CO 463: Convex Optimization

Rui Gong

April 19, 2021

Contents

1 Convex Sets 3
1.1 Introduction 3
1.2 Affine sets and affine subspaces in \mathbb{R}^{n} 4
1.3 Convex Sets in \mathbb{R}^{n} 5
1.4 Convex Combinations of Vectors: 7
1.5 Convex Sets: Best Approximation 10
1.6 Convex Sets: Topological properties 19
2 Separation Theorems 24
2.1 More Convex Sets: Cones 27
3 Convex Function 36
3.1 Lower Semicontinuity 39
3.2 The Support Function (txtbook p-28) 43
3.3 Operations That Preserves Convexity 45
3.4 Conjugates of Convex Functions 48
3.5 The Subdifferential Operator 52
3.6 Calculus of Subdifferentials 56
3.7 Differentiability of Convex Functions 65
3.8 Subdifferentiability and Conjugacy 69
3.9 Differentiability and Strong Convexity: 74
3.10 The Proximal Operator 84
3.11 More on Proximal Operators 88
4 Nonexpansive, Firmly Nonexpansive and Averaged Operators 97
4.1 Fixed Points 100
4.1.1 Composition of Averaged Operators 108
5 Constrained Convex Optimization 111
5.1 KKT Conditions 112
5.1.1 KKT conditions 115
5.2 Algorithms 117
5.3 Projected Subgradient Method 120
5.4 The Convex Feasibility Problem 126
5.4.1 The Case $k=2$ 128
5.5 The Proximal Gradient Method(PGM) 129
5.6 The Prox-Grad Inequality 132
5.7 Fast Iterative Shrinkage Thresholding Algorithm(FISTA) 140
5.7.1 The Iterative Shrinkage Thresholding Algorithm (ISTA) 143
5.8 The Fast Iterative Thresholding Algorithm (FISTA) 144
5.8.1 Key Application: 151

1 Convex Sets

1.1 Introduction

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable. Consider the problem

$$
(P): \begin{aligned}
& \min f(x) \\
& \text { s.t. } x \in C \subseteq \mathbb{R}^{n}
\end{aligned}
$$

In the special case, when $C=\mathbb{R}^{n}$, the minimizers of f (if any) will occur at the critical points of f, namely, $x \in \mathbb{R}^{n}$ such that

$$
\nabla f(x)=0
$$

This is known as "Fernat's Rule", which we will learn about more later.
In this course, we will discuss and learn ConVexity of sets and functions and how we can approach problem (P) in the more general settings of:

1. Absense of differentiability of the function f, f is convex (this is called the objective function) and/or
2. $\emptyset \neq C \subsetneq \mathbb{R}^{n}, C$ convex (C is called the constraint set)

1.2 Affine sets and affine subspaces in \mathbb{R}^{n}

Definition 1

Let $S \subseteq \mathbb{R}^{n}$. Then:

1. S is an affine set if

$$
\forall x, y \in S, \forall \lambda \in \mathbb{R}, \lambda x+(1-\lambda) y \in S
$$

Observe that, trivially, $\emptyset, \mathbb{R}^{n}$ are affines sets.
2. S is an affine subspace if

$$
S \neq \emptyset
$$

and

$$
\forall x, y \in S, \forall \lambda \in \mathbb{R}, \lambda x+(1-\lambda) y \in S
$$

3. Let $S \subseteq \mathbb{R}^{n}$. The affine hull of S, denoted by $a f f(S)$ is the intersection of all affine sets containing S (i.e. the smallest affine set containing S)

Example: Affine Sets of \mathbb{R}^{n}

1. L, where $L \subseteq \mathbb{R}^{n}$ is a linear subsapce
2. $a+L$, where $a \in \mathbb{R}^{n}, L \subseteq \mathbb{R}^{n}$ is a linear subsapce
3. $\emptyset, \mathbb{R}^{n}$

Geometrically Speaking:
A nonempty subset $S \subset \mathbb{R}^{n}$ is affine if the line connecting any two points in the set lies entirely in the set.

1.3 Convex Sets in \mathbb{R}^{n}

Definition 2

A subset C of \mathbb{R}^{n} is convex if

$$
\forall x, y \in C, \forall \lambda \in(0,1), \lambda x+(1-\lambda) y \in C
$$

Example

Convex subsets of \mathbb{R}^{n}

1. $\emptyset, \mathbb{R}^{n}$
2. C, where C is a ball
3. C, where C is an affine set
4. C, where C is a half-space. i.e.

$$
C:=\left\{x \in \mathbb{R}^{n} \mid\langle x, u\rangle \leqslant \eta\right\}
$$

where $u \in \mathbb{R}^{n}, \eta \in \mathbb{R}$ are fixed

Geometrically Speaking:
A subset $C \subseteq \mathbb{R}^{n}$ is convex if given any two points $x \in C, y \in C$, the line segment joining x and y, denoted by $[x, y]$, lies entirely in C

Theorem 1: Txtbook THM2.1

The intersection of an arbitrary collection of convex sets is convex.

Proof. Let I be an indexed set (not necessarily finite). Let $\left(C_{i}\right)_{i \in I}$ be a collecotion of convex subsets of \mathbb{R}^{n}. Set

$$
C:=\cap_{i \in I} C_{i}
$$

Let $\lambda \in(0,1)$ and let $(x, y) \in C \times C$.
Since C_{i} is convex ($\forall i \in I$), we learn that

$$
\forall i \in I, \lambda x+(1-\lambda) y \in C_{i}
$$

Hence,

$$
\lambda x+(1-\lambda) y \in \cap_{i \in I} C_{i}=C
$$

Hence, C is convex.

Corollary: Txtbook Cor 2.1.1

Let $b_{i} \in \mathbb{R}^{n}, \beta_{i} \in \mathbb{R}$ for $i \in I$, where I is an arbitrary index set.
Then the set:

$$
C=\left\{x \in \mathbb{R}^{n} \mid\left\langle x, b_{i}\right\rangle \leqslant \beta_{i}, \forall i \in I\right\}
$$

is convex.

Proof. Set $\forall i \in I$,

$$
C_{i}=\left\{x \in \mathbb{R}^{n} \mid\left\langle x, b_{i}\right\rangle \leqslant \beta_{i}\right\}
$$

We claim that $\forall i \in I, C_{i}$ is convex.
Indeed, let $i \in I$, let $(x, y) \in C_{i} \times C_{i}$, and let $\lambda \in(0,1)$. Set

$$
z:=\lambda x+(1-\lambda) y
$$

Then

$$
\begin{aligned}
\left\langle z, b_{i}\right\rangle & =\left\langle\lambda x+(1-\lambda) y, b_{i}\right\rangle \\
& =\lambda\left\langle x, b_{i}\right\rangle+(1-\lambda)\left\langle y, b_{i}\right\rangle \\
& \leqslant \beta_{i} \\
& \leqslant \lambda \beta_{i}+(1-\lambda) \beta_{i}\left(\text { Using } 1>\lambda>0, x, y \in C_{i}\right) \\
& =\beta_{i}
\end{aligned}
$$

Hence, $z \in C_{i}$
Consequently, C_{i} is convex, as claimed.
Now, combine with theorem 2.1

1.4 Convex Combinations of Vectors:

Definition 3

A vector sum

$$
\lambda_{1} x_{1}+\ldots+\lambda_{m} x_{m}
$$

is called a convex combination of vectors x_{1}, \ldots, x_{m} if $\forall i \in\{1, \ldots, m\}, \lambda_{i} \geqslant 0$, and $\sum_{i=1}^{m} \lambda_{i}=1$

Theorem 2: Txtbook THM2.2

A subset C of \mathbb{R}^{n} is convex iff it contains all the convex combination of its elements

Proof. (\Leftarrow) Suppose C contains all the convex combinations of its elemtns.
Let $\lambda \in(0,1)$ and let $x \in C, y \in C$.
By assumption, the convex combination

$$
\lambda x+(1-\lambda) y
$$

lies in C.
Therefore, C is convex.
(\Rightarrow) Suppose C is convex.
We proceed by induction on m, where m is the number of elements in the convex combination. Base case: when $m=2$, the conclusion is clear by the convexity of C.
Now, suppose that for some $m>2$ it holds that any convex combination of m vectors lies in C.
Let $\left\{x_{1}, \ldots, x_{m}\right\} \subseteq C$, let $\lambda_{1}, \ldots, \lambda_{m}, \lambda_{m+1} \geqslant 0$, such that

$$
\sum_{i=1}^{m+1}=1
$$

our goal is to show that

$$
z:=\sum_{i=1}^{m+1} \lambda_{i} x_{i} \in C
$$

Observe that, there must exist at least one $\lambda_{i} \in[0,1)$ or else if all

$$
\lambda_{i}=1 \Rightarrow 1=\sum_{i=1}^{m+1} \lambda_{i}=m+1>3
$$

which is a contradiction.

Without loss of generality, we can and do assume that $\lambda_{m+1} \in[0,1)$. Now:

$$
\begin{aligned}
z & =\sum_{i=1}^{m+1} \lambda_{i} x_{i} \\
& =\sum_{i=1}^{m} \lambda_{i} x_{i}+\lambda_{m+1} x_{m+1} \\
& =\left(1-\lambda_{m+1}\right) \sum_{i=1}^{m} \frac{\lambda_{i}}{1-\lambda_{m+1}} x_{i}+\lambda_{m+1} x_{m+1} \\
& =\left(1-\lambda_{m+1}\right) \sum_{i=1}^{m} \lambda_{i}^{\prime} x_{i}+\lambda_{m+1} x_{m+1}
\end{aligned}
$$

Observe that, $\lambda_{i}^{\prime}:=\frac{\lambda_{i}}{1-\lambda_{m+1}} \geqslant 0$, and that

$$
\begin{aligned}
\sum_{i=1}^{m} \lambda_{i}^{\prime} & =\frac{\lambda_{1}+\ldots+\lambda_{m}}{1-\lambda_{m+1}} \\
& =\frac{1-\lambda_{m+1}}{1-\lambda_{m+1}} \\
& =1
\end{aligned}
$$

Using the inductive hypothesis, we learn that

$$
\sum_{i=1}^{m} \frac{\lambda_{i}}{1-\lambda_{m+1}} x_{i} \in C
$$

Hence,

$$
z=[\left(1-\lambda_{m+1}\right) \underbrace{\sum_{i=1}^{m} \frac{\lambda_{i}}{1-\lambda_{m+1}} x_{i}}_{\in C}+\lambda_{m+1} \underbrace{x_{m+1}}_{\in C}] \in C
$$

so C is convex.

Definition 4: Convex Hull

Let $S \subseteq \mathbb{R}^{n}$. The intersection of all convex sets containing S is called the convex hull of S and is denoted by $\operatorname{conv}(S)$.
By theorem 2.1, $\operatorname{conv}(S)$ is convex. In fact, it is the smallest convex set containing S.

Theorem 3: Txtbook THM2.3

Let $S \subseteq \mathbb{R}^{n}$. Then $\operatorname{conv}(S)$ consists of all the convex combinations of the elements of S, i.e.,

$$
\operatorname{conv}(S)=\left\{\sum_{i \in I} \lambda_{i} x_{i} \mid I \text { is a finite index set, } \forall i \in I, x_{i} \in S, \lambda_{i} \geqslant 0, \sum_{i \in I} \lambda_{i}=1\right\}
$$

Proof. Set

$$
D:=\left\{\sum_{i \in I} \lambda_{i} x_{i} \mid I \text { is a finite index set, } \forall i \in I, x_{i} \in S, \lambda_{i} \geqslant 0, \sum_{i \in I} \lambda_{i}=1\right\}
$$

First, clearly, $S \subseteq D$. Moreover, we want to show that D is convex. Indeed, let $d_{1}, d_{2} \in D$, and let $\lambda \in(0,1)$
Then, there exist

$$
\begin{aligned}
& \lambda_{1}, \ldots, \lambda_{k} \geqslant 0, \sum_{i=1}^{k} \lambda_{i}=1 \\
& \mu_{1}, \ldots, \mu_{r} \geqslant 0, \sum_{j=1}^{r} \mu_{j}=1 \\
& d_{1}=\sum_{i=1}^{k} \lambda_{i} x_{i},\left\{x_{1}, \ldots, x_{k}\right\} \subseteq S \\
& d_{2}=\sum_{j=1}^{r} \mu_{j} y_{j},\left\{y_{1}, \ldots, y_{r}\right\} \subseteq S
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \lambda d_{1}+(1-\lambda) d_{2} \\
= & \lambda \lambda_{1} x_{1}+\ldots+\lambda \lambda_{k} x_{k} \\
& +(1-\lambda) \mu_{1} y_{1}+\ldots+(1-\lambda) \mu_{r} y_{r}
\end{aligned}
$$

Observe that

$$
\lambda \lambda_{i},\left(1-\lambda_{i}\right) \mu_{i} \geqslant 0, i \in\{1, \ldots, k\}, j \in\{1, \ldots, r\}
$$

and that

$$
\begin{aligned}
& \lambda \lambda_{1}+\ldots+\lambda \lambda_{k}+(1-\lambda) \mu_{1}+\ldots+(1-\lambda) \mu_{r} \\
= & \lambda \sum_{i=1}^{k} \lambda_{i}+(1-\lambda) \sum_{j=1}^{r} \mu_{j} \\
= & \lambda(1)+(1-\lambda)(1)=\lambda+1-\lambda=1
\end{aligned}
$$

Although, we conclude that D is convex set $\subseteq S$. Hence, $\operatorname{conv}(S) \subseteq D$
Secondly, observe that $S \subseteq \operatorname{conv}(S)$.
Now, combine with theorem 2.2 to learn that the convex combinations of elements of S lie in $\operatorname{conv}(S)$

Convex Hull: Examples

1.5 Convex Sets: Best Approximation

Definition: Distance Function

Let $S \subseteq \mathbb{R}^{n}$. The distance to S is the function

$$
\begin{aligned}
& d_{S}: \mathbb{R}^{n} \rightarrow[0, \infty] \\
& \quad x \rightarrow \inf _{s \in S}\|x-s\|
\end{aligned}
$$

Definition: Projection onto a set

Let $\emptyset \neq C \subseteq \mathbb{R}^{n}$, let $x \in \mathbb{R}^{n}$, and let $p \in C$. Then p is a projection of x onto C, if

$$
d_{C}(x)=\|x-p\|
$$

If every point in \mathbb{R}^{n} has exactly one projection onto C, the projection operator onto C, denoted by P_{C}, is the opearator that maps every point in \mathbb{R}^{n} to its unique projection in C.

