = −‖u‖‖x‖= −α‖x‖

and it is attained at u = α x
‖x‖ .

The corresponding optimal value of the inner minimization problem is therefore

g(α) +
1

2
α2 − α‖x‖+1

2
‖x‖2= g(α) +

1

2
(α− ‖x‖)2
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Therefore, Proxf (x) = α x
‖x‖ , where

α = min
α"0

I
g(α) +

1

2
(α− ‖x‖)2

J

= min
α∈R

I
g(α) +

1

2
(α− ‖x‖)2

J

= Proxg(‖x‖)

The proof is complete.

Example 29: L12-2

Let α > 0, f : R → (−∞,∞] be given by ∀x ∈ R,

f(x) =

-
λ|x|, |x|! α

∞, otherwise

where λ " 0. Then f is convex l.s.c and proper. Moreover, ∀x ∈ R,

Proxf (x) = min{max{|x|−λ, 0},α}sgn(x)

where ∀x ∈ R,

sgn(x) =

-
1, x " 0

−1, x < 0

Proof. Define ∀x ∈ R,

g(x) =

-
λx, 0 ! x ! α

∞, otherwise

dom(g) = [0,α] ⊆ [0,∞)

Moreover, ∀x ∈ R, f(x) < g(|x|), using theorem L12-1, we learn that

Proxf (x) =

-
Proxg(|x|) x

|x| , x ∕= 0

{u ∈ R| |u|= Proxg(0)}, x = 0

Recalling

g(x) =

-
λx, 0 ! x ! α

∞, otherwise

and example L11-6, we obtain

|u|= Proxg(0) ⇐⇒ |u|= min{max{−λ, 0},α} = 0 ⇐⇒ u = 0
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Hence,

Proxf (x) =

-
Proxg(|x|)sgn(x), x ∕= 0

0, x = 0

= min{max{|x|−λ, 0},α}sgn(x)

Example 30: L12-3

Let w = (w1, . . . , wm) ∈ Rm
+ , let α = (α1, . . . ,αm) ∈ Rm

+ . Let f : R → (−∞,∞] be given
by

f(x) =

-!m
i=1 wi|xi|, −α ! x ! α

∞, otherwise

Then,

1. Proxf (x) = (min{max{|xi|−wi, 0},αi}sgn(xi))
m
i=1

2. Let x0 ∈ Rm. ∀n ∈ N, update via

xn+1 = Proxf (xn)

Then xn → x where x solves the problem

min
m"

i=1

wi|xi|

subject to |xi|! αi, i ∈ {1, . . . ,m}

Proof.

1. See A3

2. See A3 for numerical illustration. Proof later.
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4 Nonexpansive, Firmly Nonexpansive and Averaged Opera-
tors

From now on, we shall use Id to denote the m×m identity matrix on Rm, i.e.,

Id : Rm → Rm

: x → x

Definition 21: L12-4

1. Let T : Rm → Rm. Then T is nonexpansive if ∀x, y ∈ Rm,

‖Tx− Ty‖! ‖x− y‖

2. T is firmly nonexpansive if ∀x, y ∈ Rm,

‖Tx− Ty‖2+‖(Id − T )x− (Id − T )y‖2! ‖x− y‖2

3. Let α ∈ (0, 1), then T is α-averaged if

∃N : Rm → Rm, N is nonexpansive
T = (1− α)Id + αN

We can show that Firmly nonexpansive (f.n.e) =⇒ Averaged =⇒ (Triangle Inequality)
nonexpansive.

Proposition 62: L12-5

Let T : Rm → Rm. Then the following are equivalent:

1. T is f.n.e.

2. Id − T is f.n.e.

3. 2T − Id is nonexpansive.

4. ∀x, y ∈ Rm, ‖Tx− Ty‖2! 〈x− y, Tx− Ty〉

5. ∀x, y ∈ Rm, 〈Tx− Ty, (Id − T )x− (Id − T )y〉 " 0

Proof.

• (1) ⇐⇒ (2): clear from the definition

• (1) ⇐⇒ (3) ⇐⇒ (4) ⇐⇒ (5) See A3
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For linear operators the previous Proposition can be defined as follows:

Proposition 63: L12-6

Let T : Rm → Rm be linear. Then the following are equivalent

1. T is f.n.e

2. ‖2T − Id‖! 1

3. ∀x ∈ Rm, ‖Tx‖2! 〈x, Tx〉

4. ∀x ∈ Rm, 〈Tx, x− Tx〉 " 0

Proof.

• Using Prop L12-5, we have T is f.n.e ⇐⇒ 2T − Id is nonexpansive. Since T ie linear, so
is 2T − Id. Therefore, 2T − Id is nonexpansive ⇐⇒ ∀x, y ∈ Rm,

‖(2T − Id)x− (2T − Id)y‖! ‖x− y‖
⇐⇒ ∀z ∈ Rm ‖(2T − Id)z‖! ‖z‖

=⇒ ∀z ∈ Rm \ {0}, ‖(2T − Id)z‖
‖z‖ ! 1

=⇒ sup
‖(2T − Id)z‖

‖z‖ ! 1

=⇒ ‖2T − Id‖! 1

• Conversely, suppose that ‖2T − Id‖! 1, then ∀z ∈ Rm \ {0},

‖(2T − Id)z‖
‖z‖ ! sup

z ∕=0

‖(2T − Id)z‖
‖z‖ = ‖2T − Id‖! 1

which implies
∀z ∈ Rm, ‖(2T − Id)z‖! ‖z‖

let x, y ∈ Rm, setting z = x− y shows that 2T − Id is nonexpansive, so we yield the desired
results.

Remark. L12-7 It follows from the equivalence,

T is f.n.e ⇐⇒ 2T − Id is nonexpansive

that T is f.n.e ⇐⇒ T is 1
2
− averaged.

Indeed,

T is f.n.e ⇐⇒ 2T − Id =: N is nonexpansive
⇐⇒ 2T = Id +N, N nonexpansive

⇐⇒ T =
1

2
Id +

1

2
N, N nonexpansive

98



Example 31: L12-8

Let C be convex closed nonempty subset of Rm. Then PC is f.n.e. Simply recall L10-1 and
L12-5.

Example 32: L12-9

Suppose that T = −1
2
Id. Then T is averaged but NOT f.n.e.

Indeed,

T =
1

4
Id +

3

4
(−Id) =⇒ T is

3

4
-averaged

T is NOT f.n.e as ∀x ∈ Rm,

‖Tx‖2+‖x− Tx‖2= 1

4
‖x‖2+9

4
‖x‖2= 10

4
‖x‖2= 5

2
‖x‖2> ‖x‖2

whenever x ∕= 0.

Example 33: L12-10

Suppose that T = −Id. Then T is nonexpansive, but T is NOT average. Indeed,

T is averaged
⇐⇒ ∃α ∈ (0, 1), N : Rm → Rm nonexpansive, T = (1− α)Id + αN

⇐⇒ ∃α ∈ (0, 1), −Id = (1− α)Id + αN

⇐⇒ ∃α ∈ (0, 1), (−2 + α)Id = αN

⇐⇒ ∃α ∈ (0, 1), N =
α− 2

α
Id

and so

N is nonexpansive

⇐⇒
DDDD
α− 2

α

DDDD ! 1

⇐⇒ 2− α

α
! 1

⇐⇒ 2− α ! α

⇐⇒ 2α " 2 ⇐⇒ α " 1

which is absurd (contradiction).
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Proposition 64: L12-11

Let T : Rm → Rm be nonexpansive. Then T is continuous.

Proof. Let (xn)n∈N be a sequence in Rm such that xn → x. Goal: T (xn) → T (x).
Indeed, ∀n ∈ N,

0 ! ‖T (xn)− T (x)‖! ‖xn − x‖

Letting n → ∞,
0 ! lim

n→∞
‖T (xn)− T (x)‖! 0

which shows
T (xn)− T (x)

, as claimed.

4.1 Fixed Points
Definition 22: L12-12

Let T : Rm → Rm. Then
Fix(T ) = {x ∈ Rm|x = Tx}
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Definition 23: L13-1

Let C be a nonempty subset of Rm and let (xn)n∈N be a sequence in Rm. Then (xn)n∈N is
Fejér monotone with respect to C if ∀c ∈ C, n ∈ N,

‖xn+1 − c‖! ‖xn − c‖

Example 34: L13-2

Recall Fix(T ) = {x|Tx = x}. Say T : Rm → Rm nonexpansive, Fix(T ) ∕= ∅. Let
x0 ∈ Rm, ∀n ∈ N update via

xn+1 = T (xn)

Then (xn)n∈N is Fejér monotone with respect to Fix(T ).
Indeed, observe that ∀f ∈ Fix(T ),

f = T (f) = T 2(f) = T 3(f) = . . .

Observe also that ∀n ∈ N,

xn+1 = T (xn) = T (T (xn−1)) = T 2(xn−1) = . . . T n(x0)

Now, let n ∈ N, let f ∈ Fix(T ).
Then

‖xn+1 − f‖ = ‖T n(x0)− T n(f)‖
= ‖T (T n−1(x0))− T (T n−1(f))‖
= ‖T (xn)− T (f)‖
! ‖xn − f‖

Proposition 65: L13-3

Let ∅ ∕= C ⊆ Rm, let (xn)n∈N be a sequence in Rm. Suppose (xn)n∈N is Fejér monotone
with respect to C. Then the following hold:

1. (xn)n∈N is bounded.

2. For every c ∈ C, (‖xn − c‖)n∈N converges.

3. (dC(xn))n∈N is decreasing and converges.
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Proof. 1. Let c ∈ C. By the triangle inequality, ∀n ∈ N, have

‖xn‖ ! ‖c‖+‖xn − c‖
! ‖c‖+‖xn−1 − c‖
...
! ‖c‖+‖x0 − c‖

Hence, (xn)n∈N is bounded as claimed.