Recall:
Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathbb{R}^{n}. Then $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence if $\left\|x_{m}-x_{n}\right\| \rightarrow 0$ as $\min \{m, n\} \rightarrow \infty$

Fact:
In \mathbb{R}^{n}, every Cauchy sequence converges.
Recall:
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and let $\bar{x} \in \mathbb{R}^{n}$. Then f is continuous at \bar{x} if and only if for every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ such that $x_{n} \rightarrow \bar{x}$ we have

$$
f\left(x_{n}\right) \rightarrow f(\bar{x})
$$

Fact:
Let $y \in \mathbb{R}^{n}$, and let $\|\cdot\|$ be the Euclidean norm on \mathbb{R}^{n}. Then the function

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}: x \rightarrow\|x-y\|
$$

is continuous.
Proof. Only for illustration, you don't need to know the proof.
Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathbb{R}^{n} such that $x_{n} \rightarrow \bar{x}$. Now:

$$
\begin{aligned}
f\left(x_{n}\right)-f(\bar{x}) & =\left\|x_{n}-y\right\|-\|\bar{x}-y\| \\
& =\left\|x_{n}-\bar{x}+\bar{x}-y\right\|-\|\bar{x}-y\| \\
& \leqslant\left\|x_{n}-\bar{x}\right\|+\|\bar{x}-y\|-\|\bar{x}-y\| \\
& =\left\|x_{n}-\bar{x}\right\|
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
f(\bar{x})-f\left(x_{n}\right) & =\|\bar{x}-y\|-\left\|x_{n}-y\right\| \\
& \leqslant\left\|\bar{x}-x_{n}\right\|+\left\|x_{n}-y\right\|-\left\|x_{n}-y\right\| \\
& =\left\|\bar{x}-x_{n}\right\|
\end{aligned}
$$

Altogether, we have

$$
0 \leqslant\left|f\left(x_{n}\right)-f(\bar{x})\right| \leqslant\left\|x_{n}-\bar{x}\right\|
$$

Now, take the limit as $n \rightarrow \infty$ to learn that

$$
\left|f\left(x_{n}\right)-f(\bar{x})\right| \rightarrow 0
$$

equivalently,

$$
f\left(x_{n}\right) \rightarrow f(\bar{x})
$$

Explicitly, this means $\left(\forall y \in \mathbb{R}^{n}\right)$ if $x_{m} \rightarrow \bar{x}$, then

$$
\left\|x_{m}-y\right\| \rightarrow\|\bar{x}-y\|
$$

Lemma 4

Let x, y, z be vectors in \mathbb{R}^{n}. Then

$$
\|x-y\|^{2}=2\|z-x\|^{2}+2\|z-y\|^{2}-4\left\|z-\frac{x+y}{2}\right\|^{2}
$$

Proof.

$$
\begin{align*}
& 2\|z-x\|^{2}=2\|z\|^{2}-4\langle z, x\rangle+2\|x\|^{2} \tag{1.1}\\
& 2\|z-y\|^{2}=2\|z\|^{2}-4\langle z, y\rangle+2\|y\|^{2} \tag{1.2}\\
& 4\left\|z-\frac{x+y}{2}\right\|^{2}=4\|z\|^{2}+\|x+y\|^{2}-4\langle z, x\rangle-4\langle z, y\rangle \tag{1.3}\\
& \text { R.H.S }=(1.1)+(1.2)-(1.3) \\
& =2\|x\|^{2}+2\|y\|^{2}-\|x+y\|^{2} \\
& =2\|x\|^{2}+2\|y\|^{2}-\|x\|^{2}-\|y\|^{2}-2\langle x, y\rangle \\
& =\|x\|^{2}+\|y\|^{2}-2\langle x, y\rangle \\
& =\|x-y\|^{2}=\text { L.H.S }
\end{align*}
$$

Lemma 5

Let $x \in \mathbb{R}^{n}, y \in \mathbb{R}^{n}$. Then

$$
\langle x, y\rangle \leqslant 0 \Longleftrightarrow(\forall \lambda \in[0,1]),\|x\| \leqslant\|x-\lambda y\|
$$

Proof. Observe that

$$
\begin{aligned}
\|x-\lambda y\|^{2}-\|x\|^{2} & =\|x\|^{2}-2 \lambda\langle x, y\rangle+\lambda^{2}\|y\|^{2}-\|x\|^{2} \\
& =\lambda\left(\lambda\|y\|^{2}-2\langle x, y\rangle\right) \ldots(*)
\end{aligned}
$$

(\Rightarrow) Suppose $\langle x, y\rangle \leqslant 0$. Then

$$
\|x-\lambda y\|^{2}-\|x\|^{2}=\lambda\left(\lambda\|y\|^{2}-2\langle x, y\rangle\right) \geqslant 0
$$

(\Leftarrow) Suppose that for every $\lambda \in(0,1],\|x-\lambda y\| \geqslant\|x\|$. Then $(*)$ implies $\langle x, y\rangle \leqslant \frac{\lambda}{2}\|y\|^{2}$. Taking the limit as $\lambda \downarrow 0$ yields the desired result.

Theorem 6: The projection theorem

Let C be a nonempty, closed, convex subset of \mathbb{R}^{n}. Then the following hold:

1. $\left(\forall x \in \mathbb{R}^{n}\right)$ the projection of x onto C exists and is unique.
2. For every $x \in \mathbb{R}^{n}$ and every $p \in \mathbb{R}^{n}$:

$$
p=P_{C} x \Leftrightarrow[p \in C \text { and }(\forall y \in C)\langle y-p, x-p\rangle \leqslant 0]
$$

Proof. Let $x \in \mathbb{R}^{n}$.

1. Our goal is to show that x has a unique projection onto C .

Existence:
Recall that $\left(\forall x \in \mathbb{R}^{n}\right)$

$$
d_{C}(x)=\inf _{c \in C}\|x-c\|
$$

Therefore, there exists a sequence $\left(c_{n}\right)_{n \in \mathbb{N}}$ in C such that

$$
\begin{equation*}
d_{C}(x)=\lim _{n \rightarrow \infty}\left\|c_{n}-x\right\| . \tag{1}
\end{equation*}
$$

Now, let m and n be in \mathbb{N}. By convexity of C, we know that

$$
\frac{1}{2}\left(c_{m}+c_{n}\right) \in C
$$

Hence,

$$
d_{C}(x)=\inf _{c \in C}\|x-c\| \leqslant\left\|x-\frac{1}{2}\left(c_{m}+c_{n}\right)\right\|
$$

Applying the auxuliary Lemma 1 with (x, y, z) replaced by $\left(c_{m}, c_{n}, x\right)$ we learn that :

$$
\begin{aligned}
\left\|c_{n}-c_{m}\right\|^{2} & =2\left\|c_{n}-x\right\|^{2}+2\left\|c_{m}-x\right\|^{2}-4\left\|x-\frac{c_{n}+c_{m}}{2}\right\|^{2} \\
& \leqslant 2\left\|c_{n}-x\right\|^{2}+2\left\|c_{m}-x\right\|^{2}-4 d_{C}^{2}(x)
\end{aligned}
$$

Letting $m \rightarrow \infty, n \rightarrow \infty$, we learn that

$$
0 \leqslant\left\|c_{n}-c_{m}\right\|^{2} \leqslant 2 d_{C}^{2}(x)+2 d_{C}^{2}(x)-4 d_{C}^{2}(x)=0
$$

That is $\left\|c_{n}-c_{m}\right\|^{2} \rightarrow 0$, hence $\left(c_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in C, hence $\left(c_{n}\right)_{n \in \mathbb{N}}$ converges to some point say $p \in C$ (by the closedness of C).
We will now show that

$$
d_{C}(x)=\|x-p\|
$$

Observe that, $\|x-\cdot\|$ is continuous. Combining with $c_{n} \rightarrow p$ and (1), we learn that $d_{C}(x) \leftarrow$ $\left\|x-c_{n}\right\| \rightarrow\|x-p\|$, hence

$$
d_{C}(x)=\|x-p\|
$$

This proves the existence.
Uniqueness:
Suppose that $q \in C$ satisfies that $d_{C}(x)=\|q-x\|$. By convexity of C,

$$
\frac{1}{2}(p+q) \in C
$$

Now, using the auxiliary lemma 1 with (x, y, z) replaced by $\left(p, q, \frac{1}{2}(p+q)\right)$ we learn that:

$$
\begin{aligned}
0 & \leqslant\|p-q\|^{2} \\
& =2\|p-x\|^{2}+2\|q-x\|^{2}-4\left\|x-\frac{p+q}{2}\right\|^{2} \\
& \leqslant 2 d_{C}^{2}(x)+2 d_{C}^{2}(x)-4 d_{C}^{2}(x) \\
& =0
\end{aligned}
$$

Hence, $\|p-q\|=0$; equivalently $p=q$. This proves uniqueness.
2. We want to show that, for every $x \in \mathbb{R}^{n}$ and every $p \in \mathbb{R}^{n}$,

$$
p=P_{C}(x) \Leftrightarrow[p \in C \text { and }(\forall y \in C)\langle y-p, x-p\rangle \leqslant 0]
$$

Indeed, $p=P_{C}(x) \Leftrightarrow\left[p \in C\right.$ and $\left.\|x-p\|^{2}=d_{C}^{2}(x)\right]$.
Observe that, for every $y \in C, \alpha \in[0,1]$,

$$
y_{\alpha}:=\alpha y+(1-\alpha) p \in C
$$

Therefore,

$$
\begin{aligned}
& \|x-p\|^{2}=d_{C}^{2}(x) \\
& \Leftrightarrow \forall y \in C, \forall \alpha \in[0,1]\|x-p\|^{2} \leqslant\left\|x-y_{\alpha}\right\|^{2} \\
& \Leftrightarrow \forall y \in C, \forall \alpha \in[0,1]\|x-p\|^{2} \leqslant\|x-p-\alpha(y-p)\|^{2} \\
& \Leftrightarrow \forall y \in C,\langle x-p, y-p\rangle \leqslant 0 \text { (by the lemma 2) }
\end{aligned}
$$

Example

Let $\epsilon>0$, and let $C=\operatorname{ball}(0, \epsilon)=\left\{c \in \mathbb{R}^{n} \mid\|x\|^{2} \leqslant \epsilon^{2}\right\}$, i.e., the closed ball in \mathbb{R}^{n} centered at 0 with radius ϵ. Show that

$$
\forall x \in \mathbb{R}^{n}, P_{C}(x)=\frac{\epsilon}{\max \{\|x\|, \epsilon\}} x
$$

Proof. Let $x \in \mathbb{R}^{n}$ and set $p=\frac{\epsilon}{\max \{\|x\|, \epsilon\}} x$. Using the projection theorem, it suffices to show that:

1. $p \in C$
2. $\forall y \in C,\langle x-p, y-p\rangle \leqslant 0$

We examine two cases, show $p \in C$

1. $\|x\| \leqslant \epsilon$. Then $x \in C$ and $p=\frac{\epsilon}{\epsilon} x=x \in C$
2. $\|x\|>\epsilon$, and $\|p\|=\epsilon \frac{\|x\|}{\|x\|}=\epsilon$, hence $p \in C$

Then, we show $\forall y \in C$,

$$
\langle x-p, y-p\rangle \leqslant 0
$$

Indeed, let $y \in C$.

1. $\|x\| \leqslant \epsilon \Rightarrow p=x$ and

$$
0=\langle x-p, y-p\rangle \leqslant 0
$$

2. $\|x\|>\epsilon \Rightarrow=\frac{\epsilon}{\|x\|} x$.

Moreover,

$$
\begin{aligned}
\langle x-p, y-p\rangle & =\left\langle x-\frac{\epsilon}{\|x\|} x, y-\frac{\epsilon}{\|x\|} x\right\rangle \\
& =\left(1-\frac{\epsilon}{\|x\|}\right)\left\langle x, y-\frac{\epsilon}{\|x\|} x\right\rangle \\
& =\left(1-\frac{\epsilon}{\|x\|}\right)\left(\langle x, y\rangle-\frac{\epsilon}{\|x\|}\|x\|^{2}\right) \\
& =\left(1-\frac{\epsilon}{\|x\|}\right)(\langle x, y\rangle-\epsilon\|x\|) \\
& \leqslant \underbrace{\left(1-\frac{\epsilon}{\|x\|}\right)(\|x\|\|y\|-\epsilon\|x\|)}_{\geqslant 0} \\
& \leqslant 0
\end{aligned}
$$

Definition: Minkowski sum of two sets

Let C and D be two subsets of \mathbb{R}^{n}. The Minkowski sum of C and D, denoted by $C+D$ is

$$
C+D:=\{c+d \mid c \in C, d \in D\}
$$

Theorem 7: Minkowski sum of Convex sets, Txtbook THM3.1

Let C_{1}, C_{2} be convex subsets of \mathbb{R}^{n}. Then $C_{1}+C_{2}$ is convex.

Proof. If $C_{1}=\emptyset$ or $C_{2}=\emptyset$, then $C_{1}+C_{2}=\emptyset$ and the conclusion follows.
Now suppose that $C_{1} \neq \emptyset, C_{2} \neq \emptyset \Rightarrow C_{1}+C_{2} \neq \emptyset$
Let x, y be in $C_{1}+C_{2}$ and let $\lambda \in(0,1)$.
Since $x \in C_{1}+C_{2}$, there exist $x_{1} \in C_{1}, x_{2} \in C_{2}$ such that

$$
x=x_{1}+x_{2}
$$

Similarly, there exists $y_{1} \in C_{1}, y_{2} \in C_{2}$ such that $y=y_{1}+y_{2}$.
Now,

$$
\begin{aligned}
\lambda x+(1-\lambda) y & =\lambda\left(x_{1}+x_{2}\right)+(1-\lambda)\left(y_{1}+y_{2}\right) \\
& =\lambda x_{1}+(1-\lambda) y_{2}+\lambda x_{1}+(1-\lambda) y_{2} \\
& \in C_{1}+C_{2}
\end{aligned}
$$

The proof is complete.

Proposition 8

Let C and D be nonempty, closed convex subsets of \mathbb{R}^{n} such that D is bounded. Then

$$
C+D \text { is nonempty, closed, convex }
$$

Proof.

$$
C \neq \emptyset, D \neq \emptyset \Longrightarrow C+D \neq \emptyset
$$

C convex, D convex $\Longrightarrow C+D$ is convex by theorem 3.1
It remains to show taht $C+D$ is closed.
Take a convergent sequence $\left(x_{n}+y_{n}\right)_{n \in \mathbb{N}}$ in $C+D$ such that $\left(x_{n}\right)_{n \in \mathbb{N}}$ lies in $C,\left(y_{n}\right)_{n \in \mathbb{N}}$ lies in D and $x_{n}+y_{n} \rightarrow z$ (say). Our goal is to show that $z \in C+D$.
By assumption, D is bounded, hence $\left(y_{n}\right)_{n \in \mathbb{N}}$ is bounded.
Using Bolzano-Weierstrass, we know that there exists a subsequence

$$
\left(y_{k_{n}}\right)_{n \in \mathbb{N}}, y_{k_{n}} \rightarrow y \in D
$$

Therefore, $z-y \leftarrow x_{k_{n}} \rightarrow \bar{x} \in C$
That is, $z \in C+y \subseteq C+D$

Quesion: What happens if we drop the assumption that D is bounded?

Example 1

Let

$$
\begin{aligned}
& C_{1}=\mathbb{R} \times\{0\} \\
& C_{2}=\left\{(x, y) \in \mathbb{R}_{++}^{2} \mid x y \geqslant 1\right\}
\end{aligned}
$$

Then C_{1}, C_{2} are closed and convex. However,

$$
C_{1}+C_{2}=\mathbb{R} \times \mathbb{R}_{++}
$$

which is convex but open.
Proof. We have:

- (\subseteq), $C_{1}+C_{2} \subseteq \mathbb{R} \times \mathbb{R}_{++}$

Indeed, let $\left(z_{1}, z_{2}\right) \in C_{1}+C_{2}$. Then, there exists $\left(x_{1}, x_{2}\right) \in C_{1},\left(y_{1}, 0\right) \in C_{2}$, such that

$$
z_{1}=x_{1}+y_{1}, z_{2}=x_{2}
$$

Clearly, $z_{1}=x_{1}+y_{1} \in \mathbb{R}$. And $z_{2}=x_{2}>0$. Hence,

$$
C_{1}+C_{2} \subseteq \mathbb{R} \times \mathbb{R}_{++}
$$

- (〇), $C_{1}+C_{2} \supseteq \mathbb{R} \times \mathbb{R}_{++}$

Let $(x, y) \in \mathbb{R} \times \mathbb{R}_{++}$, set

$$
c_{1}:=\left(x-\frac{1}{y}, 0\right), c_{2}:=\left(\frac{1}{y}, y\right)
$$

Then we have $c_{1} \in C_{1}, c_{2} \in C_{2}$ and

$$
(x, y)=c_{1}+c_{2} \in C_{1}+C_{2}
$$

Theorem 9: Txtbook THM3.2

Let C to be a convex set, let $\lambda_{1} \geqslant 0$ and let $\lambda_{2} \geqslant 0$. Then

$$
\left(\lambda_{1}+\lambda_{2}\right) C=\lambda_{1} C+\lambda_{2} C
$$

Proof. We prove two directions:

- (\subseteq): Obvious. Indeed, let $x \in\left(\lambda_{1}+\lambda_{2}\right) C$. Then $\exists c \in C$, such that

$$
x=\left(\lambda_{1}+\lambda_{2}\right) c=\lambda_{1} c+\lambda_{2} \in \lambda_{1} C+\lambda_{2} C
$$

This direction is always true even in the absence of convexity.

- (〇): Without loss of generality, we can and do assume that $\lambda_{1}+\lambda_{2}>0(\mathrm{o} / \mathrm{w}$, the condition is trivial)
Now, by convexity we have

$$
\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} C+\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}} C \subseteq C
$$

Equivalently, $\lambda_{1} C+\lambda_{2} C \subseteq\left(\lambda_{1}+\lambda_{2}\right) C$

1.6 Convex Sets: Topological properties

Throughout this course we use:

$$
B(x, \varepsilon)=\left\{y \in \mathbb{R}^{n} \mid\|y-x\|^{2} \leqslant \varepsilon\right\}
$$

and

$$
B:=B(0,1)=\left\{y \in \mathbb{R}^{n} \mid\|y\| \leqslant 1\right\}
$$

i.e., the closed unit ball.

Let $C \subseteq \mathbb{R}^{n}$, the interior of C is

$$
\operatorname{int}(C)=\{x \mid \exists \varepsilon>0, \text { s.t. } x+\varepsilon B \subseteq C\}
$$

the closure of C is \bar{C} (textbook uses $\operatorname{cl}(C)$,

$$
\bar{C}=c l(C)=\cap\{C+\varepsilon B \mid \varepsilon>0\}
$$

The relative interior of a convex set C is

$$
\operatorname{ri}(C)=\{x \in a f f(C) \mid \exists \varepsilon>0, \text { s.t. }(x+\varepsilon B) \cap a f f(C) \subseteq C\}
$$

Example 2

- On the real line:

1.

$$
\begin{aligned}
& C_{1}=\{0\} \subseteq \mathbb{R} \\
& \operatorname{int}\left(C_{1}\right)=\emptyset, \bar{C}_{1}=\{0\} \\
& \operatorname{ri}\left(C_{1}\right)=\{0\}
\end{aligned}
$$

2.

$$
\begin{aligned}
& C_{2}=[a, b) \\
& \operatorname{int}\left(C_{2}\right)=(a, b), \bar{C}_{2}=[a, b] \\
& \operatorname{ri}\left(C_{2}\right)=(a, b)
\end{aligned}
$$

- in \mathbb{R}^{2} :

1. $C_{1}=\{(0,0)\}, \operatorname{int}\left(C_{1}\right)=\emptyset, \bar{C}_{1}=\{(0,0)\}$, and $\operatorname{ri}\left(C_{1}\right)=\{(0,0)\}$
2. even for $x \in \mathbb{R}^{n}$, say $C=\{x\}, \operatorname{int}(C)=\emptyset, \bar{C}=\operatorname{ri}(C)=\{x\}$
3. $C_{2}=[a, b] \times\{0\}$

$$
\begin{aligned}
\operatorname{int}\left(C_{2}\right) & =\emptyset \\
\bar{C}_{2} & =C_{2} \\
& =[a, b] \times\{0\} \\
\operatorname{ri}\left(C_{2}\right)=(a, b) \times\{0\} &
\end{aligned}
$$

4. $C_{3}=[-1.1] \times[-1.1]$, then

$$
\begin{aligned}
\operatorname{int}\left(C_{3}\right) & =(-1,1) \times(-1,1) \\
\bar{C}_{3} & =C_{3} \\
\operatorname{ri}\left(C_{3}\right) & =\operatorname{int}\left(C_{3}\right) \\
& =(-1,1) \times(-1,1)
\end{aligned}
$$

Remark. 1. Let $C \subseteq \mathbb{R}^{n}$. Suppose that $\operatorname{int}(C) \neq \emptyset$. Then $\operatorname{int}(C)=\operatorname{ri}(C)$
Proof. Let $x \in \operatorname{int}(C)$. Then $\exists \varepsilon>0$ such that

$$
B(x ; \varepsilon) \subseteq C
$$

Hence,

$$
\left.\mathbb{R}^{n}=a f f(B ; \varepsilon)\right) \subseteq a f f(C) \subseteq \mathbb{R}^{n}
$$

Therefore, af $f(C)=\mathbb{R}^{n}$, and the conclusion follows by recalling that

$$
\begin{aligned}
\operatorname{ri}(C) & =\{x \in \operatorname{aff}(C) \mid \exists \varepsilon>0, \text { s.t. }(x+\varepsilon B) \cap a f f(C) \subseteq C\} \\
& =\left\{x \in \mathbb{R}^{n} \mid \exists \varepsilon>0, \text { s.t. }(x+\varepsilon B) \cap \mathbb{R}^{n} \subseteq C\right\} \\
& =\{x \mid \exists \varepsilon>0, \text { s.t. } x+\varepsilon B \subseteq C\} \\
& =\operatorname{int}(C)
\end{aligned}
$$

2. Let $C \neq \emptyset$ be convex. The dimension of C, denoted $\operatorname{dim}(c)$, is the dimension of the affine hull of C "aff (C) ". Observe that

$$
L:=a f f(C)-a f f(C)
$$

is a linear subspace

$$
\operatorname{dim}(a f f(C))=\operatorname{dim} L
$$

Proposition 10: *

Let C be a convex set in \mathbb{R}^{n}. Then $\forall x \in \operatorname{int}(C), \forall y \in \bar{C}$

$$
[x, y) \subseteq \operatorname{int}(C)
$$

Proof. The above statement is equivalent to $\forall x \in \operatorname{int}(C), \forall y \in \bar{C}, \forall \lambda \in[0,1)$,

$$
(1-\lambda) x+\lambda y \in \operatorname{int}(C)
$$

Let $x \in \operatorname{int}(C), y \in \bar{C}, \lambda \in[0,1)$. We need to show that

$$
(1-\lambda) x+\lambda y+\varepsilon B \subseteq C
$$

for some $\varepsilon>0$.
Observe that, because $y \in \bar{C}$,

$$
\forall \varepsilon>0, y \in C+\varepsilon B
$$

Hence, for every $\varepsilon>0$, we have

$$
\begin{aligned}
& (1-\lambda) x+\lambda y+\varepsilon B \\
& \subseteq(1-\lambda) x+\lambda(C+\varepsilon B)+\varepsilon B \\
& =(1-\lambda) x+\lambda C+\lambda \varepsilon B+\varepsilon B \\
& =(1-\lambda) x+\lambda C+(1+\lambda) \varepsilon B \\
& =(1-\lambda)[\underbrace{x}_{\in \operatorname{int}(C)}+\frac{1+\lambda}{1-\lambda} \varepsilon B]+\lambda C \\
& \subseteq(1-\lambda) C+\lambda C \text { (for suff. small } \varepsilon \text {) } \\
& =C
\end{aligned}
$$

Theorem 11: Txtbook THM6. 1

Let C be a convex set in \mathbb{R}^{n}. Then $\forall x \in r i(C), \forall y \in \bar{C}$

$$
[x, y) \subseteq r i(C)
$$

Proof. We have just shown that if $\operatorname{int}(C) \neq \emptyset$, then $\forall x \in \operatorname{int}(C), \forall y \in \bar{C}$

$$
[x, y) \subseteq \operatorname{int}(C)
$$

1. $\operatorname{int}(C) \neq \emptyset$.

Combine the previous proposition and remark $1, \operatorname{int}(C)=r i(C)$
2. $\operatorname{int}(C)=\emptyset$

In this case we must have $\operatorname{dim} C=m<n$.
Let $L=a f f(C)-a f f(C)$, then L is a linear subspace whose dimension $=m$. Hence, L can be regarded as a copy of \mathbb{R}^{m}
After translating C with $-c \in C$ (if necessary), we can and do assume that $C \subseteq \mathbb{R}^{m}$, and the interiors of $C-c$ with respect to \mathbb{R}^{m} is $r i(C)$ (in \mathbb{R}^{n}). Now, apply case 1).

Theorem 12

Let C be a convex subset of \mathbb{R}^{n}, then the following hold:

1. \bar{C} is convex
2. $\operatorname{int}(C)$ is convex
3. Suppose that $\operatorname{int}(C) \neq \emptyset$. Then $\operatorname{int}(C)=\operatorname{int}(\bar{C})$ and $\bar{C}=\overline{\operatorname{int}(C)}$

Proof. We prove each of the above:

1. Let $x, y \in \bar{C}$, and let $\lambda \in(0,1)$. Then there exist sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ and $\left(y_{n}\right)_{n \in \mathbb{N}}$ in C such that

$$
x_{n} \rightarrow x, y_{n} \rightarrow y
$$

Consequently,

$$
C \ni \lambda x_{n}+(1-\lambda) y_{n} \longrightarrow \lambda x+(1-\lambda) y
$$

which implies

$$
\lambda x+(1-\lambda) y \in \bar{C}
$$

Hence, \bar{c} is convex.
2. If $\operatorname{int}(C)=\emptyset$, the conclusion is clear. Otherwise, use the previous proposition with $x, y \in$ $\operatorname{int}(C) \subseteq \bar{C}$. Observe that:

$$
\begin{aligned}
{[x, y] } & =[x, y) \cup\{y\} \\
& \subseteq \operatorname{int}(C) \cup \operatorname{int}(C) \\
& =\operatorname{int}(C)
\end{aligned}
$$

3. Clearly, $C \subseteq \bar{C}$. Hence,

$$
\operatorname{int}(C) \subseteq i n t(\bar{C})
$$

Conversely, let $y \in \operatorname{int}(\bar{C})$.
Then $\exists \varepsilon>0$, such that $B(y, \varepsilon) \subseteq \bar{C}$. Now, let $x \in \operatorname{int}(C), \lambda>0$ such that $x \neq y$, and $y+\lambda(y-x) \in B(y ; \varepsilon) \subseteq \bar{C}$. By the proposition $*$ applied with y replace by $y+\lambda(y-x)$, we learn that

$$
y \in[x, y+\lambda(y-x)) \subseteq \operatorname{int}(C)
$$

To see $y \in[x, y+\lambda(y-x))$: set $\alpha:=\frac{1}{1+\lambda} \in(0,1)$
Observe that

$$
\begin{aligned}
y & =(1-\alpha) x+\alpha(y+\lambda(y-x)) \\
& \neq y+\lambda(y-x)
\end{aligned}
$$

Indeed,

$$
\begin{aligned}
& (1-\alpha) x+\alpha(y+\lambda(y-x)) \\
& =(1-\alpha(1+\lambda)) x+\alpha(1+\lambda) y \\
& =y
\end{aligned}
$$

Therefore, $\operatorname{int}(\bar{C}) \subseteq \operatorname{int}(C)$
Altogether, $\operatorname{int}(C)=\operatorname{int}(\bar{C}$ We now turn to the second identity. Clearly $\overline{\operatorname{int}(C)} \subseteq \bar{C}$.
Conversely, let $y \in \bar{C}$ and let $x \in \operatorname{int}(C)$.
Define, $\forall \lambda \in[0,1)$

$$
y_{\lambda}=(1-\lambda) x+\lambda y
$$

$\underline{\text { Again, }}$ proposition $*$ tells us that the $\left(y_{\lambda}\right)_{\lambda \in[0,1)}$ lies in $[x, y) \subseteq \operatorname{int}(C)$ Hence, $y=\lim _{\lambda \downarrow 0} y_{\lambda} \in$ $\overline{\operatorname{int}(C)}$. That is,

$$
\bar{C} \subseteq \overline{\operatorname{int}(C)}
$$

Altogether, we learn that

$$
\bar{C}=\overline{\operatorname{int}(C)}
$$

Fact(textbook THM6.2):
Let C be a convex subset of \mathbb{R}^{n}. Then $r i(C)$ and \bar{C} are convex subsets of \mathbb{R}^{n}. Moreover,

$$
C \neq \emptyset \Leftrightarrow r i(C) \neq \emptyset
$$

2 Separation Theorems

Definition 5

Let C_{1}, C_{2} be subsets of \mathbb{R}^{n}. Then C_{1} and C_{2} are separated if $\exists b \in \mathbb{R}^{n} \backslash\{0\}$ such that

$$
\sup _{c_{1} \in C_{1}}\left\langle c_{1}, b\right\rangle \leqslant \inf _{c_{2} \in C_{2}}\left\langle c_{2}, b\right\rangle
$$

C_{1} and C_{2} are strongly separated if $\exists b \in \mathbb{R}^{n} \backslash\{0\}$ such that

$$
\sup _{c_{1} \in C_{1}}\left\langle c_{1}, b\right\rangle<\inf _{c_{2} \in C_{2}}\left\langle c_{2}, b\right\rangle
$$

We say that $x \in \mathbb{R}^{n}$ is (strongly) separated from $C \subseteq \mathbb{R}^{n}$ if the set $\{x\}$ is (strongly) separated from C.

Theorem 13

Let C be a nonempty, closed, convex subset of \mathbb{R}^{n} and suppose that $x \notin C$. Then x is strongly separated from C.

Proof. We need to guarantee the existence of $\mathbb{R}^{n} \ni b \neq 0$ such that

$$
\sup \langle c, b\rangle<\inf \langle x, b\rangle=\langle x, b\rangle
$$

Set

$$
b:=x-P_{C} x \neq 0 \Leftrightarrow P_{C} x=x-b \neq x(x \notin C)
$$

Let $y \in C$. By the projection theorem we have

$$
p=P_{C} x \Leftrightarrow[p \in C \text { and } \forall y \in C,\langle y-p, x-p\rangle \leqslant 0]
$$

$$
\begin{aligned}
& \langle y-(x-b), x-(x-b)\rangle \leqslant 0 \\
\Leftrightarrow & \langle y-x+b, b\rangle \leqslant 0 \\
\Leftrightarrow & \langle y-x, b\rangle \leqslant-\langle b, b\rangle=-\|b\|^{2}
\end{aligned}
$$

Consequently,

$$
\sup _{y \in C}\langle y, b\rangle-\langle x, b\rangle \leqslant-\|b\|^{2}<0
$$

Hence,

$$
\sup _{y \in C}\langle y, b\rangle<\langle x, b\rangle
$$

Corollary 14

Let C_{1}, C_{2} be nonempty subsets of \mathbb{R}^{n} such that $C_{1} \cap C_{2}=\emptyset$ and $C_{1}-C_{2}$ is closed and convex. Then C_{1} and C_{2} are strongly separated.

Proof. Observe that by definition C_{1}, C_{2} are strongly separated if and only if $C_{1}-C_{2}$ and 0 are strongly separated.
Indeed, $C_{1}-C_{2}$ and 0 are strongly separated $\Leftrightarrow \exists b \neq 0$ such that

$$
\begin{aligned}
& \sup _{\substack{c_{1} \in C_{1} \\
c_{2} \in C_{2}}}\left\langle c_{1}-c_{2}, b\right\rangle<\inf \langle 0, b\rangle=0 \\
\Leftrightarrow & \sup _{\substack{c_{1} \in C_{1} \\
c_{2} \in C_{2}}}\left\{\left\langle c_{1}, b\right\rangle+\left\langle-c_{2}, b\right\rangle\right\}<0 \\
\Leftrightarrow & \sup _{c_{1} \in C_{1}}\left\langle c_{1}, b\right\rangle+\sup _{c_{2} \in C_{2}}\left\langle-c_{2}, b\right\rangle<0 \\
\Leftrightarrow & \sup _{c_{1} \in C_{1}}\left\langle c_{1}, b\right\rangle<-\sup _{c_{2} \in C_{2}}\left\langle-c_{2}, b\right\rangle=\inf _{c_{2} \in C_{2}}\left\langle c_{2}, b\right\rangle
\end{aligned}
$$

The conclusion follows by noting that $C_{1} \cap C_{2}=\emptyset \Rightarrow 0 \notin C_{1}-C_{2}$, and combining with the previous theorem(12).

Corollary 15

Let C_{1}, C_{2} be nonempty closed convex subsets of \mathbb{R}^{n} such that $C_{1} \cap C_{2}=\emptyset$ and C_{2} is bounded. Then C_{1} and C_{2} are strongly separated.

Proof. Observe that $-C_{2}$ is nonempty closed and convex. Therefore, by proposition $*, C_{1}-$ C_{2} is nonempty, closed and convex. Now we combine with the last corollary and get what's required.

Theorem 16

Suppose that C_{1} and C_{2} are nonempty closed convex subsets of \mathbb{R}^{n} such that $C_{1} \cap C_{2}=\emptyset$. Then C_{1} and C_{2} are separated.

Proof. Set $(\forall n \in \mathbb{N})$

$$
D_{n}=C_{2} \cap B(0 ; n)
$$

Observe that $(\forall n \in \mathbb{N})$,

$$
C_{1} \cap D_{n}=\emptyset
$$

Indeed, $D_{n} \subseteq C_{2}$. Hence, $C_{1} \cap D_{n} \subseteq C_{1} \cap C_{2}=\emptyset$
D_{n} is bounded, because $D_{n} \subseteq B(0 ; n)$
Apply the corollary(15) from the previous lecture with C_{2} replaced by D_{n} we learn that ($\forall n \in \mathbb{N}$, there exists a hyperplane that strongly separates C_{1} and D_{n}. Equivalently.

$$
\forall n \in \mathbb{N}, \exists u_{n} \in \mathbb{R}^{n} \backslash\{0\},\left\|u_{n}\right\|=1
$$

and

$$
\sup \left\langle C_{1}, u_{n}\right\rangle<\inf \left\langle D_{n}, u_{n}\right\rangle
$$

Because $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded, there exists a convergent subsequence $\left(u_{K_{n}}\right)_{n \in \mathbb{N}}$ of $\left(u_{n}\right)_{n \in \mathbb{N}}$ such that $u_{K_{n}} \rightarrow u$ (say), and $\|u\|=1$.
Now let $x \in C_{1}, y \in C_{2}$. Then, eventually $y \in B\left(0 ; K_{n}\right)$, hence eventually $y \in D_{K_{n}}$ and by $\sup \left\langle C_{1}, u_{n}\right\rangle<\inf \left\langle D_{n}, u_{n}\right\rangle$, we have

$$
\langle\underbrace{x}_{\in C_{1}}, u_{K_{n}}\rangle<\langle\underbrace{y}_{\in D_{K_{n}}}, u_{K_{n}}\rangle
$$

Taking the limit as $n \rightarrow \infty$, we learn that $\langle x, u\rangle \leqslant\langle y, u\rangle$. The proof is complete.