2. Observe that ∀n ∈ N, c ∈ C,

0 ! ‖xn+1 − c‖! ‖xn − c‖

That is the sequence (‖xn − c‖)n∈N is a non increasing sequence of real number, bounded
below implies that (‖xn − c‖)n∈N converges.

3. Recall that ∀n ∈ N, c ∈ C,
‖xn+1 − c‖! ‖xn − c‖

Now take the infimum over c ∈ C to learn that

0 ! dC(xn+1) ! dC(xn)

so it converges.

Lemma 66: L13-4

Let (xn)n∈N be a sequence in Rm and let C ∕= ∅ subset of Rm. Suppose that for every c ∈ C,
(‖xn − c‖)n∈N converges and that every cluster point of (xn)n∈N lies in C. Then (xn)n∈N
converges to a point in C.

Proof. Observe that (xn)n∈N is bounded, because ‖xn‖! ‖xn−c‖+‖c‖ where ‖xn−c‖ converges
and ‖c‖ is a constant.
Let x, y be two cluster points of (xn)n∈N. That is

xkn → x, xln → y

By assumption x ∈ C, y ∈ C, observe that

‖xn − y‖2−‖xn − x‖2+‖x‖2−‖y‖2

=‖xn‖2+‖y‖2−2 〈xn, y〉 − ‖xn‖2−‖x‖2+2 〈xn, x〉+ ‖x‖2−‖y‖2

=2 〈xn, x− y〉
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Since (xn − y) and (xn − x) converges, we have 〈xn, x− y〉 converges say to l.
Taking the limit along xkn and xln respectively yield

〈x, x− y〉 = 〈y, x− y〉 = l

=⇒ ‖x− y‖2 = 〈x, x− y〉 − 〈y, x− y〉
= 0

=⇒ x = y

Theorem 67: L13-5

Let ∅ ∕= C ⊆ Rm and let (xn) be a sequence in Rm. Suppose that (xn)n∈N if Fejér with
respect to C, and that every cluster of (xn)n∈N lies in C. Then (xn)n∈N converges to a point
in C.

Proof. By Fejér monotonicity of (xn) we have

For every c ∈ C, (‖xn − c‖)n∈N converges

Now combine with Lemma 13-4

Let x ∈ Rm, let y ∈ Rm and let α ∈ R. One could directly verify that

‖αx+ (1− α)y‖2+α(1− α)‖x− y‖2= α‖x‖2+(1− α)‖y‖2

Indeed:

‖αx+ (1− α)y‖2= α2‖x‖2+2α(1− α) 〈x, y〉+ (1− α)2‖y‖2

α(1− α)‖x− y‖2= α(1− α)‖x‖2+α(1− α)‖y‖2−2α(1− α) 〈x, y〉
Adding yields:

‖αx+ (1− α)y‖2+α(1− α)‖x− y‖2

=(α2 + (α− α2))‖x‖2+(1− α)(1− α + α)‖y‖2

=α‖x‖2+(1− α)‖y‖2

Theorem 68: L13-6

Let α ∈ (0, 1) and let T : Rm → Rm be α-averaged, such that Fix(T ) ∕= ∅. Let x0 ∈ Rm.
Update via ∀n ∈ N,

xn+1 = T (xn)

Then the following hold:

1. (xn)n∈N is Fejér monotone with respect to Fix(T )

2. 1
α
(T − (1− α)Id)(xn)− xn → 0

3. (xn)n∈N converges to a point in Fix(T ).
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Proof.

1. T is averaged implies that T is nonexpansive. Now we use the example L13-2

2. By assumption, ∃N : Rm → Rm, N is nonexpansive, such that

T = (1− α)Id + αN =⇒ N =
1

α
(T − (1− α)Id)

Hence ∀n ∈ N,
xn+1 = T (xn) = (1− α)xn + αN(xn)

Now let f ∈ Fix(T ),

‖xn+1 − f‖2 = ‖(1− α)xn + αN(xn)− f‖2

= ‖(1− α)(xn − f) + α(N(xn − f)‖2

= (1− α)‖xn − f‖2+α‖N(xn)−N(f)‖2−α(1− α)‖N(xn)− xn‖2

! (1− α)‖xn − f‖2+α‖xn − f‖2−α(1− α)‖N(xn)− xn‖2

= ‖xn − f‖2−α(1− α)‖N(xn)− xn‖2

Telescoping, yields

∞"

n=0

α(1− α)‖N(xn)− xn‖2! ‖x0 − f‖2< ∞

That is,

α(1− α)‖N(xn)− xn‖2→ 0

⇐⇒ ‖N(xn)− xn‖→ 0

Recall that (xn)n∈N is Fejér monotone with respect to Fix(T ), Observe also that

Fix(T ) = Fix(N)

Indeed, let x ∈ Rm, then

x ∈ Fix(T ) ⇐⇒ x = T (x)

⇐⇒ x = (1− α)x+ αN(x)

⇐⇒ x = x− αx+ αN(x)

⇐⇒ αx = αN(x)

⇐⇒ x = N(x)

⇐⇒ x ∈ Fix(N)

Altogether, we learn that (xn)n∈N is Fejér monotone with respect to Fix(N).
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3. Let x be a cluster point of (xn)n∈N say xkn → x. Observe that N is nonexpansive implies N
is continuous. Now, recall

Nxn − xn → 0

Taking the limit along the subsequence xkn , we learn that

Nx− x = 0

equivalently, Nx = x.
That is, every cluster point of (xn)n∈N lies in Fix(N) = Fix(T ). Now combine with
theorem L13-5

Corollary 69: L14-1

Let T : Rm → Rm be f.n.e and suppose that Fix(T ) ∕= ∅. Let x0 ∈ Rm. ∀n ∈ N, update
via

xn+1 = T (xn)

Then ∃x ∈ Fix(T ) such that
xn → x

Proof. Since T is f.n.e T is averaged. Now combine with Theorem L13-6

Proposition 70: L14-2

Let f : Rm → (−∞,∞] be convex lsc and proper. Then Proxf is f.n.e.

Proof. Let x, y ∈ Rm. Set
p = Proxf (x), q = Proxf (y)

Using we have Prop L10-14, ∀z ∈ Rm,

〈z − p, x− p〉+ f(p) ! f(z) (4.1)
〈z − q, y − q〉+ f(q) ! f(z) (4.2)

Choosing z = q in (4.1), z = p in (4.2), we obtain

〈q − p, x− p〉+ f(p) ! f(q)

〈p− q, y − q〉+ f(q) ! f(p)

Adding the last two inequalities yields

〈q − p, (x− p)− (y − p)〉 ! 0
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Equivalently,
〈p− q, (x− p)− (y − p)〉 " 0

Now recall that
p = Proxf (x), q = Proxf (y)

Combining L12-5(5) with the conclusion yields the desired results.

Corollary 71: L14-3

Let f : Rm → (−∞,∞] be convex lsc and proper, such that argmin f ∕= ∅. Let x0 ∈ Rm,
∀n ∈ N, update via

xn+1 = Proxf (xn)

Then ∃x ∈ argmin f such that
xn → x

Proof. Observe that by L10-16,

argmin f = Fix(Proxf ) ∕= ∅

Recall the Proxf is f.n.e by L14-2
Now combine with L14-1 applied with T replaced by Proxf

The following simple identity will be used in the next result.
Let x, y ∈ Rm, α ∈ R \ {0}, then

α2

9
‖x‖2−

GGGG(1−
1

α
)x+

1

α
y

GGGG
2
:

= α

1
‖x‖2−1− α

α
‖x− y‖2−‖y‖2

2
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Indeed,

LHS = α2

9
‖x‖2−

GGGG(1−
1

α
)x+

1

α
y

GGGG
2
:

= α2

9
‖x‖2−

1
1− 1

α

22

‖x‖2− 1

α2
‖y‖2+2

α− 1

α− 2
〈x, y〉

:

= α2

11
2

α
− 1

α2

2
‖x‖2− 1

α2
‖y‖2+2

α− 1

α− 2
〈x, y〉

2

= (2α− 1)‖x‖2−‖y‖2+2(α− 1) 〈x, y〉

RHS = α

1
‖x‖2−1− α

α
‖x− y‖2−‖y‖2

2

= α

1
‖x‖2−1− α

α
‖x‖2−1− α

α
‖y‖2+2(1− α)

α
〈x, y〉 − ‖y‖2

2

= α‖x‖2−(1− α)‖x‖2−(1− α)‖y‖2+2(1− α) 〈x, y〉 − α‖y‖2

= (2α− 1)‖x‖2−‖y‖2+2(α− 1) 〈x, y〉
= LHS
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4.1.1 Composition of Averaged Operators

Proposition 72: L14-4

Let T : Rm → Rm be nonexpansive and let α ∈ (0, 1). Then the following are equivalent:

1. T is α-average

2.
P
1− 1

α

Q
Id +

1
α
T is nonexpansive

3. ∀x, y ∈ Rm

‖T (x)− T (y)‖2! ‖x− y‖2−1− α

α
‖(Id − T )(x)− (Id − T )(y)‖2

Proof.