2.1 More Convex Sets: Cones

Definition 6

Let C be a subset of \mathbb{R}^{n}, then

1. C is a cone if

$$
C=\mathbb{R}_{++} C
$$

2. The conical hull of C, denoted by cone (C), is the intersection of all the cones of \mathbb{R}^{n} containing C. It is the smallest cone in \mathbb{R}^{n} containing C.
3. The closed conical hull of C, denoted by $\overline{\overline{c o n e}}(C)$ is the smallest closed cone in \mathbb{R}^{n} containing C.

The definition of cone above means that

$$
\forall x \in C, \forall \alpha \in \mathbb{R}_{++}, \alpha x \in C \Longrightarrow C \text { is a cone }
$$

Example 3

1.

$$
K_{1}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{i} \geqslant 0,1 \leqslant i \leqslant n\right\}
$$

It's a closed convex cone.
2.

$$
K_{2}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid x_{i}>0,1 \leqslant i \leqslant n\right\}
$$

It's a convex cone.
3.

$$
K_{3}=\left(\{0\} \times \mathbb{R}_{+}\right) \cup\left(\mathbb{R}_{+} \times\{0\}\right) \subseteq \mathbb{R}^{2}
$$

It's a closed cone but not convex
4.

$$
K_{4}=\left(\{0\} \times \mathbb{R}_{++}\right) \cup\left(\mathbb{R}_{--} \times\{0\}\right)
$$

It's a closed cone but it's not closed nor convex.

Proposition 17

Let C be a subset of \mathbb{R}^{n}. Then the following hold:

1. cone $(C)=\mathbb{R}_{++} C$
2. $\overline{\text { cone }(C)}=\overline{\text { cone }}(C)$
3. $\operatorname{cone}(\operatorname{conv}(C))=\operatorname{conv}(\operatorname{cone}(C))$
4. $\overline{\operatorname{cone}}(\operatorname{conv}(C))=\overline{\operatorname{conv}}(\operatorname{cone}(C))$

Proof. If $C=\emptyset$, then the conclusion is obvious. Now, suppose that $C \neq \emptyset$.

1. Set $D=\mathbb{R}_{++} C$, and observe that $C \subseteq D$, and D is a cone.

$$
\Longrightarrow \operatorname{cone}(C) \subseteq \operatorname{cone}(D)=D=\mathbb{R}_{++} C
$$

Conversely, let $y \in D$. Then $\exists \lambda>0, c \in C$ such that

$$
y=\lambda c
$$

Then $y \in \operatorname{cone}(C)$. Hence,

$$
\mathbb{R}_{++} C=D \subseteq \operatorname{cone}(C)
$$

Altogether,

$$
\operatorname{cone}(C)=\mathbb{R}_{++} C
$$

2. Observe that $\overline{\operatorname{cone}}(C)$ is closed cone. Clearly, $C \subseteq \overline{\operatorname{cone}}(C)$. Hence,

$$
\overline{\operatorname{cone}(C)} \subseteq \overline{\operatorname{cone}(\overline{\operatorname{cone}}(C))}=\overline{\operatorname{cone}}(C)
$$

Conversely, since $\overline{c o n e(c)}$ is a cone ,

$$
\overline{\operatorname{cone}}(C) \subseteq \overline{\operatorname{cone}(C)}
$$

Altogether,

$$
\overline{\operatorname{cone}}(C)=\overline{\operatorname{cone}(C)}
$$

3. We want to show that

$$
\operatorname{cone}(\operatorname{conv}(C))=\operatorname{conv}(\operatorname{cone}(C))
$$

- (\subseteq) let $x \in \operatorname{cone}(\operatorname{conv}(C))$. Then by 1$), \exists \lambda>0$ and $y \in \operatorname{conv}(C)$ such that

$$
x=\lambda y
$$

Since $y \in \operatorname{conv}(C)$, there exist $\lambda_{1}, \ldots, \lambda_{m} \in \mathbb{R}_{++}, \sum_{i=1}^{m} \lambda_{i}=1, x_{1}, \ldots, x_{m} \in C$, such that

$$
y=\sum_{i=1}^{m} \lambda_{i} x_{i}
$$

Hence

$$
\begin{aligned}
x & =\lambda \sum_{i=1}^{m} \lambda_{i} x_{i} \\
& =\sum_{i=1}^{m} \lambda_{i}(\underbrace{\lambda x_{i}}_{\in \operatorname{cone}(C)}) \\
& \in \operatorname{conv}(\operatorname{cone}(C))
\end{aligned}
$$

- (\supseteq), conversely, let $x \in \operatorname{conv}(\operatorname{cone}(C))$. In view of 1) cone $(C)=\mathbb{R}_{++} C$, we learn that there exist $\lambda_{1}, \ldots, \lambda_{m}>0$, there exist $\mu_{1}, \ldots, \mu_{m}>0$ with $\sum_{i=1}^{m} \mu_{i}=$ $1,\left\{x_{1}, \ldots, x_{m}\right\} \subseteq C$ such that

$$
\begin{aligned}
x & =\sum_{i=1}^{m} \mu_{i} \lambda_{i} x_{i} \\
& =\underbrace{\left(\sum_{i=1}^{m} \lambda_{i} \mu_{i}\right)}_{==\alpha}[\sum_{i=1}^{m} \underbrace{\left.\frac{\lambda_{i} \mu_{i}}{\sum \lambda_{i} \mu_{i}} x_{i}\right]}_{:=\beta_{i}} \\
& =\alpha \sum_{i=1}^{m} \beta_{i} x_{i}
\end{aligned}
$$

Then $\alpha>0, \beta_{i}>0, \forall i \in\{1, \ldots, m\}$ and $\sum_{i=1}^{m} \beta_{i}=1$. Hence

$$
x=\alpha \underbrace{\sum_{i=1}^{m} \beta_{i} x_{i}}_{\in \operatorname{conv}(C)} \in \operatorname{cone}(\operatorname{conv}(C))
$$

4. This is a direct consequence of 3) and 2),

$$
\overline{\operatorname{cone}}(\operatorname{conv}(C))=\overline{\operatorname{conv}}(\operatorname{cone}(C))
$$

Lemma 18

Let C be a convex subset of \mathbb{R}^{n} such that $\operatorname{int}(C) \neq \emptyset$ and $0 \in C$. Then the following are equivalent.

1. $0 \in \operatorname{int}(C)$
2. cone $(C)=\mathbb{R}^{n}$
3. $\overline{\text { cone }}(C)=\mathbb{R}^{n}$

Proof. - 1) $\Longrightarrow 2)$: Indeed, $0 \in \operatorname{int}(c) \Leftrightarrow \exists \varepsilon>0$ such that $B(0 ; \varepsilon) \subseteq C$. Hence,

$$
\begin{aligned}
\mathbb{R}^{n} & =\operatorname{cone}(B(0 ; \varepsilon)) \\
& \subseteq \operatorname{cone}(C) \subseteq \mathbb{R}^{n} \\
\Longrightarrow \operatorname{cone}(c) & =\mathbb{R}^{n}
\end{aligned}
$$

- 2) $\Longrightarrow 3)$ By an earlier Proposition

$$
\overline{\operatorname{cone}(C)}=\overline{\text { cone }(C)}
$$

Nowe,

$$
\mathbb{R}^{n} \stackrel{2)}{=} \operatorname{cone}(c) \subseteq \overline{\operatorname{cone}(C)}=\overline{\operatorname{cone} C}
$$

- 3$) \Longrightarrow 1): \overline{\operatorname{cone}}(C)=\mathbb{R}^{n} \stackrel{? ?}{\Rightarrow} 0 \in \operatorname{int}(C)$

By an earlier result, we proved that for any set C we have

$$
\operatorname{cone}(\operatorname{conv}(C))=\operatorname{conv}(\operatorname{cone}(C))
$$

Since C is convex, we have

$$
C=\operatorname{conv}(C)
$$

Hence,

$$
\operatorname{cone}(C)=\operatorname{conv}(\operatorname{cone}(C))
$$

implies that cone (C) is convex. By assumption

$$
\emptyset \neq \operatorname{int}(C) \subseteq \operatorname{int}(\operatorname{cone}(C))
$$

Hence, cone (C) is a convex set,

$$
\operatorname{int}(\operatorname{cone}(C)) \neq \emptyset
$$

By an earlier result

$$
\operatorname{int}(\operatorname{cone}(C))=\operatorname{int}(\overline{\operatorname{cone}(C)})=\operatorname{int}(\overline{\operatorname{cone}}(C))
$$

Hence,

$$
\begin{aligned}
\mathbb{R}^{n} & =\operatorname{int}\left(\mathbb{R}^{n}\right) \\
& =\operatorname{int}(\overline{\operatorname{cone}}(C)) \\
& =\operatorname{int}(\operatorname{cone}(C)) \\
& =\operatorname{cone}(\operatorname{int}(C)) \\
\Longrightarrow 0 & \in \operatorname{cone}(\operatorname{int}(C)) \\
\Longrightarrow 0 & \in \operatorname{\lambda int}(C), \text { for some } \lambda>0 \\
\Longrightarrow 0 & \in \operatorname{int}(C)
\end{aligned}
$$

Fact: Let C be a convex subset of \mathbb{R}^{n} such that $\operatorname{int}(C) \neq \emptyset$ and $0 \in C$, then

$$
\operatorname{int}(\operatorname{cone}(C))=\operatorname{cone}(\operatorname{int}(C))
$$

Definition 7: Tangent and Normal Cones

Let C be a nonempty convex subset of \mathbb{R}^{n} and let $x \in \mathbb{R}^{n}$.
The tangent cone to C at x is

$$
T_{c}(x)= \begin{cases}\overline{\operatorname{cone}}(C-x)=\overline{\bigcup_{\lambda \in \mathbb{R}_{++}} \lambda(C-x)}, & x \in C ; \\ \emptyset, & x \notin C\end{cases}
$$

and the normal cone of C at x is

$$
N_{c}(x)= \begin{cases}\left\{u \in \mathbb{R}^{n} \mid \sup _{c \in C}\langle c-x, u\rangle \leqslant 0\right\}, & x \in C ; \\ \emptyset, & x \notin C\end{cases}
$$

Example 4

Let $C=B=B(0 ; 1) \subseteq \mathbb{R}^{n}$.

$$
T_{C}(x)= \begin{cases}\left\{y \in \mathbb{R}^{n} \mid\langle x, y\rangle \leqslant 0\right\}, & \|x\|=1 \\ \mathbb{R}^{n}, & \|x\|<1 \\ \emptyset, \text { otherwise } & \end{cases}
$$

Theorem 19

Let C be a nonempty closed convex subset of \mathbb{R}^{n} and let $x \in \mathbb{R}^{n}$. Prove that $N_{C}(x), T_{C}(x)$ are closed convex cones.

Proof. See A2.

Lemma 20

Let C be a nonempty closed convex subset of \mathbb{R}^{n} and let $x \in C$. Then

$$
n \in N_{C}(x) \Leftrightarrow \forall t \in T_{C}(x),\langle n, t\rangle \leqslant 0
$$

Proof. - (\rightarrow) Let $n \in N_{C}(x)$, and let $t \in T_{C}(x)$. Recall that

$$
T_{C}(x)=\overline{\operatorname{cone}}(C-x)
$$

Therefore, there exists $\lambda_{K}>0,\left(t_{K}\right)_{k \in \mathbb{N}}$ in \mathbb{R}^{n} such that

$$
\forall k \in \mathbb{N}, x+\lambda_{k} t_{k} \in C, t_{k} \rightarrow t
$$

Since $n \in N_{C}(x)$, and $x+\lambda_{k} t_{k} \in C$, we learn that

$$
\begin{aligned}
& \forall k \in \mathbb{N},\left\langle n, \lambda t_{k}\right\rangle \\
& =\left\langle n, x+\lambda_{k} t_{k}-x\right\rangle \leqslant 0 \\
& \stackrel{\lambda_{\underline{k}}>0}{\Rightarrow} \forall k \in \mathbb{N},\left\langle n, t_{k}\right\rangle \leqslant 0
\end{aligned}
$$

Letting $k \rightarrow \infty$,

$$
\Longrightarrow\langle n, t\rangle \leqslant 0
$$

- (\Leftarrow) Suppose that $\forall t \in T_{C}(x)$, we have $\langle n, t\rangle \leqslant 0$.

Let $y \in C$ and observe that

$$
\begin{gathered}
y-x \in T_{C}(x) \\
(y-x \in C-x \subseteq \operatorname{cone}(C-x) \subseteq \overline{\operatorname{cone}(}(C-x))
\end{gathered}
$$

Therefore,

$$
\langle n, y-x\rangle \leqslant 0 \Longrightarrow n \in N_{C}(x)
$$

Theorem 21

Let C be a convex subset of \mathbb{R}^{n} such that $\operatorname{int}(C) \neq \emptyset$, and let $x \in C$. Then,

$$
x \in \operatorname{int}(C) \stackrel{(1)}{\Leftrightarrow} T_{C}(x)=\mathbb{R}^{n} \stackrel{(2)}{\Leftrightarrow} N_{C}(x)=\{0\}
$$

Proof. - (1) Observe that

$$
x \in \operatorname{int}(C) \Leftrightarrow 0 \in \operatorname{int}(C-x)
$$

Applying the earlier result (lemma 18) with C replaced by $C-x$.

$$
0 \in \operatorname{int}(C-x) \Leftrightarrow \overline{\operatorname{cone}}(C-x)=\mathbb{R}^{n} \Leftrightarrow T_{C}(x)=\mathbb{R}^{n}
$$

- (2) Recalling the earlier Lemma 20

Let $T_{C}(x)=\mathbb{R}^{n}$.

$$
\begin{aligned}
n \in N_{C}(x) & \Leftrightarrow \forall t \in T_{C}(x)=\mathbb{R}^{n},\langle n, t\rangle \leqslant 0 \\
& \Longrightarrow\langle n, n\rangle \leqslant 0 \\
& \Leftrightarrow\|n\|^{2}=0 \Leftrightarrow n=0
\end{aligned}
$$

Hence, $N_{C}(x) \subseteq\{0\}$. Clearly, $\{0\} \subseteq N_{C}(x)$.
Hence, $N_{C}(x)=\{0\}$ as claimed.
Conversely, if $N_{C}(x)=\{0\}$, for simplicity, set $K=T_{C}(x)$. Recall that K is a closed convex cone , $0 \in K$.
Let $x \in \mathbb{R}^{n}$ and set $p=P_{K}(x)$.
By the projection theorem

$$
\forall y \in K,\langle x-p, y-p\rangle \leqslant 0
$$

In particular,

$$
\begin{aligned}
\langle x-p,-p\rangle & \leqslant 0 \text { By setting } y=0 \\
\langle x-p, p\rangle & \leqslant 0 \text { By setting } y=2 p \in K \text { as } K \text { is a cone } \\
\Longrightarrow & \langle x-p, p\rangle=0
\end{aligned}
$$

Hence the projection theorem gives

$$
\forall y \in K,\langle x-p, y\rangle \leqslant 0
$$

It follows from the lemma 20 that $x-p \in N_{C}(x)=\{0\}$.
Hence, $x-p=0$; equivalently

$$
x=p=P_{K}(x) \in K
$$

so $\mathbb{R}^{n} \subseteq K \Longrightarrow \mathbb{R}^{n}=K=T_{C}(x)$

3 Convex Function

Definition 8: Epigraph
Let $f: \mathbb{R}^{n} \rightarrow[-\infty, \infty]$. The epigraph of f is

$$
e p i(f)=\{(x, \alpha) \mid f(x) \leqslant \alpha\} \subseteq \mathbb{R}^{n} \times \mathbb{R}
$$

Example 5

Definition 9

Let $f: \mathbb{R}^{n} \rightarrow[-\infty, \infty]$. Then

$$
\operatorname{dom}(f)=\left\{x \in \mathbb{R}^{n} \mid f(x)<\infty\right\}
$$

f is proper if $\operatorname{dom}(f) \neq \emptyset$ and

$$
\forall x \in \mathbb{R}^{n}, f(x)>-\infty
$$

Example 6

- Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty)$ be continuous. Then f is proper.
- Let C be a subset of \mathbb{R}^{m}. The indicator function of C at $x \in \mathbb{R}^{m}$ (see txtbook p 28) is

$$
\delta_{C}(x)= \begin{cases}0, & x \in C \\ \infty, & o / w\end{cases}
$$

Clearly, δ_{C} is proper whenever $C \neq \emptyset$.
f is lower semicontinuous (l.s.c) if epi(f) is closed.

f is convex if $e p i(f)$ is convex

Proposition 22: L5-1

Let $f: \mathbb{R}^{m} \rightarrow[-\infty, \infty]$ be convex. Then $\operatorname{dom}(f)=\left\{x \in \mathbb{R}^{n} \mid f(x)<\infty\right\}$ is convex.