1. 1) ⇐⇒ 2):

T is α-averaged
⇐⇒ ∃N : Rm → Rm, Nnonexpansive

T = (1− α)Id + αN ⇐⇒ N =
1

α
(T − (1− α)Id) is nonexpansive

⇐⇒
1
1− 1

α

2
Id +

1

α
T is nonexpansive

2. Recalling the previous identity

α2

9
‖x‖2−

GGGG(1−
1

α
)x+

1

α
y

GGGG
2
:

= α

1
‖x‖2−1− α

α
‖x− y‖2−‖y‖2

2

9
‖x‖2−

GGGG(1−
1

α
)x+

1

α
y

GGGG
2
:

=
α

α2

1
‖x‖2−1− α

α
‖x− y‖2−‖y‖2

2

Now, 2) ⇐⇒ ∀x, y ∈ Rm,
GGGG

1
1− 1

α

2
x+

1

α
T (x)−

1
1− 1

α

2
y − 1

α
T (y)

GGGG
2

! ‖x− y‖2

We then rewrite the left hand side as
GGGG

1
1− 1

α

2
(x− y) +

1

α
(T (x)− T (y))

GGGG
2

=‖x− y‖2− 1

α

1
‖x− y‖2−1− α

α
‖(x− T (x))− (y − T (y))‖2−‖T (x)− T (y)‖2

2

!‖x− y‖2
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Now, we have

− 1

α

1
‖x− y‖2−1− α

α
‖(x− T (x))− (y − T (y))‖2−‖T (x)− T (y)‖2

2
! 0

⇐⇒
α>0

‖x− y‖2−1− α

α
‖(x− T (x))− (y − T (y))‖2−‖T (x)− T (y)‖2" 0

Theorem 73: L14-5

Let α1,α2 ∈ (0, 1), let Ti : Rm → Rm be αi-averaged. Set

T := T1T2, α :=
α1 + α2 − 2α1α2

1− α1α2

Then T is α-averaged.

Proof. First observe that α ∈ (0, 1). Indeed, clearly α1,α2 ∈ (0, 1).
Now,

α ∈ (0, 1) ⇐⇒ α1 + α2 − 2α1α2 < 1− α1α2

⇐⇒ α1 + α2 < 1 + α1α2

⇐⇒ α1 − α1α2 < 1− α2

⇐⇒ α1(1− α2) < 1− α2

Hence, α ∈ (0, 1) as claimed. Recalling L14-4
Now, call the inequality below (4.3),

‖T (x)− T (y)‖2=‖T1(T2(x))− T1(T2(y))‖2

!‖T2(x)− T2(y)‖2−
1− α1

α1

‖(Id − T1)(T2(x))− (Id − T1)(T2(y))‖2

!‖x− y‖2− 1− α2

α2

‖(Id − T2)(x)− (Id − T2)(y)‖2
& '( )

(1)

−1− α1

α1

‖(Id − T1)(T2(x))− (Id − T1)(T2(y))‖2
& '( )

(2)

Set β = 1−α1

α1
+ 1−α2

α2
> 0, we claim that

(1) + (2) " (1− α1)(1− α2)

βα1α2

‖(Id − T )(x)− (Id − T )(y)‖2. . . (3)
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Indeed, we have

1

β
((1) + (2)) =

1− α2

βα2

‖(Id − T2)(x)− (Id − T2)(y)‖2

+
1− α1

βα1

‖(Id − T1)(T2(x))− (Id − T1)(T2(y))‖2

=

GGGG
1− α1

βα1

((Id − T1)(T2(x))− (Id − T1)(T2(y)))−
1− α2

βα2

((Id − T2)(x)− (Id − T2)(y))

GGGG
2

+
(1− α1)(1− α2)

β2α1α2

‖(Id − T1T2&'()
T

)(x)− (Id − T1T2)(y)‖2

"(1− α1)(1− α2)

β2α1α2

‖(Id − T )(x)− (Id − T )(y)‖2

Note we go from the first equation to second one by, α ∈ R,

‖αx− (1− α)y‖2+α(1− α)‖x− y‖2= α‖x‖2+(1− α)‖y‖2

So we have proved (3).
Consequently, (4.3) becomes

‖T (x)− T (y)‖2! ‖x− y‖2−(1− α1)(1− α2)

βα1α2

‖(Id − T )(x)− (Id − T )(y)‖2

Finally, recalling that

α =
α1 + α2 − 2α1α2

1− α1α2

we can verify that
(1− α1)(1− α2)

βα1α2

=
1− α

α

Indeed,

(1− α1)(1− α2)

α1α2

R
1−α1

α1
+ 1−α2

α2

S =
(1− α1)(1− α2)

α2(1− α2) + α1(1− α2)

=
1− α1 − α2 + α1α2

α1 + α2 − 2α1α2

1− α

α
=
1− α1+α2−2α1α2

1−α1α2

α1+α2−2α1α2

1−α1α2

=
1− α1α2 − α1 − α2 + 2α1α2

α1 + α2 − 2α1α2

=
1− α1 − α2 + α1α2

α1 + α2 − 2α1α2

Now we use L14-4 to get our result.
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5 Constrained Convex Optimization
We now consider the problem

(P )
min f(x)

subject to x ∈ C

• f : Rm → (−∞,∞] convex, l.s.c., proper

• C ∕= ∅, convex and closed.

Recall L7-5, we shall see now some weaker results, in the absence of convexity.

Theorem 74: L15-2

f : Rm → (−∞,∞] proper, g : Rm → (−∞,∞] convex l.s.c. proper. dom(g) ⊆
int(dom(f))
Consider the problem:

min
x∈Rm

f(x) + g(x)

1. If x∗ ∈ dom(g) is a local optimal of (P ) and f is differentiable at x∗, then

−∇f(x∗) ∈ ∂g(x∗)

2. Suppose that f is convex. If f is differentiable at x∗ ∈ dom(g) then

x∗ is a global minimizer of (P ) ⇐⇒ −∇f(x∗) ∈ ∂g(x∗)

Proof.

1. Let y ∈ dom(g). Since g is convex, we know that dom(g) is convex. Hence ∀λ ∈ (0, 1):

x∗ + λ(y − x∗) = (1− λ)x∗ + λy& '( )
:=xλ

∈ dom(g)

Therefore, for sufficiently small λ

f(xλ) + g(xλ) " f(x∗) + g(x∗)

=⇒ f((1− λ)x∗ + λy) + g((1− λ)x∗ + λy) " f(x∗) + g(x∗)

By the convexity of g we learn that

f((1− λ)x∗ + λy) + (1− λ)g(x∗) + λg(y) " f(x∗) + g(x∗)

Rearranging yield

λg(x∗)− λg(y) ! f((1− λ)x∗ + λy)− f(x∗)

Equivalently,

g(x∗)− g(y) ! f((1− λ)x∗ + λy)− f(x∗)

λ
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Taking the limit as λ → 0+, we obtain

g(x∗)− g(y) ! f ′(x∗; y − x∗) = 〈∇f(x∗), y − x∗〉

That is: for any y ∈ dom(g),

g(y) " g(x∗) + 〈−∇f(x∗), y − x∗〉 =⇒ −∇f(x∗) ∈ ∂g(x∗)

2. Suppose that f is convex. Observe that 1) prove ( ⇐= ). Now suppose that −∇f(x∗) ∈
∂g(x∗). On the one hand, for any y ∈ dom(g),

g(y) " g(x∗) + 〈−∇f(x∗), y − x∗〉 . . . (1)

On the other hand, since f is convex, differentiable at x∗, then, ∀y ∈ dom(g) ⊆ dom(f),

f(y) " f(x∗) + 〈∇f(x∗), y − x∗〉 . . . (2)

Adding (1) and (2) yields for any y ∈ dom(g),

f(y) + g(y) " f(x∗) + g(x∗)

That is, x∗ is optimal solution of (P )

5.1 KKT Conditions
In the following we assume, f, g1, . . . , gn are functions from Rm → R (full domain). I =
{1, . . . , n}
Consider the problem,

min f(x)

s.t. gi(x) ! 0, (∀i ∈ I)

We assume that (P ) has at least one solution and that

µ := min{f(x)|∀i ∈ I, gi(x) ! 0} ∈ R

is the optimal value.
Define

F (x) := max{f(x)− µ& '( )
=:g0(x)

, g1(x), . . . , gn(x)}

Lemma 75: L15-3

We have ∀x ∈ Rm, F (x) " 0. Moreover, solutions of (P ) is

minimizers of F = {x|F (x) = 0}
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Proof. Let x ∈ Rm.

1. x does not solve (P )

(a) x is infeasible for (P ), i.e., x doesn’t satisfy the constraints. Then

=⇒ ∃j ∈ I such that gj(x) > 0

=⇒ F (x) " gj(x) > 0

(b) x is feasible (gi(x) ! 0, ∀i), but not optimal =⇒ f(x) > µ,

=⇒ F (x) " g0(x) = f(x)− µ > 0

2. x solves (P ), implies that
x is feasible and f(x) = µ

also,

x is feaisble ⇐⇒ ∀i ∈ I, gi(X) ! 0

f(x) = µ ⇐⇒ g0(x) = f(x)− µ = 0

Hence, F (x) = 0

Fact L15-4 (max rule for subdifferential calculus):
Let g1, . . . , gn : Rm → (−∞,∞] be convex l.s.c. and proper. Define

g(x) = max{g1(x), . . . , gn(x)}
A(x) = {i ∈ {1, . . . , n}|gi(x) = g(x)}

Let x ∈ ∩n
i=1(int(dom(gi))), then

∂g(x) = Conv
P
∪i∈A(x)∂gi(x)

Q

Theorem 76: L15-5(Fritz-John necessary optimality conditions

Suppose that f, g1, . . . , gn are convex and x∗ solves (P ). Then ∃α0 " 0, . . . ,αn " 0 not all
0, for which

0 ∈ α0∂f(x
∗) +

"

i∈I

αi∂gi(x
∗)

amd ∀i ∈ I ,
αigi(x

∗) = 0 ← complementary slackness
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Proof. Recall that
F (x) = max{f(x)− µ, g1(x), . . . , gn(x)}

By the previous lemma,
F (x∗) = 0 = minF (Rm)

Hence,
0 ∈ ∂F (x∗) = Convi∈A(x∗)∂gi(x

∗)

where

A(x∗) :=

;
=

>i ∈ {0, 1, . . . , n}|gi(x∗) = 0&'()
F (X∗)=0

K
L

M

Observe that 0 ∈ ∂F (x∗) because g0(x
∗) = f(x∗) − µ = 0 = minF (Rm). Moreover, ∂g0 =

∂f (g0 = f − µ)
Hence, ∀i ∈ A(x∗), ∃αi " 0, "

i∈A(x∗)

αi = 1

and

0 ∈
"

i∈A(x∗)

αi∂gi(x
∗)

= α0∂g0(x
∗) +

"

i∈A(x∗)\{0}

αi∂gi(x
∗)

= α0∂f(x
∗) +

"

i∈A(x∗)\{0}

αi∂gi(x
∗)

Now, for i ∈ I \ A(x∗), set αi = 0.
If i ∈ A(x∗) ∩ I , then

gi(x
∗) = 0

Hence,

i ∈ A(x∗) ∩ I =⇒ αi gi(x
∗)& '( )

=0

= 0

i /∈ A(x∗) ∩ I = I \ A(x∗) =⇒ αi&'()
=0

gi(x
∗) = 0

Altogether, ∀i ∈ I ,
αigi(x

∗) = 0 ← complementary slackness
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5.1.1 KKT conditions

KKT: Karush-Kuhn-Tucker conditions.