Proof. Fact: Let C be subset of \mathbb{R}^{n} and let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. If C is a convex subset of \mathbb{R}^{n} then $A(C)$ is a convex subset of \mathbb{R}^{m}
Recall that

$$
e p i(f)=\{(x, \alpha) \mid f(x) \leqslant \alpha\} \subseteq \mathbb{R}^{n+1}
$$

Consider the linear map (transformation)

$$
L: \mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}:(x, \alpha) \rightarrow x
$$

Then $\operatorname{dom}(f)=L(e p i(f))$, and the conclusion follows in view of the above Fact.

Theorem 23: L5-2

Let $f: \mathbb{R}^{m} \rightarrow[-\infty, \infty]$. Then f is convex if and only if

$$
\forall x, y \in \operatorname{dom}(f), \forall \lambda \in(0,1), f(\lambda x+(1-\lambda) y) \leqslant \lambda f(x)+(1-\lambda) f(y)
$$

Proof. Observe that $f=\infty \Leftrightarrow \operatorname{epi}(f)=\emptyset \Leftrightarrow \operatorname{dom}(f)=\emptyset$ and the conclusion follows.
Now, suppose $\operatorname{dom}(f) \neq \emptyset$,

- ($\Longrightarrow)$ Let $(x, y) \in \operatorname{dom}(f) \times \operatorname{dom}(f)$ and let $\lambda \in(0,1)$. Observe that $(x, f(x)) \in$ $e p i(f),(y, f(y)) \in e p i(f)$. By convexity of epi(f) we have

$$
\begin{aligned}
\lambda(x, f(x))+(1-\lambda)(y, f(y)) & =(\lambda x+(1-\lambda) y, \lambda f(x)+(1-\lambda) f(y)) \in \operatorname{epi}(f) \\
\Longrightarrow f(\lambda x+(1-\lambda) y) & \leqslant \lambda f(x)+(1-\lambda) f(y)
\end{aligned}
$$

- (\Longleftarrow). Let $(x, \alpha) \in \operatorname{epi}(f),(y, \beta) \in \operatorname{epi}(f), \lambda \in(0,1)$

Observe that this implies that

$$
f(x) \leqslant \alpha, f(y) \leqslant \beta
$$

Now,

$$
\begin{aligned}
f(\lambda x+(1-\lambda) y) & \leqslant \lambda f(x)+(1-\lambda) f(y) \\
& \leqslant \lambda \alpha+(1-\lambda) \beta
\end{aligned}
$$

Hence,

$$
(\lambda x+(1-\lambda) y, \lambda \alpha+(1-\lambda) \beta) \in \operatorname{epi}(f)
$$

which implies

$$
\lambda(x, \alpha)+(1-\lambda)(y, \beta) \in \operatorname{epi}(f)
$$

That is, epi(f) is convex. Equivalent, f is convex.

3.1 Lower Semicontinuity

Definition 10: Lower semicontinuity(Alter. Defn)

Let $f: \mathbb{R}^{m} \rightarrow[-\infty, \infty]$, and let $x \in \mathbb{R}^{m}$. Then f is lower semicontinuous (l.s.c.) at x if, for every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in \mathbb{R}^{m},

$$
x_{n} \rightarrow x \Longrightarrow f(x) \leqslant \liminf f\left(x_{n}\right)
$$

Moreover, f is l.s.c. if f is l.s.c. at every point in \mathbb{R}^{m}.

Remark. 1. If f is continuous then f is l.s.c.
2. One can show the equivalence of the definition(s) of l.s.c. However, we will omit the proof.

Example 7: The indicator function

Let $C \subseteq \mathbb{R}^{m}$. Then indicator function $\delta_{C}: \mathbb{R}^{m} \mapsto(-\infty, \infty]$ of C is defined by

$$
\delta_{C}(x)= \begin{cases}0, & x \in C \\ \infty, & x \notin C\end{cases}
$$

Theorem 24: L5-3

Let $C \subseteq \mathbb{R}^{m}$. Then the following hold

1. $C \neq \emptyset \Longleftrightarrow \delta_{C}$ is proper
2. C is convex $\Longleftrightarrow \delta_{C}$ is convex
3. C is closed $\Longleftrightarrow \delta_{C}$ is 1.s.c

Proof. 1. See A2
2. See A2
3. Observe that $C=\emptyset \Longleftrightarrow e p i\left(\delta_{C}\right)=\emptyset$ which is closed. Now suppose $C \neq \emptyset$

- (\Longrightarrow) Suppose C is closed.

We want to show that $e p i\left(\delta_{C}\right)$ is closed. Let $\left(\left(x_{n}, \alpha_{n}\right)\right)_{n \in \mathbb{N}}$ be a sequence in $e p i\left(\delta_{C}\right)$, such that $\left(x_{n}, \alpha_{n}\right) \rightarrow(x, \alpha)$.
Observe that:

$$
\left(x_{n}\right)_{n \in \mathbb{N}} \text { is a sequence in } C, x_{n} \rightarrow x
$$

Hence, $x \in C(C$ closed $)$. And $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ is a sequence in $[0, \infty), \alpha_{n} \rightarrow \alpha$. Hence $\alpha \geqslant 0$. Indeed,

$$
\forall n \in \mathbb{N}, 0=\delta_{C}\left(x_{n}\right) \leqslant \alpha_{n}
$$

Consequently,

$$
\begin{aligned}
& 0=\delta_{C}(x) \leqslant \alpha \\
\Longrightarrow & (x, \alpha) \in \operatorname{epi}\left(\delta_{C}\right)
\end{aligned}
$$

- (\Longleftarrow) Conversely, suppose that δ_{C} is 1.s.c. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in $C, x_{n} \rightarrow x$. We want to show that $x \in C$. By definition of δ_{C}, it is sufficient to show that $\delta_{C}(x)=0$. Observe that

$$
0 \leqslant \delta_{C}(x) \leqslant \liminf \delta_{C}\left(x_{n}\right)=0
$$

Hence, $\delta_{C}(x)=0 \Longrightarrow x \in C$

Why optimizers like indicator functions? Consider the problem

$$
(P) \min f(x) \text {, s.t. } x \in C \subseteq \mathbb{R}^{m}
$$

f convex, l.s.c proper, C convex closed $\neq \emptyset$
Then (P) is equivalent to

$$
\min _{x \in \mathbb{R}^{m}} h(x):=f(x)+\delta_{C}(x)
$$

where $h(x)=\left\{\begin{array}{ll}f(x), & x \in C \\ \infty, & x \notin C\end{array}\right.$.
The problem is now "unconstrained" minimization of "a sum of two" functions.

- f is not necessarily smooth
- δ_{C} is Not smooth (whenever $C \neq \mathbb{R}^{m}$)

Proposition 25: L5-4

let I be an indexed set and let $\left(f_{i}\right)_{i \in I}$ be a family of 1.s.c convex functions on \mathbb{R}^{n}. Then $\sup _{i \in I} f_{i}$ is convex and l.s.c

Proof. Set $F=\sup _{i \in I} f_{i}$
We claim that

$$
\operatorname{epi}(F)=\cap_{i \in I} \operatorname{epi}\left(f_{i}\right) \ldots(*)
$$

Indeed, let $(x, \alpha) \in \mathbb{R}^{m} \times \mathbb{R}$. Then

$$
\begin{aligned}
(x, \alpha) \in \operatorname{epi}(F) & \Longleftrightarrow \sup _{i \in I} f_{i}(x) \leqslant \alpha \\
& \Longleftrightarrow \forall i \in I, f_{i}(x) \leqslant \alpha \\
& \Longleftrightarrow \forall i \in I,(x, \alpha) \in e \operatorname{epi}\left(f_{i}\right) \\
& \Longleftrightarrow(x, \alpha) \in \cap_{i \in I} \text { epi }\left(f_{i}\right)
\end{aligned}
$$

This proves $(*)$

- F is l.s.c.

Since $\forall i \in I, f_{i}$ is l.s.c., we conclude that $\forall i \in I, \operatorname{epi}\left(f_{i}\right)$ is closed. Now combine with $(*)$ to learn that

$$
\operatorname{epi}(F)=\cap_{i \in I} e p i\left(f_{i}\right) \text { is closed } \Longrightarrow F \text { is 1.s.c }
$$

- F is convex

Since $\forall i \in I, f_{i}$ is convex, we conclude that $\forall i \in I, \operatorname{epi}\left(f_{i}\right)$ is convex. Now combine with $(*)$ and an earlier result to learn that

$$
\operatorname{epi}(F)=\cap_{i \in I} e p i\left(f_{i}\right) \text { is convex }
$$

3.2 The Support Function (txtbook p-28)

Definition 11

Let C be a subset of \mathbb{R}^{m}. The support function of C is

$$
\begin{aligned}
\sigma & : \mathbb{R}^{m} \mapsto[-\infty, \infty] \\
& : u \mapsto \sup _{c \in C}\langle c, u\rangle
\end{aligned}
$$

Proposition 26: L5-5

Let C be a nonempty subset of \mathbb{R}^{n} Then σ_{C} is convex, 1.s.c and proper

Proof. Let $c \in C$ and set

$$
f_{C}: \mathbb{R}^{m} \mapsto \mathbb{R}: x \mapsto\langle x, c\rangle
$$

Then f_{C} is proper, l.s.c and convex (In fact, f_{C} is linear). Moreover,

$$
\sigma_{C}=\sup _{c \in C} f_{c}
$$

Now combine with the earlier result (L5-4) to learn that σ_{C} is convex and l.s.c.
Finally, observe that, since $C \neq \emptyset$,

$$
\sigma_{C}(0)=\sup _{c \in C}\langle 0, c\rangle=0<\infty
$$

Hence, $0 \in \operatorname{dom}\left(\sigma_{C}\right) \neq \emptyset$. Moreover, let $\bar{c} \in C$. Then $\forall u \in \mathbb{R}^{m}$,

$$
\begin{aligned}
\sigma_{C}(u) & =\sup _{c \in C}\langle u, c\rangle \\
& \geqslant\langle u, \bar{c}\rangle \\
& >-\infty
\end{aligned}
$$

Hence, σ_{C} is proper.

Example 8: L5-6

Let $C=[a, b] \subseteq \mathbb{R}_{+}$. Then $\forall x \in \mathbb{R}$

$$
\sigma_{C}(x)=\sup _{c \in[a, b]} c x= \begin{cases}b x, & x \geqslant 0 \\ a x, & x<0\end{cases}
$$

Example

Let $C=[0, \infty) \subseteq \mathbb{R}$. We examine two cases:

1. $x \leqslant 0$, then

$$
\sigma_{C}(x)=\sup _{c \in[0, \infty)} c x=0
$$

2. $x>0$, then

$$
\sup _{c \in[0, \infty)} c x=\infty
$$

Hence $\operatorname{dom}\left(\sigma_{C}\right)=(-\infty, 0]$. Moreover,

$$
\forall x \in(-\infty, 0], \sigma_{C}(x)=0
$$

Definition 12

Let $f: \mathbb{R}^{m} \mapsto(-\infty, \infty]$ be proper. Then f is

1. Strictly convex if

$$
\forall x, y \in \operatorname{dom}(f), x \neq y, \lambda \in(0,1) \Longrightarrow f(\lambda x+(1-\lambda) y)<\lambda f(x)+(1-\lambda) f(y)
$$

2. strongly convex with constant β, if for some $\beta>0$ we have:

$$
\begin{aligned}
& \forall x, y \in \operatorname{dom}(f), x \neq y, \lambda \in(0,1) \\
& \quad \Longrightarrow f(\lambda x+(1-\lambda) y) \leqslant \lambda f(x)+(1-\lambda) f(y)-\frac{\beta}{2} \lambda(1-\lambda)\|x-y\|^{2}
\end{aligned}
$$

Clearly,

$$
\text { Strong Convexity } \Longrightarrow \text { Strict Convexity } \Longrightarrow \text { Convexity }
$$

and example for f being strictly convex but not strongly convex is $f(x)=e^{x}$.

3.3 Operations That Preserves Convexity

Proposition 27: L6-1

Let I be a finite indexed set, let $\left(f_{i}\right)_{i \in I}$ be a family of Convex functions from \mathbb{R}^{m} to $[-\infty, \infty]$, then

$$
\sum_{i \in I} f_{i} \text { is convex }
$$

Proof. See A2

Proposition 28: L6-2

Let f be convex and l.s.c and let $\lambda>0$. Then λf is convex and l.s.c

Proof. See A2

Definition 13: Minimizers of Functions

Let $f: \mathbb{R}^{n} \mapsto(-\infty, \infty]$ be proper and let $x \in \mathbb{R}^{m}$. Then x is a (global) minimizer of f if

$$
f(x)=\min f\left(\mathbb{R}^{m}\right) \in \mathbb{R}
$$

Throughout this course we will use $\arg \min f$ to denote the set of minimizers of f.

Definition 14: Local and Global Minimizers/Maximizers

Let $f: \mathbb{R}^{m} \mapsto(-\infty, \infty]$ be proper and let $\bar{x} \in \mathbb{R}^{m}$. Then:

- \bar{x} is a local minimum of f if $\exists \delta>0$ such that

$$
\|x-\bar{x}\|<\delta \Longrightarrow f(\bar{x}) \leqslant f(x)
$$

- \bar{x} is a global minimum of f if

$$
\forall x \in \operatorname{dom}(f), f(\bar{x}) \leqslant f(x)
$$

Analogously, we define local/global max.

Example 9: L6-3
\qquad

$$
f(x)=\frac{1}{4} x^{4}+\frac{1}{3} x^{3}-x^{2}-1
$$

Local minimums at $x=1, x$
Global minimum at $x=-2$
local max at $x=0$
No global maximum.

Why do we "love" convex functions?
Proposition 29: L6-4
Let $f: \mathbb{R}^{m} \mapsto(-\infty, \infty]$ be proper and convex. Then every local minimizer of f is a global minimizer.

Proof. Let x be a local minimizer of f. Then $\exists p>0$ such that

$$
f(x)=\min f(B(x ; p))
$$

Let $y \in \operatorname{dom}(f)$ and observe that if $y \in B(x ; p)$ (i.e. $\|x-y\| \leqslant p$) then $f(x) \leqslant f(y)$. Now, suppose that $y \in \operatorname{dom}(f) \backslash B(x ; p)$. Observe that $\lambda:=1-\frac{p}{\|x-y\|} \in(0,1)$, set

$$
z=\lambda x+(1-\lambda) y \in \operatorname{dom}(f)
$$

note $\operatorname{dom}(f)$ is convex by L5-1. Moreover:

$$
\begin{aligned}
z-x & =\lambda x+(1-\lambda) y-x \\
& =(1-\lambda) y-(1-\lambda) x \\
& =(1-\lambda)(y-x)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\|z-x\| & =\|(1-\lambda)(y-x)\| \\
& =(1-\lambda)\|y-x\| \\
& =\frac{p}{\|y-x\|}\|y-x\|=p
\end{aligned}
$$

Hence,

$$
z \in B(x ; p)
$$

Moreover, because f is convex, it follows from Jensen's Inequality that

$$
\begin{aligned}
f(x) & \leqslant f(z) \\
& =f(\lambda x+(1-\lambda) y) \\
& \leqslant \lambda f(x)+(1-\lambda) f(y)
\end{aligned}
$$

Hence,

$$
(1-\lambda) f(x) \leqslant(1-\lambda) f(y) \Longrightarrow f(x) \leqslant f(y)
$$

Proposition 30: L6-5

let $f: \mathbb{R}^{m} \mapsto(-\infty, \infty]$ be proper and convex and let C be a subset of \mathbb{R}^{m}. Suppose that x is a minimizer of f over C such that $x \in \operatorname{int}(C)$. Then x is a minimizer of f

Proof. Since $x \in \operatorname{int}(C), \exists \varepsilon>0$ such that $B(x ; \varepsilon) \subseteq C$.
Since x is a minimizer of f over $C \supseteq B(x l \varepsilon)$ we learn that

$$
f(x)=\inf f(B(x ; \varepsilon))
$$

That is, x is a local minimizer of f. Now we combine with (L6-4) to get the result.

3.4 Conjugates of Convex Functions

Definition 15: Conjugates of Convex Functions

Let $f: \mathbb{R}^{m} \mapsto[-\infty, \infty]$. The Fenchel-Legendre/ConVex Conjugate of f is

$$
\begin{aligned}
f^{*} & : \mathbb{R}^{m} \mapsto[-\infty, \infty] \\
& : u \mapsto \sup _{x \in \mathbb{R}^{m}}(\langle x, u\rangle-f(x))
\end{aligned}
$$

Geometrically Speaking:

Proposition 31: L6-6

Let $f: \mathbb{R}^{m} \mapsto[-\infty, \infty]$. Then f^{*} is convex and l.s.c.

Proof. Observe that if $f \equiv \infty \Longleftrightarrow \operatorname{dom}(f)=\emptyset$. Hence, $\forall u \in \mathbb{R}^{m}$,

$$
\begin{aligned}
f^{*}(u) & =\sup _{x \in \mathbb{R}^{m}}(\langle x, u\rangle-f(x)) \\
& =\sup _{x \in \operatorname{dom}(f)}(\langle x, u\rangle-f(x)) \\
& =-\infty
\end{aligned}
$$

i.e. $f^{*}=-\infty$ which is l.s.c. and convex.