In the following we assume, f, g1, . . . , gn are functions from Rm → R (full domain). I =
{1, . . . , n}
Consider the problem,

(P )
min f(x)

s.t. gi(x) ! 0, (∀i ∈ I)

Theorem 77: L16-1:KKT Conditions Necessary Part

Suppose f, g1, . . . , gn are convex, x∗ solved (P ). Suppose that Slater’s conditions holds,
i.e.,

∃s ∈ Rm, ∀i ∈ I = {1, 2, . . . , n}, gi(s) < 0

Then ∃λ1, . . . ,λn " 0 such that the KKT conditions:

1. 0 ∈ ∂f(x∗) +
!

i∈I λi∂gi(x
∗), stationarity condition

2. ∀i ∈ I,λigi(x
∗) = 0, complementary slackness condition

hold.

Proof. Recalling Fritz-John.
∃α0,α1, . . . ,αn " 0, Not all 0, such that

0 ∈ α0∂f(x
∗) +

"

i∈I

αi∂gi(x
∗) . . . (∗)

and
∀i ∈ I,αigi(x

∗) = 0

Done if we can show that α0 > 0!
Suppose for eventual contradiction that α0 = 0.
By (∗), ∀i ∈ I, ∃yi ∈ ∂gi(x

∗) "

i∈I

αiyi = 0

Hence, i ∈ I, ∀y ∈ Rm,
gi(x

∗) + 〈yi, y − x∗〉 ! gi(y)

In particular:
gi(x

∗) + 〈yi, s− x∗〉 ! gi(s)

Multiplying the inequality above by αi " 0, then ∀i ∈ I ,

αigi(x
∗) + 〈αiyi, s− x∗〉 ! αigi(s)
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Adding the above inequalities,

"

i∈I

αigi(x
∗)& '( )

=0

+

7
"

i∈I

αiyi

& '( )
=0

, s− x∗

8
!

"

i∈I

αi&'()
"0

gi(s)&'()
<0& '( )

<0

which implies
0 < 0

which is a contradiction. Hence, α0 > 0.
Now divide (∗) and αigi(x

∗) = 0 by α0 and set ∀i ∈ I ,

λi =
αi

α0

" 0

Theorem 78: L16-2 KKT Conditions, Sufficient Parts

Suppose f, g1, . . . , gn are convex and x∗ ∈ Rm satisfies:

1. ∀i ∈ I, gi(x
∗) ! 0, Primal feasibility.

2. ∀i ∈ I,λi " 0, Dual feasibility.

3. 0 ∈ ∂f(x∗) +
!

i∈I λi∂gi(x
∗), Stationarity.

4. ∀i ∈ I, λigi(x
∗) = 0, Complementary Slackness.

Then x∗ solves (P ).

Proof. Define
h(x) := f(x) +

"

i∈I

λigi(x)

By 2), h(x) is convex. Observe that the sum rule applies to the sum of convex functions f, λigi, i ∈
I .
Therefore, ∀x ∈ Rm,

∂h(x) = ∂

9
f +

"

i∈I

λigi

:
(x)

=&'()
sum rule

∂f(x) +
"

i∈I

λi∂gi(x)

Consequently,
0 ∈ ∂h(x∗) =&'()

3)

∂f(x∗) +
"

i∈I

λi∂gi(x
∗)
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By Fermat: x∗ is a global minimizer of h.
Now, let x be feasible for (P ), i.e.,

∀i ∈ I, gi(x) ! 0

Then,

f(x∗) =&'()
4)

f(x∗) +
"

i∈I

λigi(x
∗)

= h(x∗)

! h(x)

= f(X) +
"

i∈I

λi&'()
"0

gi(x)&'()
!0

!&'()
1),2)

f(x)

5.2 Algorithms
Subgradient methods:
Gradient descent: classical theory
Consider the problem:

(P ) min
x∈Rm

f(x)

Definition 24: L16-3

Let f : Rm → (−∞,∞] be proper and let x ∈ int(dom(f)), d ∈ Rm \ {0} is a descent
direction of f at x if the directional derivative satisfies

f ′(x; d) < 0 . . . (∗)

Remark. L16-4

1. 0 ∕= ∇f(x) exists at x =⇒ −∇f(x) is a descent direction
Indeed:

f ′(x;−∇f(x)) = 〈∇f(x),−∇f(x)〉
= −‖∇f(x)‖2

< 0

2. (∗) =⇒ ∃ε > 0, ∀0 < t ! ε, f(x+ td) < f(x)

Gradient/Steepest descent method: With f is differentiable, x0 ∈ Rm. ∀n ∈ N, update via

xn+1 := xn − tn∇f(xn)

tn ∈ argmin
t"0

f(xn − t∇f(xn))
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If f is strictly convex and coercive,

xn → unique minimizer of f

”Peressini, Sullivan, Uhl”

In the lack of smoothness
Example 35: L16-5 (L.Vandenberghe)

Negative subgradients are NOT necessarily descent directions.
Consider

f : R2 → R+

: (x1, x2) :→ |x1|+2|x2|

f convex (sum of convex functions), full domain =⇒ continuous.

∂f(1, 0) = {1}× [−2, 2]

∋ (1, 2)

Consider d = −(1, 2) = (−1,−2), let t > 0, then

f((1, 0) + t ∗ (−1,−2)) = f(1− t,−2t)

= |1− t|+2|−2t|
= |1− t|+4|t|

=

;
<=

<>

1 + 3t, 0 ! t ! 1;

−1− 3t, t < 0;

5t− 1, t " 1;

Therefore,

f ′((1, 0); (−1,−2))

= lim
t↓0

f((1, 0) + t(−1, 2))− f(1, 0)

t

= lim
t↓0

1 + 3t− 1

t

=3 > 0

Hence (−1, 2) is NOT a descent direction. Moreover,

∀t > 0, f(1, 0) = 1 < f((1, 0) + t(−1,−2))
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Example 36: L16-6 (Wolfe)

Let γ > 1. Consider the function:

f : R2 → R

: (x1, x2) :→
-H

x2
1 + γx2

2, |x2|! x1;
x1+γ|x2|√

1+γ
, otherwise

Observe that argminx∈Rm f(x) = ϕ
Indeed, infx∈Rm f(x) = −∞, as

f(r, 0) =
r√
1 + γ

→ −∞, as r → −∞

Plot of f with γ = 2

One can show that
f = σC

, where

C =

I
(x1, x2) ∈ R2|x2

1 +
x2
2

γ
! 1, x1 "

1√
1 + γ

J

Therefore, f is convex.
Also, f is differentiable on

R2 \ ((−∞, 0]× {0})

Now, let x0 = (γ, 1) be in the set above.
The steepest descent will generate a sequence (details omitted)

xn =

1
γ

1
γ − 1

γ + 1

2n

, (−1)n
1
γ − 1

γ + 1

2n2
→ (0, 0)

Observe that (0, 0) is NOT a minimizer of f .
In the absence of smoothness a lot of pathologies happen.
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5.3 Projected Subgradient Method

(P )
min f(x)

s.t. x ∈ C

where

• f : Rm → (−∞,∞] is convex, l.s.c., proper.

• C ∕= ∅ convex closed subset of int(dom(f))

• S := argminx∈C f(x) ∕= ∅

• µ := minx∈C f(x)

• ∃L > 0, sup‖∂f(C)‖! L < ∞ ⇐⇒ ∀c ∈ C, ∀u ∈ ∂f(c), ‖u‖! L

Projected Subgradient Method
Get x0 ∈ C. ∀n ∈ N, note int(dom(f)) ⊆ dom(∂f), given xn, pick a stepsize tn > 0 and
”f ′(xn)” ∈ ∂f(xn). Here f ′(xn) means the subgradient of f at xn.
Update via

xn+1 := PC(xn − tnf
′(xn))

Recall that C ⊆ int(dom(f)), hence ∀n ∈ N, xn ∈ int(dom(f)). Therefore ∂f(xn) ∕= ∅, and
(xn)n∈N is well-defined.

Lemma 79: L17-1

Let s ∈ S = argminx∈C f(x) and f(s) = µ. Then

‖xn − s‖2! ‖xn − s‖2−2tn(f(xn)− µ) + t2n‖f ′(xn)‖2

Observe that S ⊆ C

Proof.

‖xn+1 − s‖2=‖Pc(xn − tnf
′(xn))− PC(s)& '( )

s∈C,PC(s)=s

‖2

!&'()
PCf.n.e, nonexp

‖xn − tnf
′(xn)− s‖2

=‖(xn − s)− tnf
′(xn)‖2

=‖xn − s‖2+t2n‖f ′(xn)‖2−2tn 〈xn − s, f ′(xn)〉

Recall we want to show

‖xn − s‖2+t2n‖f ′(xn)‖2−2tn(f(xn)− µ)

Done if
−2tn 〈xn − s, f ′(xn)〉 ! −2tn(f(xn)− µ)
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Equivalent lt,
〈xn − s, f ′(xn)〉 " (f(xn)− µ)

which is true by the subgradient inequality which is

f(s)&'()
µ

" f(xn) + 〈f ′(xn), s− xn〉

What is a good stepsize tn
Let us minimizer the upper bound

0 =
d

dtn
RHS

=
d

dtn
(−2tn(f(xn)− µ) + t2n‖f ′(xn)‖2)

=− 2(f(xn − µ) + 2tn‖f ′(xn)‖2

Assuming f ′(xn) ∕= 0 (else, 0 ∈ ∂f(xn) and hence , by Fermat xn is a global minimizer and we
are DONE). Pick

tn =
f(xn)− µ

‖f ′(xn)‖2

which is known as Polyak’s rule.
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(P )
min f(x)

s.t. x ∈ C

where

• f : Rm → (−∞,∞] is convex, l.s.c., proper.

• C ∕= ∅ convex closed subset of int(dom(f))

• S := argminx∈C f(x) ∕= ∅

• µ := minx∈C f(x)

• ∃L > 0, sup‖∂f(C)‖! L < ∞ ⇐⇒ ∀c ∈ C, ∀u ∈ ∂f(c), ‖u‖! L

• x0 ∈ C,
xn+1 := PC(xn − tnf

′(xn))

Polyak’s stepsize

tn =
f(xn)− µ

‖f ′(xn)‖2

Theorem 80: L17-2

We have

1. ∀s ∈ S, ∀n ∈ N, ‖xn+1 − s‖! ‖xn − s‖. ”(xn)n∈N is Fejér monotone w.r.t. S”

2. f(xn) → µ

3. µn − µ ! Lds(x0)√
n+1

= O( 1√
n
), where ∀n ∈ N, µn := min0!k!n f(xk)

4. Let ε > 0. If n " L2d2s(x0)
ε2

− 1 =⇒ µn ! µ+ ε

Proof. Let s ∈ S, n ∈ N.

1.

‖xn+1 − s‖2!‖xn − s‖2−2tn(f(xn)− µ) + t2n‖f ′(xn)‖2

=‖xn − s‖2−2
f(xn)− µ

‖f ′(xn)‖2
(f(xn)− µ) +

1
f(xn)− µ

‖f ′(xn)‖2

22

‖f ′(xn)‖2

=‖xn − s‖2−2
(f(xn)− µ)2

‖f ′(xn)‖2
+

(f(xn)− µ)2

‖f ′(xn)‖2

=‖xn − s‖2−(f(xn)− µ)2

‖f ′(xn)‖2

!‖xn − s‖2−(f(xn)− µ)2

L2

!‖xn − s‖2
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Note ‖f ′(xn)‖2! L2 =⇒ 1
‖f ′(xn)‖2 ! 1

L2 =⇒ − 1
‖f ′(xn)‖2 ! − 1

L2

2. Observe that ∀k ∈ N,

(f(xk)− µ)2

L2
! ‖xk − s‖2−‖xk+1 − s‖2

Summing the above inequalities over k = 0 to k = n yields

1

L2

n"

k=0

(f(xk)− µ)2 ! ‖x0 − s‖2−‖xn+1 − s‖2! ‖x0 − s‖2. . . (∗)

Letting n → ∞, we learn that

0 !
∞"

k=0

(f(xk)− µ)2 ! L2‖x0 − s‖2< ∞

which implies
f(xk)− µ → 0 ⇐⇒ f(xk) → µ

3. Recall ∀n ∈ N, µn := min0!k!n f(xk). Let n " 0.
Then ∀k ∈ {0, . . . , n},

(µn − µ)2 !(f(xk)− µ)2

=⇒ (n+ 1)
(µn − µ)2

L2
! 1

L2

n"

k=0

(f(xk)− µ)2

!&'()
(∗)

‖x0 − s‖2

Minimizing over s ∈ S, we get

(n+ 1)
(µn − µ)2

L2
! d2S(x0)

4.

n "L2d2S(x0)

ε2
− 1

⇐⇒ dS(x0)
2L2

(n+ 1)
! ε2

Then by 3), we have

(µn − µ)2 ! d2S(x0)L
2

n+ 1
! ε2

which implies
µn − µ ! ε =⇒ µn ! µ+ ε
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Recall that: Theorem L13-5
Theorem 81: L17-3 Convergence of Projected Subgradient

Suppose that (xn)n∈N is generated as in (P ). Then

xn → a solution of (P ) in S

Proof. By the previous theorem, (xn)n∈N is Fejér monotone w.r.t. S.
Since (xn)n∈N is Fejér monotone w.r.t to S, (xn)n∈N is bounded.
Also, by the previous theorem,

f(xn) → µ = min
x∈C

f(x)

By Bolzano-Weirestrass, ∃xkn → x and x ∈ C (because (xn)n∈N lies in C by construction, C is
closed).
Now,

µ = min
x∈C

f(x) ! f(x) !&'()
f is lsc

lim inf
n→∞

f(xkn) = µ

which implies f(x) = µ. Hence, x ∈ S That is, all cluster point of (xn)n∈N lies in S.
xn → x ∈ S by the Fejér monotone theorem.

124



Example 37: L18-1

Let C ⊆ Rm be convex closed and nonempty and let x ∈ Rm. Then

∂dC(x) =

-
x−PC(x)
dC(x)

, x /∈ C

NC(x) ∩B(0; 1), x ∈ C

Consequently, ∀x ∈ Rm,
sup‖∂dC(x)‖! 1

Proof. Omitted. The bound can be easily verified.

Lemma 82: L18-2

Let f be convex, l.s.c, proper and let λ > 0. Then

∂(λf) = λ∂f

Proof. Easy
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5.4 The Convex Feasibility Problem
• Given k closed convex subsets Si of Rm such that

S = S1 ∩ S2 ∩ . . . Sk ∕= ∅

• Problem: Find x ∈ S

• Can we use the Projected subgradient method for (P)? What is f? What is C? What is L?

Set C = Rm, PC = Id. Set f(x) = max{dS1(x), . . . , dSk
(x)}, then f(x) " 0, ∀x ∈ Rm. And

f(x) = 0

⇐⇒ ∀i ∈ {1, . . . , k}, dSi
(x) = 0

⇐⇒ ∀i ∈ {1, . . . , k}, x ∈ Si

⇐⇒ x ∈
kT

i=1

Si = S

s ∕= ∅ =⇒ µ = min
x∈Rm

f(x) = 0

L = 1 by the previous example.
Finally, observe that the max formula for subdifferentials implies that x /∈ S.

∂f(x) = Conv{∂dSi
(x)|dSi

(x) = f(x)}

= Conv

I
x− PSi

(x)

dSi
(x)

|dSi
(x) = f(x)

J

What do we do with that?
Well, given xn pick an index in such that

dSin
(xn) = f(xn)

Set

f ′(xn) :=
xn − PSin

(xn)

dSin

What about tn?
Polyak’s step size:

tn =
f(xn)− µ

‖f ′(xn)‖2

=
dSin

(xn)− 0
GGG
xn−PSin

dSin
(xn)

GGG
2

=
dSin

(xn)
‖xn−PSin

‖2

d2Sin
(xn)

= dSin
(xn)

126



The update leads to the Greedy Projection Algorithm.

xn+1 = xn − tnf
′(xn)

= xn − dSin
(x)

xn − PSin
(xn)

dSin
(xn)

= xn − (xn − PSin
(xn))

= PSin
(xn)

so
xn+1 := PSin

(xn)

where Sin is any set that is farthest away from xn. And, by theorem L17-3,

xn → some point in S
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5.4.1 The Case k = 2

We obtain that method of alternating projections ”MAP”.
x0 ∈ Rm. Update via

xn+1 = PS2PS1xn

Example 38: L18-3

Find x ∈ S where
S := {x ∈ Rm|Ax = b, x " 0}

• A is k ×m matrix

• b ∈ Rk

We can use ”MAP”! Set S1 = Rm
+ ,

PS1(x) = x+ = (max{ξi, 0})mi=1, x = (ξ1, . . . , ξm)

S2 = {x ∈ Rm|Ax = b} = A−1(b)( the inverse image of b)
PS2(x) = x− A+(Ax− b)

A+ is the Moore-Penrose pseudo inverse (pinv). Let x0 ∈ Rm. Update via

xn+1 =PS2PS1(xn)

=PS2(x
+
n )

=x+
n − A+(Ax+

n − b)

=⇒ x ∈ S

Remark. L18-4 In practice, it is possible that µ = minx∈C f(x) is NOT known to us. In this case
replace Polyak’s stepsize by a sequence (tn)n∈N such that

!n
k=0 t

2
k!n

k=0 tk
→ 0 as n → ∞

for example,

tk =
1

k + 1

One can show that
µn := min{f(x0), . . . , f(xn)} → µ

as n → ∞
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5.5 The Proximal Gradient Method(PGM)
Consider the problem

(P ) min
x∈Rm

F (x) := f(x) + g(x)

Assumptions:
(P ) has solutions

S := arg min
x∈Rm

F (x) ∕= ∅

and
µ = min

x∈Rm
F (x)

• f is ”nice”: convex, lsc, proper and differentiable on int(dom(f)) ∕= ∅. ∇f is L-Lipschitz
on int(dom(f))

• g is convex, lsc and proper.
dom(g) ⊆ int(dom(f))

implies that
∅ ∕= ri(dom(g)) ⊆ dom(g) ⊆ ri(dom(f))

and implies
ri(dom(g)) ∩ ri(dom(f)) = ri(dom(g)) ∕= ∅
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Example 39: L18-5

min
x∈C

f(x)

where is ∅ ∕= C ⊆ Rm convex, closed is equivalent to

min
x∈Rm

f(x) + δC(x)& '( )
:=g

PGM:

x ∈ int(dom(f)) ⊇ dom(g)

Update via

x+ = Prox 1
L
g

1
x− 1

L
∇f(x)

2

= arg min
y∈Rm

-
1

L
g(y) +

1

2

GGGGy −
1
x− 1

L
∇f(x)

2GGGG
2
.