Now suppose that $f \not \equiv \infty$. we claim that $\forall u \in \mathbb{R}^{m}$,

$$
f^{*}=\sup _{(x, \alpha) \in e p i(f)}(\langle x, u\rangle-\alpha) \ldots(*)
$$

$f(x, \alpha):=\langle x, \cdot\rangle-\alpha$ is an affine function.
Indeed, let $u \in \mathbb{R}^{m}$.
On the one hand, $\forall(x, \alpha) \in \operatorname{epi}(f)$, we have

$$
\langle x, u\rangle-f(x) \geqslant\langle x, u\rangle-\alpha
$$

Hence,

$$
\sup _{x \in \mathbb{R}^{m}}(\langle x, u\rangle-f(x)) \geqslant \sup _{(x, \alpha) \in e p i(f)}(\langle x, u\rangle-\alpha)
$$

On the other hand,

$$
G=\{(x, f(x)) \mid x \in \operatorname{dom}(f)\} \subseteq e p i(f)
$$

Hence,

$$
\begin{aligned}
\sup _{x \in \mathbb{R}^{m}}(\langle x, u\rangle-f(x)) & =\sup _{x \in \operatorname{dom}(f)}(\langle x, u\rangle-f(x)) \\
& =\sup _{(x, f(x)) \in G}(\langle x, u\rangle-f(x)) \\
& \leqslant \sup _{(x, \alpha) \in e p i(f)}(\langle x, u\rangle-\alpha)
\end{aligned}
$$

Altogether, we learn that $(*)$ holds. This implies $\forall u \in \mathbb{R}^{m}$,

$$
f^{*}(u)=\sup _{\substack{(x, \alpha) \in e p i(f) \\ \subseteq \mathbb{R}^{m} \times \mathbb{R}^{m}}}\left(f_{(x, \alpha)}(u)\right)
$$

Now by L5-4, we get required result.

Example 10: L6-7

let $p>1$ and set $q=\frac{p}{p-1}$. Let

$$
f: \mathbb{R} \mapsto \mathbb{R}: x \mapsto \frac{|x|^{p}}{p}
$$

Then

$$
f^{*}: \mathbb{R} \mapsto \mathbb{R}: u \mapsto \frac{|u|^{q}}{q}
$$

Proof. Observe that $f(x)$ is differentiable on $\mathbb{R}, f(x)=\left\{\begin{array}{ll}\frac{x^{p}}{p}, & x \geqslant 0 \\ \frac{(-x)^{p}}{p}, & x<0\end{array}\right.$.
Now, let $u \in \mathbb{R}$

$$
\begin{aligned}
f^{*}(u) & =\sup _{x \in \mathbb{R}}(x u-f(x)) \\
& =\sup _{x \in \mathbb{R}}(\underbrace{x u-\frac{|x|^{p}}{p}}_{:=g(x)})
\end{aligned}
$$

So

$$
g^{\prime}(x)=u- \begin{cases}x^{p-1}, & x \geqslant 0 \\ -(-x)^{p-1}, & x<0\end{cases}
$$

If $u \geqslant 0$, then setting $g^{\prime}(x)=0$ yields $x^{p-1}=u$, and $x \geqslant 0$; equivalently

$$
x=u^{1 /(p-1)}
$$

If $u<0$, then setting $g^{\prime}(x)=0$ yields $u=-(|x|)^{p-1}$, and $x<0$; equivalently

$$
|u|=-u=|x|^{1 /(p-1)}
$$

Altogether, $|x|=|u|^{1 /(p-1)}$ and $\operatorname{sign}(x)=\operatorname{sign}(u)$. Hence,

$$
\begin{aligned}
f^{*}(u) & =|u|^{\frac{1}{p-1}}|u|-\frac{|u|^{\frac{p}{p-1}}}{p} \\
& =(1-1 / p)|u|^{1 /(1-p)+1} \\
& =\frac{p-1}{p}|u|^{\frac{p}{p-1}} \\
& =\frac{|u|^{q}}{q}
\end{aligned}
$$

Example 11: L6-8

Let $f: \mathbb{R} \mapsto \mathbb{R}, f(x)=e^{x}$. Then

$$
f^{*}(u)= \begin{cases}u \ln (u)-u, & u>0 \\ 0, & u=0 \\ \infty, & u<0\end{cases}
$$

Proof. Let $u \in \mathbb{R}$, then

$$
f^{*}(u)=\sup _{x \in \mathbb{R}}(\underbrace{x u-e^{x}}_{:=g(x)})
$$

Hence,

$$
\begin{aligned}
& \text { If } u=0 \Longrightarrow f^{*}(u)=\sup _{x \in \mathbb{R}}\left(-e^{x}\right)=0 \\
& \text { If } u>0 \Longrightarrow f^{*}(u)=u \ln (u)-u
\end{aligned}
$$

Also, $g^{\prime}(x)=u-e^{x}$. Setting $g^{\prime}(x)=0$

$$
\Longrightarrow e^{x}=u \Longleftrightarrow x=\ln (u)
$$

If $u<0 \Longrightarrow g^{\prime}(x)<0, \forall x \in \mathbb{R}$. Therefore, $g(x)$ is decreasing on \mathbb{R}. Hence

$$
\sup _{x \in \mathbb{R}} g(x)=\lim _{x \rightarrow-\infty} g(x)=\infty
$$

Example 12: L6-9
Let C be a subset of \mathbb{R}^{m}. Then $\delta_{c}^{*}=\sigma_{C}$.

Proof. Indeed, recall that:

$$
\begin{aligned}
& \delta_{C}(x)= \begin{cases}0, & x \in C \\
\infty, & x \notin C\end{cases} \\
& \sigma_{C}(x)=\sup _{y \in C}\langle x, y\rangle
\end{aligned}
$$

Now,

$$
\begin{aligned}
\delta_{C}^{*}(u) & =\sup _{y \in C}\left(\langle x, y\rangle-\delta_{C}(y)\right) \\
& =\sup _{y \in C}\langle x, y\rangle
\end{aligned}
$$

3.5 The Subdifferential Operator

Definition 16

Let $f: \mathbb{R}^{m} \mapsto(-\infty, \infty]$ be proper. The subdifferential of f is the set-valued operator

$$
\begin{aligned}
\partial f & : \mathbb{R}^{m} \rightrightarrows \mathbb{R}^{m} \\
& : x \mapsto\left\{u \in \mathbb{R}^{m} \mid \forall y \in \mathbb{R}^{m}, f(y) \geqslant f(x)+\langle u, y-x\rangle\right\}
\end{aligned}
$$

Let $x \in \mathbb{R}^{m}$. Then f is subdifferentiable at x if $\partial f(x) \neq \emptyset$. The elements of $\partial f(x)$ are called the subgradient of f at x.

Theorem 32: Fermat L6-10

Let $f: \mathbb{R}^{m} \mapsto(-\infty, \infty]$ be proper. Then

$$
\arg \min f=\left\{x \in \mathbb{R}^{m} \mid 0 \in \partial f(x)\right\}:=\operatorname{zero}(\partial f)
$$

Proof. Indeed, let $x \in \mathbb{R}^{m}$. Then

$$
\begin{aligned}
x \in \arg \min f & \Longleftrightarrow \forall y \in \mathbb{R}^{m}, f(x) \leqslant f(y) \\
& \Longleftrightarrow \forall y \in \mathbb{R}^{m}\langle 0, y-x\rangle+f(x) \leqslant f(y) \\
& \Longleftrightarrow 0 \in \partial f(x)
\end{aligned}
$$

Example 13: L6-11

Let $f: \mathbb{R} \mapsto \mathbb{R}: x \mapsto|x|$, then

$$
\partial f(x)= \begin{cases}\{-1\}, & x<0 \\ {[-1,1],} & x=0 \\ \{1\}, & x>0\end{cases}
$$

Proof. See A2

Lemma 33: L6-12

$f: \mathbb{R}^{m} \mapsto(-\infty, \infty]$ proper $\Longrightarrow \operatorname{dom}(\partial f) \subseteq \operatorname{dom}(f)$

Proof. Indeed, if $f(x)=\infty \Longrightarrow \partial f(x)=\emptyset$.
"Contrapositive: $x \notin \operatorname{dom}(f) \Longrightarrow x \notin \operatorname{dom}(\partial f)$ "

Example 14: L6-13

Let C be a convex closed nonempty subset of \mathbb{R}^{m}. Let $x \in \mathbb{R}^{m}$, then

$$
\partial \delta_{C}(x)=N_{C}(x)
$$

Proof. Indeed, let $u \in \mathbb{R}^{m}$ and let $x \in C(\operatorname{dom}(\partial f) \subseteq \operatorname{dom}(f))$, then

$$
\begin{aligned}
& u \in \partial \delta_{C}(x) \\
\Longleftrightarrow & \forall y \in \mathbb{R}^{m}, \delta_{C}(y) \geqslant \delta_{C}(x)+\langle u, y-x\rangle \\
\Longleftrightarrow & \forall y \in C, \delta_{C}(y) \geqslant \delta_{C}(x)+\langle u, y-x\rangle \\
\Longleftrightarrow & \forall y \in C, 0 \geqslant\langle u, y-x\rangle \\
\Longleftrightarrow & u \in N_{C}(x)
\end{aligned}
$$

Casually Speaking

Recall the problem

$$
(P) \min f(x), \text { s.t. } x \in C \subseteq \mathbb{R}^{m}
$$

f convex, 1.s.c proper, C convex closed $\neq \emptyset$
Then (P) is equivalent to

$$
\min _{x \in \mathbb{R}^{m}} h(x):=f(x)+\delta_{C}(x)
$$

where $h(x)=\left\{\begin{array}{ll}f(x), & x \in C \\ \infty, & x \notin C\end{array}\right.$.
In view of Fermat's Theorem:

$$
x \text { is a minimizer of } h(x) \Longleftrightarrow 0 \in \partial h(x)
$$

Goal: Find x such that $0 \in \partial h(x)$

$$
\begin{aligned}
\partial h(x) & =\partial\left(f+\delta_{C}\right)(x) \\
& =\left(\partial f+\partial \delta_{C}\right)(x) \text { requires more assumptions } \\
& =\partial f(x)+\partial \delta_{C}(x) \\
& =\partial f(x)+N_{C}(x)
\end{aligned}
$$

3.6 Calculus of Subdifferentials

Let $f, g: \mathbb{R}^{m} \mapsto(-\infty, \infty]$ be proper and let $x \in \mathbb{R}^{m}$. Suppose that f, g are differentiable at x, then

$$
\nabla(f+g)(x)=\nabla f(x)+\nabla g(x)
$$

Question:
Let $f . g: \mathbb{R}^{m} \mapsto(-\infty, \infty]$ be proper, convex l.s.c let $x \in \mathbb{R}^{m}$. Suppose that f, g are subdifferentiable at x, then

$$
\partial(f+g)(x) \stackrel{?}{=} \partial f(x)+\partial g(x)
$$

Fact (L7-1):
Let $f: \mathbb{R}^{m} \mapsto(-\infty, \infty]$ be convex l.s.c and proper, then

$$
\emptyset \neq \operatorname{ri}(\operatorname{dom}(f)) \subseteq \operatorname{dom}(\partial f)
$$

In particular,

$$
\begin{aligned}
\operatorname{ri}(\operatorname{dom}(f)) & =\operatorname{ri}(\operatorname{dom}(\partial f)) \\
\overline{\operatorname{dom}(f)} & =\overline{\operatorname{dom}(\partial f)}
\end{aligned}
$$

Separation Theorem revisited:
Let C_{1}, C_{2} be nonempty subsets in \mathbb{R}^{m}. Then,

- C_{1}, C_{2} are separated if $\exists b \neq 0$ such that

$$
\sup _{c_{1} \in C_{1}}\left\langle b, c_{1}\right\rangle \leqslant \inf _{c_{2} \in C_{2}}\left\langle b, c_{2}\right\rangle
$$

- C_{1}, C_{2} are properly separated if $\exists b \neq 0$ such that C_{1} and C_{2} are separated and

$$
\inf _{c_{1} \in C_{1}}\left\langle b, c_{1}\right\rangle<\sup _{c_{2} \in C_{2}}\left\langle b, c_{2}\right\rangle
$$

Fact (L7-2): [txtbook Thm 11.3]
Let C_{1}, C_{2} be nonempty convex subsets of \mathbb{R}^{m}, then C_{1} and C_{2} are "properly" separated if and only if

$$
r i\left(C_{1}\right) \cap r i\left(C_{2}\right)=\emptyset
$$

Fact (L7-3): [txtbook Cor 6.6.2]
Let C_{1}, C_{2} be convex subsets of \mathbb{R}^{m}, then

$$
r i\left(C_{1}+C_{2}\right)=r i\left(C_{1}\right)+r i\left(C_{2}\right)
$$

Let $\lambda \in \mathbb{R}$, then $r i(\lambda C)=\lambda r i(C)$
Fact (L7-4): [txtbook top of page 49]
Let $C_{1} \subseteq \mathbb{R}^{m}, C_{2} \subseteq \mathbb{R}^{p}$ be convex, then

$$
r i\left(C_{1} \oplus C_{2}\right)=r i\left(C_{1}\right) \oplus r i\left(C_{2}\right)
$$

and

$$
C_{1} \oplus C_{2} \simeq C_{1} \times C_{2}=\left\{\left(c_{1}, c_{2}\right) \mid c_{1} \in C_{1}, c_{2} \in C_{2}\right\}
$$

Theorem 34: L7-2

et C_{1}, C_{2} be convex subsets of \mathbb{R}^{m} such that $r i\left(C_{1}\right) \cap r i\left(C_{2}\right) \neq \emptyset$. Let $x \in C_{1} \cap C_{2}$, then

$$
N_{C_{1} \cap C_{2}}(x)=N_{C_{1}}(x)+N_{C_{2}}(x)
$$

Proof. • " \supseteq ", see A2

- " \subseteq ": Let $x \in C_{1} \cap C_{2}$ and let $n \in N_{C_{1} \cap C_{2}}(x)$, then $\forall y \in C_{1} \cap C_{2}$, we have

$$
\begin{gathered}
\langle n, y-x\rangle \leqslant 0 \\
E_{1}=\operatorname{epi}\left(\delta_{C_{1}}\right)=C_{1} \times[0, \infty) \subseteq \mathbb{R}^{m} \times \mathbb{R} \\
E_{2}=\left\{(y, \alpha) \mid y \in C_{2}, \alpha \leqslant\langle n, y-x\rangle\right\} \subseteq \mathbb{R}^{m} \times \mathbb{R}
\end{gathered}
$$

Using Fact(L7-4), applied with C_{2} replaced by $[0, \infty) \subseteq \mathbb{R}$, we learn that

$$
r i\left(E_{1}\right)=\operatorname{ri}\left(C_{1}\right) \times(0, \infty)
$$

One can also show that

$$
\operatorname{ri}\left(E_{2}\right)=\left\{(y, \alpha) \mid y \in \operatorname{ri}\left(C_{2}\right), \alpha<\langle n, y-x\rangle\right\}
$$

We claim that

$$
\operatorname{ri}\left(E_{1}\right) \cap \operatorname{ri}\left(E_{2}\right)=\emptyset \ldots(*)
$$

Indeed, suppose for eventual contradiction that

$$
\exists(z, \alpha) \in \operatorname{ri}\left(E_{1}\right) \cap r i\left(E_{2}\right)
$$

The $0<\alpha<\langle n, z-x\rangle \leqslant 0$, which is absend. Hence (*) holds. Applying Fact L7-2 with C_{i} 's replaced by E_{i} 's yield. $\exists(b, \gamma) \in \mathbb{R}^{m} \times \mathbb{R} \backslash\{0\}$ such that

$$
\begin{array}{rr}
\forall(x, \alpha) \in E_{1} & \forall(y, \beta) \in E_{2} \\
\langle(x, \alpha),(b, \gamma)\rangle \leqslant & \langle(y, \beta),(b, \gamma)\rangle \\
\langle x, b\rangle+\alpha \gamma \leqslant & \langle y, b\rangle+\beta \gamma \ldots(1)
\end{array}
$$

Moreover, $\exists(\bar{x}, \bar{\alpha}) \in E_{1}, \exists(\bar{y}, \bar{\beta}) \in E_{2}$ such that

$$
\begin{equation*}
\langle\bar{x}, b\rangle+\bar{\alpha} \gamma<\langle\bar{y}, b\rangle+\bar{\beta} \gamma \ldots \tag{2}
\end{equation*}
$$

We claim that $\gamma<0$. Indeed, observe that:

$$
\begin{equation*}
(x, 1) \in E_{1},(x, 0) \in E_{2} \ldots \tag{3}
\end{equation*}
$$

Combining with we obtain

$$
\begin{gathered}
\langle x, b\rangle+\gamma \leqslant\langle x, b\rangle \\
\Longrightarrow \gamma \leqslant 0
\end{gathered}
$$

Next, we show that $\gamma \neq 0$
Suppose on the contrary that $\gamma=0$. Observe that this implies that (1) and (2), $\exists b \neq 0$

$$
\begin{array}{rr}
\forall(x, \alpha) \in C_{1} & \forall(y, \beta) \in C_{2} \\
\langle x, b\rangle \leqslant & \langle y, b\rangle \\
\exists \bar{x} \in C_{1} & \exists \bar{y} \in C_{2} \\
\langle\bar{x}, b\rangle< & \langle\bar{y}, b\rangle
\end{array}
$$

That is, C_{1}, C_{2} are properly separated. By the earlier Fact(L7-2), we learn that $r i\left(C_{1}\right) \cap$ $r i\left(C_{2}\right)=\emptyset$, which is a contradiction.
Altogether,

$$
\gamma<0
$$

We will show that,

$$
N_{C_{1} \cap C_{2}} \ni n=\underbrace{-\frac{b}{\gamma}}_{\in N_{C_{1}}(x)}+\underbrace{n+\frac{b}{\gamma}}_{\in N_{C_{2}}(x)}
$$

Recall

$$
\begin{equation*}
\langle x, b\rangle+\alpha \gamma \leqslant\langle y, b\rangle+\beta \gamma \ldots \tag{1}
\end{equation*}
$$

Next, we claim that $\forall y \in C_{1}$,

$$
\langle b, y\rangle \leqslant\langle b, x\rangle \ldots(4)
$$

Indeed, observe that $\forall y \in C_{1},(y, 0) \in E_{1}$, and by (3) $(x, 0) \in E_{2}$. Therefore, (1) yields (4). This implies that $b \in N_{C_{1}}(x)$. Hence,

$$
-\frac{b}{\gamma}=-\frac{1}{\gamma} b \in N_{C_{1}}(x)
$$

Finally, using $(3)(x, 0) \in E_{1}$, and

$$
\forall y \in C_{2},(y,\langle n, y-x\rangle) \in E_{2}
$$

Therefore, (1) yields

$$
\forall y \in C_{2},\langle b, x\rangle \leqslant\langle b, y\rangle+\gamma\langle n, y-x\rangle
$$

Eauivalently,

$$
\forall y \in C_{2},\left\langle\frac{b}{\gamma}+n, y-x\right\rangle \leqslant 0
$$

Therefore,

$$
\frac{b}{\gamma}+n \in N_{C_{2}}(x)
$$

Altogether, we conclude that

$$
n=-\frac{b}{\gamma}+\frac{b}{\gamma}+n \in N_{C_{1}}(x)+N_{C_{2}}(x)
$$

Proposition 35: L7-3

Let $f: \mathbb{R}^{m} \mapsto(-\infty, \infty]$ be convex l.s.c and proper. Let $x \in \mathbb{R}^{m}$ and let $u \in \mathbb{R}^{m}$ then the following are equivalent:

$$
u \in \partial f(x) \Longleftrightarrow(u,-1) \in N_{e p i(f)}(x, f(x))
$$

Proof. Observe tha $e p i(f) \neq \emptyset$ and convex (because f is proper+convex). Now let $u \in \mathbb{R}^{m}$, then

$$
\begin{aligned}
& (u,-1) \in N_{\text {epi }(f)}(x, f(x)) \\
\Longleftrightarrow & {[x \in \operatorname{dom}(f), \text { and } \forall(y, \beta) \in \operatorname{epi}(f),\langle(y, \beta)-(x, f(x)),(u,-1)\rangle \leqslant 0] } \\
\Longleftrightarrow & {[x \in \operatorname{dom}(f), \text { and } \forall(y, \beta) \in e p i(f),\langle(y-x, \beta-f(x)),(u,-1)\rangle \leqslant 0] } \\
\Longleftrightarrow & \forall(y, \beta) \in e p i(f),\langle y-x, u\rangle+f(x) \leqslant \beta \\
\Longleftrightarrow & \forall y \in \operatorname{dom}(f),\langle y-x, u\rangle+f(x) \leqslant f(y)
\end{aligned}
$$

For $(?)$, clearly \Longrightarrow holds, so $(y, f(y)) \in \operatorname{epi}(f)$, and \Longleftarrow hold because $(y, \beta) \in e p i(f) \Longleftrightarrow$ $f(y) \leqslant \beta$, so

$$
u \in \partial f(x)
$$

Theorem 36: L7-4(txtbook THM 23.9)

Let $f: \mathbb{R}^{m} \mapsto(-\infty, \infty], g: \mathbb{R}^{m} \mapsto(-\infty, \infty]$ be convex l.s.c. and proper. Suppose that $\operatorname{ri}(\operatorname{dom}(f)) \cap \operatorname{ri}(\operatorname{dom}(g)) \neq \emptyset$. Then $\forall x \in \mathbb{R}^{m}$, we have

$$
\partial f(x)+\partial g(x)=\partial(f+g)(x)
$$

Proof. Let $x \in \mathbb{R}^{m}$. If $x \notin \operatorname{dom}(f) \cap \operatorname{dom}(g) \supseteq \operatorname{dom}(\partial f) \cap \operatorname{dom}(\partial g)$,

$$
\Longrightarrow \partial f(x)+\partial g(x)=\emptyset
$$

Also, $\partial(f+g)(x)=\emptyset$.
Now, let $x \in \operatorname{dom}(f) \cap \operatorname{dom}(g)=\operatorname{dom}(f+g)$, one can easily verify that

$$
\begin{equation*}
\partial f(x)+\partial g(x) \subseteq \partial(f+g)(x) \ldots \tag{A2}
\end{equation*}
$$

We now verify the opposite inclusion.
Suppose that $u \in \partial(f+g)(x)$,

$$
\begin{equation*}
\forall y \in \mathbb{R}^{m},(f+g)(y) \geqslant(f+g)(x)+\langle u, y-x\rangle \ldots \tag{1}
\end{equation*}
$$

Consider the closed convex sets:

$$
\begin{aligned}
& \emptyset \neq E_{1}=\left\{(x, \alpha, \beta) \in \mathbb{R}^{m} \times \mathbb{R} \times \mathbb{R} \mid f(x) \leqslant \alpha\right\}=e p i(f) \times \mathbb{R} \\
& \emptyset \neq E_{2}=\left\{(x, \alpha, \beta) \in \mathbb{R}^{m} \times \mathbb{R} \times \mathbb{R} \mid g(x) \leqslant \beta\right\}
\end{aligned}
$$

We claim that

$$
\begin{equation*}
(u,-1,-1) \in N_{E_{1} \cap E_{2}}(x, f(x), g(x)) \ldots \tag{2}
\end{equation*}
$$

Indeed, let $(y, \alpha, \beta) \in E_{1} \cap E_{2}$, then $f(y) \leqslant \alpha, g(y) \leqslant \beta$

$$
\Longrightarrow f(y)-\alpha \leqslant 0, g(y)-\beta \leqslant 0
$$

Now,

$$
\begin{aligned}
& \langle(u,-1,-1),(y, \alpha, \beta)-(x, f(x), g(x))\rangle \\
& =\langle u, y-x\rangle-(\alpha-f(x))-(\beta-g(x)) \\
& =\langle u, y-x\rangle+f(x)+g(x)-\alpha-\beta \\
& =\langle u, y-x\rangle+(f+g)(x)-(\alpha+\beta) \\
& \leqslant(f+g)(y)-\alpha-\beta \\
& =f(y)-\alpha+g(y)-\beta \\
& \leqslant 0
\end{aligned}
$$

This proves (2).
Next we claim that:

$$
r i\left(E_{1}\right) \cap r i\left(E_{2}\right) \neq \emptyset
$$

Using that Fact (L7-4), we know that

$$
\begin{aligned}
\operatorname{ri}\left(E_{1}\right) & =\operatorname{ri}(e p i(f) \times \mathbb{R}) \\
& =\operatorname{ri}(\operatorname{epi}(f)) \times \operatorname{ri}(\mathbb{R}) \\
& =\operatorname{ri}(e p i(f)) \times \mathbb{R}
\end{aligned}
$$

Moreover, we can show that

$$
\operatorname{ri}\left(E_{2}\right)=\left\{(x, \alpha, \beta) \in \mathbb{R}^{m} \times \mathbb{R} \times \mathbb{R} \mid g(x)<\beta\right\}
$$

Now, let $z \in \operatorname{ri}(\operatorname{dom}(f)) \cap \operatorname{ri}(\operatorname{dom}(g))$, then

$$
(z, f(z)+1, g(z)+1) \in \operatorname{ri}\left(E_{1}\right) \cap r i\left(E_{2}\right) \neq \emptyset
$$

Therefore, E_{1}, E_{2} are nonempty closed convex, $\operatorname{ri}\left(E_{1}\right) \cap \operatorname{ri}\left(E_{2}\right) \neq \emptyset$. Hence by Theorem L7-2, we have

$$
N_{E_{1} \cap E_{2}}(x, f(x), g(x))=N_{E_{1}}(x, f(x), g(x))+N_{E_{2}}(x, f(x), g(x))
$$

Therefore,

$$
(u,-1,-1)=\underbrace{\left(u_{1},-\alpha, 0\right)}_{\in N_{E_{1}}(x, f(x), g(x))}+\underbrace{\left(u_{2}, 0,-\beta\right)}_{\in N_{E_{2}}(x, f(x), g(x))}
$$

Observe that $E_{1}=e p i(f) \times \mathbb{R}$. Hence

$$
N_{E_{1}}(x, f(x), g(x))=N_{e p i(f)}(x, f(x)) \times N_{\mathbb{R}}(g(x))=N_{e p i(f)}(x, f(x)) \times\{0\}
$$

This yield: $u=u_{1}+u_{2}, \alpha=\beta=1$, hence,

$$
\begin{aligned}
& \left(u_{1},-1\right) \in N_{e p i(f)}(x, f(x)) \\
& \left(u_{2},-1\right) \in N_{e p i(f)}(x, g(x))
\end{aligned}
$$

Recalling Proposition L7-3, we conclude that

$$
u_{1} \in \partial f(x), u_{2} \in \partial g(x)
$$

Hence,

$$
u=u_{1}+u_{2} \in \partial f(x)+\partial g(x)
$$

The proof is complete.

Example 15: L7-5

Let $f: \mathbb{R}^{m} \mapsto(-\infty, \infty]$ be convex 1.s.c. and proper and let $\emptyset \neq C \subseteq \mathbb{R}^{m}$ be convex and closed. Suppose that

$$
r i(C) \cap r i(\operatorname{dom}(f)) \neq \emptyset
$$

Consider the problem:

$$
(P) \min f(x), \text { s.t. } x \in C
$$

Let $\bar{x} \in \mathbb{R}^{m}$, then \bar{x} solved (P) if and only if $(\partial f(\bar{x})) \cap\left(-N_{C}(\bar{x})\right) \neq \emptyset$

Proof. Write (P) as

$$
\min _{x \in \mathbb{R}^{m}} f(x)+\delta_{C}(x)
$$

Observe that $f+\delta_{C}$ is convex l.s.c. and proper.
By Fermat's Theorem

$$
\bar{x} \text { solves } p \Longleftrightarrow 0 \in \partial\left(f+\delta_{C}\right)(\bar{x})
$$

Now,

$$
\begin{aligned}
& \operatorname{ri}(\operatorname{dom}(f)) \cap \operatorname{ri}\left(\operatorname{dom}\left(\delta_{C}\right)\right) \\
&= \operatorname{ri}(\operatorname{dom}(f)) \cap \operatorname{ri}(C) \\
& \neq \emptyset
\end{aligned}
$$

Therefore, by Theorem L7-4, we conclude that

$$
\begin{aligned}
\bar{x} \text { solves } p & \Longleftrightarrow 0 \in \partial\left(f+\delta_{C}\right)(\bar{x})=\partial f(\bar{x})+\partial \delta_{C}(\bar{x})=\partial f(\bar{x})+N_{C}(\bar{x}) \\
& \Longleftrightarrow \exists u \in \partial f(\bar{x}),-u \in N_{C}(\bar{x}) \\
& \Longleftrightarrow \partial f(\bar{x}) \cap\left(-N_{C}(\bar{x})\right) \neq \emptyset
\end{aligned}
$$

Example 16: L7-6
Let $d \in \mathbb{R}^{m}$, and let $\emptyset \neq C \subseteq \mathbb{R}^{m}$ be convex and closed. Consider the problem

$$
(P) \min \langle d, x\rangle \text {, s.t. } x \in C
$$

Let $\bar{x} \in \mathbb{R}^{m}$. Then \bar{x} solved

$$
p \Longleftrightarrow-d \in N_{C}(\bar{x})
$$

3.7 Differentiability of Convex Functions

Definition 17: L8-1

et $f: \mathbb{R}^{m} \mapsto(-\infty, \infty]$ be proper, and let $x \in \operatorname{dom}(f)$. The directional derivative of f at x in the direction of d is

$$
f^{\prime}(x ; d):=\lim _{y \downarrow 0} \frac{f(x+t d)+f(x)}{t}
$$

f is differentiable at x if there exists an operator $\nabla f(x): \mathbb{R}^{m} \mapsto \mathbb{R}^{m}$, called the derivative (or gradient) of f at x that satisfies

$$
\lim _{0 \neq\|y\| \rightarrow 0} \frac{\|f(x+y)-f(x)-\langle\nabla f(x), y\rangle\|}{\|y\|}=0
$$

Remark. If f is differentiable at x, then the directional derivative of f at x in the direction of d is

$$
f^{\prime}(x ; d)=\langle\nabla f(x), d\rangle
$$

Theorem 37: txtbook Thm 23.2

Let $f: \mathbb{R}^{m} \mapsto(-\infty, \infty]$ be convex and proper and let $x \in \operatorname{dom}(f)$. Let $u \in \mathbb{R}^{m}$. Then u is a subgradient of f at x of and only if

$$
\forall y \in \mathbb{R}^{m}, f^{\prime}(x ; y) \geqslant\langle u, y\rangle
$$

Proof. Using the subgradient inequality we have

$$
\begin{aligned}
u \in \partial f(x) & \Longleftrightarrow \forall y \in \mathbb{R}^{m}, \lambda>0, f(x+\lambda y) \geqslant f(x)+\langle u, x+\lambda y-x\rangle \\
& \Longleftrightarrow \forall y \in \mathbb{R}^{m}, \lambda>0, \frac{f(x+\lambda y)-f(x)}{\lambda} \geqslant\langle u, y\rangle
\end{aligned}
$$

Taking the limit as $\lambda \downarrow 0$ in view of Theorem 23.1 in the textbook yields the desired result.

Theorem 38: Txtbook 25.2

Let $f: \mathbb{R}^{m} \mapsto(-\infty, \infty]$ be convex and proper and let $x \in \operatorname{dom}(f)$. If f is differentiable at x, then $\nabla f(x)$ is the unique subgradient of f at x.