∈ dom(g) ⊆ int(dom(f)) = dom(f)

Set

T = Prox 1
L
g

1
Id −

1

L
∇f

2

i.e., ∀x ∈ Rm

Tx = Prox 1
L
g

1
x− 1

L
∇f(x)

2

Theorem 83: L18-6

Let x ∈ Rm. Then

x ∈ S = argminx∈Rm F = argminx∈Rm(f + g)
⇐⇒

x = Tx (i.e., x ∈ Fix(T ))

Proof. Observe that by Fermat,

x ∈ S ⇐⇒ 0 ∈ ∂(f + g)(x)

= ∂f(x) + ∂g(x)

= ∇f(x) + ∂g(x)
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Let x ∈ Rm. Then x ∈ S

⇐⇒ 0 ∈ ∂(f + g)(x)

⇐⇒ 0 ∈ ∇f(x) + ∂g(x)

⇐⇒ −∇f(x) ∈ ∂g(x)

⇐⇒ − 1

L
∇f(x) ∈ 1

L
∂g(x)

⇐⇒ x− 1

L
∇f(x) ∈ x+ ∂

1
1

L
g

2
(x) =

1
Id + ∂

1
1

L
g

22
(x)

⇐⇒ x ∈
1
Id + ∂

1
1

L
g

22−1 1
x− 1

L
∇f(x)

2

⇐⇒ x = Prox 1
L
g

1
Id −

1

L
∇f

2
(x) = Tx

Fact L18-7
Let f : Rm → (−∞,∞] be convex lsc and proper and let β > 0. Then f is β-strongly convex
⇐⇒ ∀x ∈ dom(∂f), ∀v ∈ ∂f(x),

f(y) " f(x) + 〈v, y − x〉+ β

2
‖y − x‖2
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5.6 The Prox-Grad Inequality

Proposition 84: L18-8

Let x ∈ Rm, y ∈ int(dom(f)),

y+ = Ty = Prox 1
L
g(y −∇f(y))

Then
F (x)− F (y+) "

L

2
‖x− y+‖2−

L

2
‖x− y‖2+Df (x, y)

where
Df (x, y) := f(x)− f(y)− 〈∇f(y), x− y〉 " 0

which is the ”Bregman distance” by convexity of f .

Proof. Define

h(z) := f(y) + 〈∇f(y), z − y〉+ g(z) +
L

2
‖z − y‖2

Then h is L-strongly convex.
Let z ∈ Rm. Then

z minimizes h

⇐⇒ 0 ∈ ∂

1
f(y) + 〈∇f(y), z − y〉+ g(z) +

L

2
‖z − y‖2

2

= ∂

1
〈∇f(y), z − y〉+ g(z) +

L

2
‖z − y‖2

2

= ∇f(y) + ∂g(z) + L(z − y)

⇐⇒ 0 ∈ 1

L
∇f(y) + ∂

1
1

L
g

2
(z) + (z − y)

⇐⇒ y − 1

L
∇f(y) ∈ z + ∂

1
1

L
g

2
(z)

=

1
Id + ∂

1
1

L
g

22
(z)

⇐⇒ z =

1
Id + ∂

1
1

L
g

22−1 1
y − 1

L
∇f(y)

2

= Prox 1
L
g

1
y − 1

L
∇f(y)

2

= Ty =: y+

which implies
argminh =: {y+}
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Recalling L18-7, f → h, β → L, y → x, x → y+, then

h(x)− h(y+) "
L

2
‖x− y+‖2. . . (1)

Moreover, by the descent lemma, we have

f(y+) ! f(y) + 〈∇f(y), y+ − y〉+ L

2
‖y+ − y‖2

Therefore,

h(y+) = f(y) + 〈∇f(y), y+ − y〉+ g(y+) +
L

2
‖y+ − y‖2

" f(y+) + g(y+)

= F (y+)

Combining with (1),

h(x)− F (y+) " h(x)− h(y+) "
L

2
‖x− y+‖2

Using the definition of h, the inequality above becomes

f(y) + 〈∇f(y), x− y〉+ g(x) +
L

2
‖x− y‖2−F (y+) "

L

2
‖x− y+‖2

Adding f(x) to both sides and rearranging yields:

f(x) + g(x)− F (y+) "
L

2
‖x− y+‖2−

L

2
‖x− y‖2+ f(x)− f(y) + 〈∇f(y), x− y〉& '( )

Df (x,y)
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The Proximal Gradient Method:
The problem is here:

(P ) min
x∈Rm

F (x) := f(x) + g(x)

Assumptions:
(P ) has solutions

S := arg min
x∈Rm

F (x) ∕= ∅

and
µ = min

x∈Rm
F (x)

• f is ”nice”: convex, lsc, proper and differentiable on int(dom(f)) ∕= ∅. ∇f is L-Lipschitz
on int(dom(f))

• g is convex, lsc and proper.
dom(g) ⊆ int(dom(f))

implies that
∅ ∕= ri(dom(g)) ⊆ dom(g) ⊆ ri(dom(f))

and implies
ri(dom(g)) ∩ ri(dom(f)) = ri(dom(g)) ∕= ∅

Lemma 85: L19-1 (Sufficient Decrease Lemma

F (y+) ! F (y)− L

2
‖y − y+‖2

Proof. Use L18-8 with x replaced by y and recall that, because f is convex,

Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉 " 0

The Proximal Gradient Method:
Given y ∈ int(dom(f)), update via

y+ := Prox 1
L
g

1
y − 1

L
∇f(y)

2

=: Ty ∈ dom(g) ⊆ int(dom(f)) = dom(∇f)

The Algorithm:
Given x0 ∈ int(dom(f)). ∀n ∈ N, update via

xn+1 := Txn = Prox 1
L
g

1
xn −

1

L
∇f(xn)

2
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Theorem 86: L19-2 O(1/n) rate of convergence of function values

The following hold:

1. ∀s ∈ S, n ∈ N, ‖xn+1 − s‖! ‖xn − s‖, i.e., (xn)n∈N is Fejér monotone w.r.t S.

2. (F (xn))n∈N decreases to µ. more precisely,

0 ! F (xn)− µ ! L · d2S(x0)

2n
= O

1
1

n

2

Proof. Applying L19-1 with y replaced by xn (y+ = xn+1) yields

F (xn+1) ! F (xn)−
L

2
‖xn+1 − xn‖2! F (xn)

1. Recalling: Let s ∈ S, let k ∈ N.
Applying L18-8 with (x, y) replaced by (s, xk) yields

0 " F (s)&'()
µ

−F (xk+1) "
L

2
‖s− xk+1‖2−

L

2
‖s− xk‖2. . . (∗)

implies that
(xn)n∈N is Fejér monotone w.r.t. S

2. Multiplying (∗) by 2
L

and adding the resulting inequalities from k = 0 to k = n − 1 and
telescoping yields:

2

L

9
n−1"

k=0

(µ− F (xk+1))

:
" ‖s− xn‖2−‖s− x0‖2" −‖s− x0‖2

In particular, setting s = PS(x0) ∈ S, we obtain

d2S(x0) = ‖PS(x0)− x0‖2

" 2

L

9
n−1"

k=0

(F (xk+1)− µ)

:

" 2

L

9
n−1"

k=0

(F (xn)− µ)

:
by F (xn+1) ! F (xn)

=
2

L
n(F (xn)− µ)

Equivalently,

0 ! F (xn)− µ ! L · d2S(x0)

2n
and

F (xn) → µ
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Theorem 87: L19-3 Convergence of PGM

xn converges to some solution in S = argminx∈Rm F (x)

Proof. By the previous theorem we have (xn)n∈N is Fejér monotone w.r.t S. Done if we can show
that every cluster point of (xn)n∈N lies in S.
Suppose that x is a cluster point of (xn)n∈N, say xkn → x.
Indeed,

µ ! F (x) ! lim inf
n→∞

F (xkn) = µ

=⇒ F (x) = µ

⇐⇒ x ∈ S

Proposition 88: L19-4

The following hold:

1. 1
L
∇f is f.n.e.

2. Id − 1
L
∇f is f.n.e

3. T = Prox 1
L
g(Id −∇f) is 2/3-averaged

Proof.

1. Recall L9-8 4). Dividing both sides by 1
L

yields

7
1

L
∇f(x)

& '( )
T

− 1

L
∇f(y)

& '( )
T

, x− y

8
"

GGGGGGG

1

L
∇f(x)

& '( )
T

− 1

L
∇f(y)

& '( )
T

GGGGGGG

2

There fore 1) and 2) follows from A3 Problem 3 a),b),d)
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2. as above

3. Recall that Prox 1
L
g is f.n.e. Hence, Prox 1

L
g and Id− 1

L
∇f are both 1

2
-average. Consequently,

the composition Prox 1
L
g

P
Id − 1

L
∇f

Q
is averaged with constant 2/3

Remark. L19-5 Recall L14-4 1), 3). One can show that for T = Prox 1
L
g

P
Id − 1

L
g
Q

we have ∀x, y,

1

2
‖(Id − t)x− (Id − T )y‖2! ‖x− y‖2−‖Tx− Ty‖2

Theorem 89: L19-6

Recalling the PGM iteration we have.

‖xn+1 − xn‖!
√
2dS(x0)√

n
= O

1
1√
n

2

Proof. Using the previous remark we have, ∀x, y

1

2
‖(Id − T )x− (Id − T )y‖2< ‖x− y‖2−‖Tx− Ty‖2. . . (∗)

Let s ∈ S and observe that s = Ts by L18-6.
Applying (∗) with x = xk, y = s ∈ S, we get

1

2
‖(Id − T )xk − (Id − T )s& '( )

0

‖2< ‖xk − s‖2−‖Txk&'()
xk+1

− Ts&'()
s

‖2

That is
1

2
‖xk − xk+1‖2! ‖xk − s‖2−‖xk+1 − s‖2. . . (#)
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Using the previous proposition T is 2/3-averaged, hence T is nonexpansive. Therefore

‖ xk&'()
Txk−1

− xk+1&'()
Txk

‖ ! ‖xk−1 − xk‖

! . . .

! ‖x0 − x1‖

Summing (#) oVer k = 0 → n− 1,

‖x0 − s‖2−‖xn − s‖2" 1

2

n−1"

k=0

‖xk − xk+1‖2"
1

2
n‖xn−1 − xn‖2

In particular, for s = PS(x0), we get

1

2
n‖xn−1 − xn‖2 ! d2S(x0)

=⇒ ‖xn−1 − xn‖ !
√
2√
n
dS(x0) = O

1
1√
n

2

Corollary 90: L19-7 The Classical Proximal Point Algorithm 1970’s Rockafeller

g : Rm → (−∞,∞] convex lsc and proper, c > 0.

(P ) min
x∈Rm

g(x)

Assume that S := argminx∈Rm g(x) ∕= ∅.
Let x0 ∈ Rm. Update via

xn+1 = Proxcgxn

Then

g(xn) ↘ µ = min g(Rm)

0 ! g(xn)− µ ! d2S(x0)

2cn
xn → some point in S

‖xn−1 − xn‖ !
√
2dS(x0)√

n

Proof. Set ∀x ∈ Rm, f(x) = 0. Then ∀x ∈ Rm, ∇f(x) = 0

=⇒ ∇f ≡ 0 is L-Lipschitz
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for any L > 0. In particular, for L = 1
c
> 0.

Observe that (P ) can be written as

min
x∈Rm

f(x) + g(x)& '( )
F (x)=g(x)

=⇒ S = arg min
x∈Rm

F (x)

= arg min
x∈Rm

g(x)

∇f ≡ 0 =⇒ Id −
1

L
∇f = Id

=⇒ T = Prox 1
L
g

1
Id −

1

L
∇f

2

= Proxcg ◦ (Id)
= Proxcg

Done by the previous results.
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5.7 Fast Iterative Shrinkage Thresholding Algorithm(FISTA)
(P ) min

x∈Rm
F (x) := f(x) + g(x)

Assumptions:
(P ) has solutions

S := arg min
x∈Rm

F (x) ∕= ∅

and
µ = min

x∈Rm
F (x)

• f is ”nice”: convex, lsc, proper and differentiable on Rm. ∇f is L-Lipschitz on Rm

• g is convex, lsc and proper.

FISTA:
x0 ∈ Rm, t0 = 1, y0 = x0. Update via

tn+1 =
1 +

H
1 + 4t2n
2

=⇒ 2tn+1 − 1 =
H

1 + 4t2n
=⇒ t2n+1 − tn+1 =t2n

xn+1 =Prox 1
L
g(

1
Id −

1

L
∇f

2
(yn) = Tyn

yn+1 =xn+1 +
tn − 1

tn+1

(xn+1 − xn)

=

1
1− 1− tn

tn+1

2
xn+1 +

1− tn
tn+1

xn

∈aff{xn, xn+1}

Remark. L20-1
The sequence (tn)n∈N satisfies ∀n ∈ N, tn " n+2

2
" 1. Verify using induction!

Indeed, base case:

t0 = 1 =
0 + 2

2

Now suppose for some n " 0,

tn " n+ 2

2
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Now

tn+1 =
1 +

H
1 + 4t2n
2

"
1 +

U
1 + 4 (n+2)2

4

2

=
1 +

H
1 + (n+ 2)2

2

" 1 +
H

(n+ 2)2

2

=
1 + n+ 2

2

=
(n+ 1) + 2

2

and the conclusion follows.

Theorem 91: L20-2 (O(1/n2) convergence for FISTA

0 ! F (xn)− µ ! 2Ld2S(x0)

(n+ 1)2
= O(1/n2)

Proof. Set s = PS(x0)
By convexity of F (note tn " (n+ 2)/2 " 1), we have

F

1
1

tn
S +

1
1− 1

tn

2
xn

2
! 1

tn
F (s) +

1
1− 1

tn

2
F (xn)

Set ∀n ∈ N,
δn = F (xn)− µ " 0

Observe that,
1
1− 1

tn

2
δn − δn+1 =

1
1− 1

tn

2
(F (xn)− F (s)&'()

µ

)− (F (xn+1)− F (s))

=

1
1− 1

tn

2
F (xn)−

1
1− 1

tn

2
F (s)− F (xn+1) + F (s)

=

1
1− 1

tn

2
F (xn) +

1

tn
F (s)− F (xn+1)

" F

1
1

tn
s+

1
1− 1

tn

2
xn

2
− F (xn+1) . . . (1)

Recall the FISTA updates, applying L18-8 with x = 1
tn
s+ (1− 1/tn)xn, y = yn, implies

y+ = Tyn = xn+1

141



yields

F

1
1

tn
s+ (1− 1/tn)xn

2
− F (xn+1)

" L

2

GGGG
1

tn
s+ (1− 1/tn)xn − xn+1

GGGG
2

− L

2

GGGG
1

tn
s+ (1− 1/tn)xn − yn

GGGG
2

" L

2

GGGG
1

tn
(s+ (tn − 1)xn − tnxn+1)

GGGG
2

− L

2

GGGG
1

tn
(s+ (tn − 1)xn − tnyn)

GGGG
2

=
L

2t2n
‖tnxn+1 − (s+ (tn − 1)xn)‖2−

L

2t2n
‖tnyn − (s+ (tn − 1)xn)‖2. . . (2)

and

‖tnyn − (s+ (tn − 1)xn)‖2

=

GGGGtn
1
xn +

tn−1 − 1

tn
(xn − xn−1)

2
− (s+ (tn − 1)xn)

GGGG
2

= ‖tnxn + (tn−1 − 1)(xn − xn−1)− s− tnxn + xn‖2

=‖tn−1xn − tn−1xn−1 + xn−1 − s‖2

=‖tn−1xn − (s+ (tn−1 − 1)xn−1)‖2. . . (3)

Then using t2n+1 − tn+1 = t2n, we have

t2n−1δn − t2nδn+1 = (t2n − tn)δn − t2nδn+1

= t2n

11
1− 1

tn

2
δn − δn+1

2

"&'()
(1)

t2n

1
F

1
1

tn
s+

1
1− 1

tn

2
xn

2
− F (xn+1)

2

"&'()
(2)

L

2
‖tnxn+1 − (s+ (tn − 1)xn)‖2−

L

2
‖tnyn − (s+ (tn − 1)xn)‖2

=&'()
(3)

L

2
‖tnxn+1 − (s+ (tn − 1)xn)& '( )

un+1

‖2−L

2
‖tn−1xn − (s+ (tn−1 − 1)xn−1)& '( )

un

‖2

Multiplying by 2
L

and rearranging yield

‖un+1‖2+
2

L
t2nδn+1 ! ‖un‖2+

2

L
t2n−1δn
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Therefore,

2

L
t2n−1δn ! ‖un‖2+

2

L
t2n−1δn

! . . .

! ‖u1‖2+
2

L
t20δ1

= ‖ t0&'()
=1

x1 − (s+ (t0 − 1)x0)‖2+
2

L
(1)(F (x1)− µ)

= ‖x1 − s‖2+ 2

L
(F (x1)− µ)

! ‖x0 − s‖2

where the last inequality follows from applying L18-8 with x = s, y = y0, y+ = Ty0 = x1 to
obtain

F (s)&'()
µ

−F (x1) "
L

2
‖s− x1‖2−

L

2
‖x0 − s‖2

That is,

F (xn)− µ = δn

! L

2
‖x0 − s‖2 1

t2n−1

! L

2
‖x0 − s‖2 4

(n+ 1)2
by tn " n+ 2

2

=
2Ld2S(x0)

(n+ 1)2
recall s = PS(x0)

5.7.1 The Iterative Shrinkage Thresholding Algorithm (ISTA)

Special case of the PGM with

g(x) = λ‖x‖,λ > 0

=⇒ 1

L
g(x) =

λ

L
‖x‖1

Prox 1
L
g(x) =

R
Prox λ

L
‖·‖(x)

Sn

i=1

=

1
sign(xi)max

I
0, |xi|−

λ

L

J2n

i=1
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5.8 The Fast Iterative Thresholding Algorithm (FISTA)
Is the accelerated version of ISTA?
‖·‖ VS ‖·‖2 Consider the two problems

(P1) min ‖x‖2 s.t. Ax = b

and
(P2) min ‖x‖1 s.t. Ax = b

Ax = b is underdetermined system of equations.
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Example 40: L20-3

l1 regularized least squares. Consider the problem

(P ) min
x∈Rm

1

2
‖Ax− n‖22+λ‖x‖1

λ > 0, A is n×m matrix.

• g(x) = λ‖x‖1 convex, lsc, proper

• f(x) = 1
2
‖Ax− b‖22 smooth, ∀x ∈ Rm, ∇f(x) = AT (Ax− b)

• dom(f) = dom(g) = Rm. Is ∇f Lipschitz? Recall L10-6,

∇f is L-Lipschitz continuous
⇐⇒ λmax(∇2f(x)) ! L

⇐⇒ λmax(A
TA) ! L

Take L := λmax(A
TA)

• S ∕= ∅. Indeed, F (x) = f(x) + g(x) = 1
2
‖Ax − b‖22+λ‖x‖1 is continuous, convex,

coercive, dom(F ) = Rm, implies S = argminF ∕= ∅ (Here we used the fact that: F
is convex lsc proper + coercive. C convex closed ∕= ∅, dom(F ) ∩ C ∕= ∅ Then F has
a minimizer over C)

Computational Tip Somtimes m is large and computing the eigenvalues of ATA (m×m matrix)
is not so easy.
In this case, you could use an upper bound on eigenvalues, e.g., the Frobenius norm:

‖A‖2F =
m"

j=1

n"

i=1

a2ij

= tr(ATA)

=
m"

i=1

λi(A
TA)
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Consider the problem

(P ) minimizex∈Rm F(x) = f(x) + g(x)

• f is convex lsc and proper

• g is convex lsc and proper

• S = argminx∈Rm F (x) ∕= ∅

No further assumptions of smoothness or domain inclusions.
Suppose that ∃s ∈ S such that 0 ∈ ∂f(s) + ∂g(s) ⊆ ∂(f + g)(s)
One situation is when

ri(dom(f)) ∩ ri(dom(g)) ∕= ∅

then sum rules applies, i.e.
∂(f + g) = ∂f + ∂g

Recall that in A4 you proved that

Proxf = (Id + ∂f)−1

Proxg = (Id + ∂g)−1

Set

Rf := 2Proxf − Id

Rg := 2Proxg − Id

Define the Douglas-Rachford (DR) operator as follows:

T = Id − Proxf + Proxg(2Proxf − Id)

= Id − Proxf + ProxgRf

Lemma 92: L22-1

The following hold:

1. Rf and Rg are nonexpansive

2. T = 1
2
(Id +RgRf )

3. T is firmly nonexpansive

Proof.

1. Recall that Proxf is f.n.e by L14-2
Now combine with A3, T is f.n.e ⇐⇒ 2T − Id is nonexpansive.
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2. Indeed,

1

2
(Id +RgRf )

=
1

2
(Id + (2Proxg − Id)Rf)

=
1

2
(Id + 2ProxgRf − Rf)

=
1

2
(Id + 2ProxgRf − (2Proxf − Id))

=
1

2
(Id + 2ProxgRf − 2Proxf + Id)

=
1

2
(2Id − 2Proxf + 2ProxgRf)

=Id − Proxf + ProxgRf

=:T

3. Observe that RgRf (= Rg ◦ Rf ) is a composition of two nonexpansive mappings, hence
RgRf is nonexpansive.
Therefore,

T =
1

2
(Id +RgRf )

=
1

2
Id +

1

2
RgRf& '( )
=:N

That is T is 1/2-averaged, equivalently, T is f.n.e by L12-7

Useful if we plan to iterate T . Shall we?
Remark. L22-2

FixT = FixRgRf

Indeed, let x ∈ Rm. Then

x ∈ FixT ⇐⇒ x = Tx

⇐⇒ x =
1

2
(Id +RgRf )(x) =

1

2
(x+RgRfx)

⇐⇒ 2x = x+RgRfx

⇐⇒ x = RgRfx

⇐⇒ x ∈ FixRgRf

Proposition 93: L22-3

Proxf(FixT) ⊆ S
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Proof. Let x ∈ Rm, and set s = Proxfx. On the one hand.

s = Proxf(x) (Proxf = (Id + ∂f)−1

⇐⇒ x ∈ (Id + ∂f)(s) = s+ ∂f(s)

⇐⇒ 2Proxfx& '( )
=s

−(2 Proxfx& '( )
Rfx

−x) ∈ s+ ∂f(s)

⇐⇒ 2s−Rf (x) ∈ s+ ∂f(s)

⇐⇒ 2s−Rf (x)− s ∈ ∂f(s)

⇐⇒ s−Rf (x) ∈ ∂f(s)

On the other hand,

x ∈ Fix(T) ⇐⇒ x = Tx, (T = Id − Proxf + ProxgRf)

⇐⇒ x = x− Proxf(x) + ProxgRf(x)

⇐⇒ Proxf(x) = ProxgRf(x)

⇐⇒ s = ProxgRf(x)

⇐⇒ Rf (x) ∈ s+ ∂g(s), (Proxg = (Id + ∂g)−1)

⇐⇒ 0 ∈ s−Rf (x) + ∂g(s)

⇐⇒ Rf (x)− s ∈ ∂g(s)

Altogether, the last inclusions imply that

0 ∈∂f(s) + ∂g(s)

⊆∂(f + g)(s)

=⇒ s ∈S = arg min
x∈Rm

F (x)

Theorem 94: L22-4

Let x0 ∈ Rm. Update via

xn+1 := xn − Proxf(xn) + Proxg(2Proxf(xn)− xn)

Then
Proxf(xn) −→ a minimizer of f + g

Proof. Rewrite xn+1 as

xn+1 = (Id − Proxf + Proxg(2Proxf − Id))xn

= Txn

= T n+1x0
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Then by L14-1 xn+1 → x ∈ FixT. Observe that Proxf is (firmly) nonexpansive by L14-2, hence
continuous by L12-11. Consequently, Proxfxn will converge to Proxfx =: s
Finally, observe that

s ∈ Proxf(FixT) ⊆&'()
Prop L22−3

S

The proof is complete.
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Consider the problem
(P ) minimizer f(x) s.t x ∈ C

Assumptions:

• f is convex lsc and proper

• ∅ ∕= C closed and convex ⊆ int(dom(f))

• S := argminx∈C f(x) ∕= ∅

Set µ := min f(C).
Stochastic Projected subgradient Method:
Given x0 ∈ C, update via:

xn+1 := PC(xn − tngn)

Assumptions on tn:
A0: tn > 0,

∞"

n=0

tn → ∞,

!n
k=0 t

2
k!n

k=0 tk
→ 0 as k → ∞

e.g., tn = α
n+1

, α > 0
What about gn?
Choose gn to be a random vector, such that the following assumptions are satisfied.
A1: (”unbiased subgradient”)
∀n ∈ N,

E(gn|xn) ∈ ∂f(xn)

(means expectation of gn given xn is a subgradient), equivalently,
∀y ∈ Rm,

f(xn) + 〈E(gn|xn), y − xn〉 ! f(y)

A2: (”boundedness”)
∃L > 0, ∀n ∈ N,

E(‖gn‖2|xn) ! L2

Theorem 95: L23-1

Assuming the previous assumptions hold. Then

E(µk) → µ as k → ∞

where
µk := min{f(x0), . . . , f(xk)} " µ
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Proof. Let s ∈ S and let n ∈ N. Then

0 ! ‖xn+1 − s‖2

= ‖PC(xn − tngn)− PC(s)‖2

! ‖(xn − tngn)− s‖2

= ‖(xn − s)− tngn‖2

= ‖xn − s‖2−2tn 〈gn, xn − s〉+ t2n‖gn‖2

Now taking the conditional expectation, given xn, yields,

E(‖xn+1 − s‖2|xn) !‖xn − s‖2+2tn 〈E(gn|xn), s− xn〉
+ t2nE(‖gn‖2|xn)

!&'()
A1,A2

‖xn − s‖2+2tn(f(s)− f(xn)) + t2nL
2

=‖xn − s‖2+2tn(µ− f(xn)) + t2nL
2

Now taking the expectation w.r.t. xn yields

E(‖xn+1 − s‖2) ! E(‖xn − s‖2) + 2tn(µ− E(f(xn))) + t2nL
2 . . . (∗)

Let k ∈ N.
Summing

!k
n=0 over (∗) and cancelling duplicate terms yields

0 ! E(‖xk+1 − s‖2) ! ‖x0 − s‖2−2
k"

n=0

tn(E(f(xn))− µ) + L2

k"

n=0

t2n

Hence,

1

2

9
‖x0 − s‖2+L2

k"

n=0

t2n

:
"

k"

n=0

tn(E(f(xn))− µ)

"
k"

n=0

tn(E(µk)− µ)

" 0, byf(xn) " µk " µ

Therefore,

0 ! E(µk)− µ ! ‖x0 − s‖2+L2
!k

n=0 t
2
n

2
!k

n=0 tn
→ 0, as k → ∞ byA0

The proof is complete.

5.8.1 Key Application:

Minimizing a sum of functions

f1, . . . , fr : Rm → (−∞,∞]

151



are convex, lsc proper
Set I = {1, . . . , r} and assume

∀i ∈ I, int(dom(fi)) ⊇ C is convex closed, ∕= ∅

Also assume that
∀i ∈ I, ∃Li " 0, sup‖∂fi(C)‖! Li

Fact: sup‖∂fi(C)‖! Li ⇐⇒ fi|C is Li-Lipschitz. True if, e.g., C is bounded.

Set
f =

"

i∈I

fi

Goal
(P ) minimizerx∈Cf

We will apply SPGM to (P ).
To do that, we verify

• f is convex lsc and proper

• ∅ ∕= C closed and convex ⊆ int(dom(f))

• S := argminx∈C f(x) ∕= ∅

and we have

• f =
!

i∈I fi is convex lsc. by fi all convex and lsc proper.

• dom(f) = ∩i∈Idom(fi) ⊇ C ∕= ∅ =⇒ f is proper.

•

int(dom(f)) = int ∩i∈I dom(fi)

= ∩i∈I int(dom(fi)) by I finite
⊇ C by the previous point

• Now assume µ := min f(C) is attained, i.e., P has a solution. We now will show that A1, A2
can be satisfied,
By the fact above, we have each fi|C is Li-Lipschitz.
Therefore, using the triangle inequality

f |C=
"

i∈I

fi|C is
"

i∈I

Li Lipschitz

Therefore, once again, by the fact, we learn that

sup‖∂f(C)‖!
"

i∈I

Li
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Let x0 ∈ C. Given xn ∈ C, xn+1 = PC(xn − tngn), we pick an index in ∈ I = {1, . . . , r}
randomly using uniform distribution and we set

gn = r · f ′
in(xn)

∈ r · ∂fin(xn)

Now,

E(gn|xn) =
r"

i=1

1

r
· rf ′

i(xn)

=
r"

i=1

f ′
i(xn)& '( )

∈∂fi(xn)

∈ ∂f1(xn) + . . .+ ∂fr(xn)

= ∂(f1 + . . .+ fr)(xn) sum rule
= ∂f(xn)

so A1 holds.
Next:

E(‖gn‖2|xn) =
r"

i=1

1

r
‖rf ′

i(xn)‖2

=
r"

i=1

r‖f ′
i(xn)‖2

! r
"

L2
i

=: L2

Therefore, A2 holds with L :=
H

r
!r

i=1 L
2
i .

Consequently,
xn+1 := PC(xn − tngn)

generates a sequence such that
E(µn) → µ

µn = mini∈{1,...,n}{f(x0), . . . , f(xn)}
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