Proof. Recall that $\forall y \in \mathbb{R}^{m}$,

$$
f^{\prime}(x ; y)=\langle\nabla f(x), y\rangle
$$

Let $u \in \mathbb{R}^{m}$, using the previous theorem we have

$$
u \in \partial f(x) \Longleftrightarrow \forall y \in \mathbb{R}^{m}, f^{\prime}(x ; y) \geqslant\langle u, y\rangle
$$

Altogether,

$$
u \in \partial f(x) \Longleftrightarrow \forall y \in \mathbb{R}^{m}\langle\nabla f(x), y\rangle \geqslant\langle u, y\rangle
$$

Clearly, we have $\{\nabla f(x)\} \subseteq \partial f(x)$. Moreover, letting $y=u-\nabla f(x)$ yields

$$
\begin{aligned}
& \|u-\nabla f(x)\|^{2}=0 \\
\Longrightarrow & u=\nabla f(x) \\
\Longrightarrow & \partial f(x) \subseteq\{\nabla f(x)\}
\end{aligned}
$$

Hence,

$$
\partial f(x)=\{\nabla f(x)\}
$$

Lemma 39: L8-4

Let $\varphi: \mathbb{R} \mapsto(-\infty, \infty]$ be a proper function that is differentiable on a nonempty open interval $I \subseteq \operatorname{dom}(\varphi)$, then:

$$
\varphi^{\prime} \text { is increasing on } I \Longrightarrow \varphi \text { is convex on } I
$$

Proof. Fix $x, y \in I$, and $\lambda \in(0,1)$. Set

$$
\begin{aligned}
\psi & : \mathbb{R} \mapsto(-\infty, \infty] \\
& : z \mapsto \lambda \varphi(x)+(1-\lambda) \varphi(z)-\varphi(\lambda x+(1-\lambda) z)
\end{aligned}
$$

Then

$$
\psi^{\prime}(z)=(1-\lambda) \varphi^{\prime}(z)-(1-\lambda) \varphi^{\prime}(\lambda x+(1-\lambda) x) \ldots(*)
$$

and $\psi^{\prime}(x)=0 \psi(x)$.
And (*) implies that

$$
\begin{array}{r}
\psi^{\prime}(z) \leqslant \text { whenever } z<x \\
\psi^{\prime \prime}(z)>0 \text { whenever } z \geqslant x
\end{array}
$$

Therefore, ψ achieves its infimum on I at x.
That is $\forall y \in I, \psi(y) \geqslant \psi(x)=0$.
That is $\forall y \in I$,

$$
\lambda \varphi(x)+(1-\lambda) \varphi(y) \geqslant \varphi(\lambda x+(1-\lambda) y)
$$

Proposition 40: L8-5

et $f: \mathbb{R}^{m} \mapsto(-\infty, \infty]$ be proper. Suppose that $\operatorname{dom}(f)$ is open and convex, and that f is differentiable on $\operatorname{dom}(f)$. Then the following are equivalent:

1. f is convex
2. $\forall x, y \in \operatorname{dom}(f),\langle x-y, \nabla f(y)\rangle+f(y) \leqslant f(x)$
3. $\forall x, y \in \operatorname{dom}(f),\langle x-y, \nabla f(x)-\nabla f(y)\rangle \geqslant 0$

Proof. - 1) $\Longrightarrow 2)$: Combine the subgradient inequality with the previous result

- 2) $\Longrightarrow 3)$: See A2 for a proof in a more general setting
- 3) $\Longrightarrow 1)$: Fix $x \in \operatorname{dom}(f), y \in \operatorname{dom} f(f), z \in \mathbb{R}^{m}$. By assumption, $\operatorname{dom}(f)$ is open. Therefore, $\exists \varepsilon>0$ such that

$$
\begin{aligned}
y+(1+\varepsilon)(x-y) & =x+\varepsilon(x-y) \in \operatorname{dom}(f) \\
y-\varepsilon(x-y) & =y+\varepsilon(y-x) \in \operatorname{dom}(f)
\end{aligned}
$$

Hence, by convexity of $\operatorname{dom}(f)$ we have

$$
\forall \alpha \in(-\varepsilon, 1+\varepsilon), x+\alpha(x-y) \in \operatorname{dom}(f)
$$

Set $C=(-\varepsilon, 1+\varepsilon) \subseteq \mathbb{R}$ and set $\varphi: \mathbb{R} \mapsto(-\infty, \infty]$, where

$$
\varphi(\alpha)=f(y+\alpha(x-y))+\delta_{C}(x)
$$

Then φ is differentiable on C, and $\forall \alpha \in C$,

$$
\varphi^{\prime}(\alpha)=\langle\nabla f(y+\alpha(x-y)), x-y\rangle
$$

Now, take $\alpha \in C, \beta \in C, \alpha<\beta$. Set

$$
\left.\begin{array}{l}
y_{\alpha}=y+\alpha(x-y) \\
y_{\beta}=y+\beta(x-y)
\end{array}\right\} \Longrightarrow y_{\beta}-y_{\alpha}=(\beta-\alpha)(x-y)
$$

Then,

$$
\begin{aligned}
\varphi^{\prime}(\beta)-\varphi^{\prime}(\alpha) & =\langle\nabla f(y+\beta(x-y)), x-y\rangle-\langle\nabla f(y+\alpha(x-y)), x-y\rangle \\
& =\left\langle\nabla f\left(y_{\beta}\right)-\nabla f\left(y_{\alpha}\right), x-y\right\rangle \\
& =\left\langle\nabla f\left(y_{\beta}\right)-\nabla f\left(y_{\alpha}\right), \frac{y_{\beta}-y_{\alpha}}{\beta-\alpha}\right\rangle \\
& =\frac{1}{\beta-\alpha}\left\langle\nabla f\left(y_{\beta}\right)-\nabla f\left(y_{\alpha}\right), y_{\beta}-y_{\alpha}\right\rangle \\
& \geqslant 0
\end{aligned}
$$

That is φ^{\prime} is increasing on C. By lemma $\mathrm{L} 8-4$, we know φ is convex on C. Recalling

$$
\varphi(\alpha)=f(y+\alpha(x-y))+\delta_{C}(\alpha)
$$

We learn that

$$
\begin{aligned}
f(\alpha x+(1-\alpha) y) & =\varphi(\alpha) \\
& \leqslant \alpha \varphi(1)+(1-\alpha) \varphi(0) \\
& =\alpha f(x)+(1-\alpha) f(y)
\end{aligned}
$$

Example 17: L8-5

Let A be $m \times m$ matrix, and set $f: \mathbb{R}^{m} \mapsto \mathbb{R}, f(x)=\langle x, A x\rangle$. Then the followings hold:

1. $\nabla f(x)=\left(A+A^{T}\right)(x), \forall x \in \mathbb{R}^{m}$
2. f is convex if and only if $A+A^{T}$ is positive semidefinite.

Proof. 1. See A3
2. Recall Prop L8-5. Therefore f is convex if and only if

$$
\begin{aligned}
& \forall x, y \in \mathbb{R}^{m}\langle\nabla f(x)-\nabla f(y), x-y\rangle \geqslant 0 \\
\Longleftrightarrow & \forall x, y \in \mathbb{R}^{m}\left\langle\left(A+A^{T}\right) x-\left(A+A^{T}\right) y, x-y\right\rangle \geqslant 0 \\
\Longleftrightarrow & \forall z \in \mid R^{m}\left\langle\left(A+A^{T}\right) z, z\right\rangle \geqslant 0
\end{aligned}
$$

3.8 Subdifferentiability and Conjugacy

Recall that, for a function $f: \mathbb{R}^{m} \mapsto[-\infty, \infty]$, the Fenchel Conjugate of f is

$$
\begin{gathered}
f^{*}: \mathbb{R}^{m} \mapsto[-\infty, \infty] \\
f^{*}(u)=\sup _{x \in \mathbb{R}^{m}}(\langle x, u\rangle-f(x))
\end{gathered}
$$

Proposition 41: L8-6

Let f, g be functions from \mathbb{R}^{m} to $[-\infty, \infty]$. Then

1. $f^{* *}:=\left(f^{*}\right)^{*} \leqslant f$
2. $f \leqslant g \Longrightarrow\left[f^{*} \geqslant g^{*}\right.$ and $\left.f^{* *} \leqslant g^{* *}\right]$

Proof. See A3

Proposition 42: L8-7

et $f: \mathbb{R}^{m} \mapsto(-\infty, \infty]$ be proper. Then $\forall x, y \in \mathbb{R}^{m}$

$$
f(x)+f^{*}(u) \geqslant\langle x, u\rangle
$$

Fenchel-Young inequality

Proof. Observe that the definition of f^{*} yields:

$$
f \equiv \infty \Longleftrightarrow f^{*} \equiv-\infty
$$

Therefore, by assumption we know that

$$
\forall u \in \mathbb{R}^{m}, f^{*}(u) \neq-\infty
$$

Now let $(x, u) \in \mathbb{R}^{m} \times \mathbb{R}^{m}$. If $f(x)=\infty$, the desired inequality clearly holds, else, if $f(x)<\infty$, we have

$$
f^{*}(u)=\sup _{y \in \mathbb{R}^{m}}(\langle y, u\rangle, f(u)) \geqslant\langle y, x\rangle-f(x)
$$

Proposition 43: L8-8

Let $f: \mathbb{R}^{m} \mapsto(-\infty, \infty]$ be convex l.s.c and proper. Let $x \in \mathbb{R}^{m}$ and let $u \in \mathbb{R}^{m}$. Then the following are equivalent:

$$
u \in \partial f(x) \Longleftrightarrow f(x)+f^{*}(u)=\langle x, u\rangle
$$

Proof.

$$
\begin{aligned}
u \in \partial f(x) & \Longleftrightarrow \forall y \in \operatorname{dom}(f),\langle y-x, u\rangle+f(x) \leqslant f(y) \\
& \Longleftrightarrow \forall y \in \operatorname{dom}(f),\langle y, u\rangle-f(y) \leqslant\langle x, u\rangle-f(x) \leqslant f^{*}(u) \\
& \Longleftrightarrow f^{*}(u)=\sup _{y \in \mathbb{R}^{m}}(\langle y, u\rangle-f(y)) \leqslant\left\langle x, u\left\langle-f(x) \leqslant f^{*}(u)\right.\right. \\
& \Longleftrightarrow f(x)+f^{*}(u)=\langle x, u\rangle
\end{aligned}
$$

Proposition 44: L8-9

Let $f: \mathbb{R}^{m} \mapsto(-\infty, \infty]$ be convex and proper, let $x \in \mathbb{R}^{m}$ and suppose that $\partial f(x) \neq \emptyset$. Then

$$
\left(f^{*}\right)^{*}:=f^{* *}(x)=f(x)
$$

where

$$
f^{* *}(x)=\sup _{y \in \mathbb{R}^{m}}\left\{\langle y, x\rangle-f^{*}(y)\right\}
$$

Proof. Let $u \in \partial f(x)$. By Prop L8-8

$$
\begin{aligned}
\langle u, x\rangle & =f(x)+f^{*}(u) \\
\Longrightarrow \quad f(x) & =\langle u, x\rangle-f^{*}(u)
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
f^{* *}(x) & =\sup _{y \in \mathbb{R}^{m}}\left\{\langle x, y\rangle-f^{*}(y)\right\} \\
& \geqslant\langle x, u\rangle-f^{*}(u) \\
& =f(x)
\end{aligned}
$$

Conversely,

$$
\begin{aligned}
f^{* *}(x) & =\sup _{y \in \mathbb{R}^{m}}\left\{\langle y, x\rangle-f^{*}(y)\right\} \\
& =\sup _{y \in \mathbb{R}^{m}}\left\{\langle y, x\rangle-\sup _{z \in \mathbb{R}^{m}}\{\langle z, y\rangle-f(z)\}\right\} \\
& =\sup _{y \in \mathbb{R}^{m}}\left\{\langle y, x\rangle+\inf _{z \in \mathbb{R}^{m}}\{f(z)-\langle z, y\rangle\}\right\} \\
& =\sup _{y \in \mathbb{R}^{m}}\left\{\inf _{z \in \mathbb{R}^{m}}\{f(z)+\langle y, x-z\rangle\}\right\} \\
& \leqslant \sup _{y \in \mathbb{R}^{m}}\{f(x)=\langle y, x-x\rangle\} \\
& =\sup _{y \in \mathbb{R}^{m}} f(x) \\
& =f(x)
\end{aligned}
$$

Altogether,

$$
f(x)=f^{* *}(x)
$$

Fact(L8-10) Let $f: \mathbb{R}^{m} \mapsto(-\infty, \infty]$ be proper. Then

$$
[f \text { is convex and 1.s.c }] \Longleftrightarrow f=f^{* *}
$$

In this case, f^{*} is also proper.

Corollary 45

Let $f: \mathbb{R}^{m} \mapsto(-\infty, \infty]$ be convex 1.s.c and proper. Then

1. f^{*} is convex l.s.c and proper
2. $f^{* *}=f$

Proof. - Combine Fact L8-10 and Prop L6-6

- Follows from Fact L8-10

Proposition 46: L8-12

Let $f: \mathbb{R}^{m} \mapsto(-\infty, \infty]$ be convex 1.s.c and proper. Then

$$
u \in \partial f(x) \Longleftrightarrow x \in \partial f^{*}(u)
$$

Proof. Recall that

$$
u \in \partial f(x) \Longleftrightarrow f(x)+f^{*}(u)=\langle x, u\rangle
$$

by Proposition L8-8.
Set $g:=f^{*}$. Then Corollary L8-11 imply that g is convex 1.s.c and proper. Moreover, $g^{*}=f$. Hence,

$$
\begin{aligned}
u \in \partial f(x) & \Longleftrightarrow f(x)+f^{*}(u)=\langle x, u\rangle \\
& \Longleftrightarrow g^{*}(x)+g(u)=\langle x, u\rangle \\
& \Longleftrightarrow x \in \partial g(u)=\partial f^{*}(u)
\end{aligned}
$$

Theorem 47: L9-1

Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be proper, l.s.c and let C be a compact subset of \mathbb{R}^{m} such that $C \cap$ $\operatorname{dom}(f) \neq \emptyset$. Then the following holds:

1. f is bounded below over C
2. f attains its minimal value over C

Proof.

1. Suppose for eventual contradiction that f is not bounded below over C. Then there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in C such that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=-\infty$. Recall that C is compact, equivalently, C is closed and bounded (finite-dim). Since $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a sequence in $C,\left(x_{n}\right)_{n \in \mathbb{N}}$ must be bounded. By Bolzano-Weierstrass theorem, there exists a convergent subsequence say $x_{k_{n}} \rightarrow \bar{x} \in C$ because C is closed.
Since f is l.s.c, we learn that,

$$
f(\bar{x}) \leqslant \liminf _{n \rightarrow \infty} f\left(x_{k_{n}}\right)
$$

but, $f(\bar{x}) \in \mathbb{R}$ by definition, contradiction.
2. Let $f_{\text {min }}$ be the minimal value of f over C. Then there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ in C such that

$$
f\left(x_{n}\right) \rightarrow f_{\min }
$$

AND C is bounded $\Longrightarrow\left(x_{n}\right)_{n \in \mathbb{N}}$ is bounded.
Let \bar{x} be a cluster point of $\left(x_{n}\right)_{n \in \mathbb{N}}$, say $x_{k_{n}} \rightarrow \bar{x} \in C$. Then by l.s.c.

$$
f(\bar{x}) \leqslant \liminf _{n \rightarrow \infty} f\left(x_{k_{n}}\right)=f_{\min }
$$

Hence, \bar{x} is a minimizer of f over C.

Definition 18: L9-2

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$. Then f is coercive if

$$
\lim _{\|x\| \rightarrow \infty} f(x)=\infty
$$

and f is super coercive if

$$
\lim _{\|x\| \rightarrow \infty} \frac{f(x)}{\|x\|}=\infty
$$

Theorem 48: L9-3

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be proper, l.s.c. and coercive and let C be a closed subset of \mathbb{R}^{m} satisfying that $C \cap \operatorname{dom}(f) \neq \emptyset$. Then f attains its minimal value over C.

Proof. Let $x \in C \cap \operatorname{dom}(f)$. Since f is coercive, $\exists M>0$ such that

$$
f(y)>f(x) \text { whenever }\|y\|>M \ldots(1)
$$

observe that if \bar{x} is a minimizer of f over C, we have $f(\bar{x}) \leqslant f(x)$. In view of (1) above, we learn that the set of minimizers of f over C is the same as the set of minimizers of f over $C \cap B(0 ; M)$. The latter is closed and bounded. Hence, it is compact, then apply the previous result with the set C replaced by $C \cap B(0 ; M)$ we conclude that f attains its minimal value over $C \cap B(0 ; M)$ say at \tilde{x}. Altogether, \tilde{x} is a minimizer of f over C.

3.9 Differentiability and Strong Convexity:

Definition 19: L9-4

Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$, and let $L \geqslant 0$. Then T is L-Lipschitz if $\forall x \in \mathbb{R}^{m}, \forall y \in \mathbb{R}^{m}$,

$$
\|T x-T y\| \leqslant L\|x-y\|
$$

Example 18: L9-5

Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}: x \rightarrow \frac{1}{2}\langle x, A x\rangle+\langle b, x\rangle+c$, where $A \succcurlyeq 0$ (A is positive semi-definite), $b \in \mathbb{R}^{m}, C \in \mathbb{R}$. Then the following hold:

1. $\forall x \in \mathbb{R}^{m}, \nabla f(x)=A x+b$
2. ∇f is Lipschitz with a constant $L=\|A\|$, where $\|A\|=\max _{\|x\| \neq 0} \frac{\|A x\|}{\|x\|}$

Proof.

1. It follows from lecture 8 that $\forall x \in \mathbb{R}^{m}$,

$$
\nabla f(x)=\frac{1}{2}\left(A+A^{T}\right) x+b=\frac{1}{2}(A+A) x+b=A x+b
$$

2. Indeed,

$$
\begin{aligned}
\|\nabla f(x)-\nabla f(y)\| & =\|A x-A y\| \\
& =\|A(x-y)\| \\
& \leqslant\|A\|\|x-y\|
\end{aligned}
$$

and the conclusion follows.

Example 19: L9-6

Let C be a nonempty closed convex subset of \mathbb{R}^{m}. Then P_{C} is Lipschitz Continuous with a constant 1.

Proof. If C is a singleton, the conclusion is trivial. Now, suppose that C is not a singleton. Let $\{x, y\} \subseteq \mathbb{R}^{m}, x \neq y$. If $P_{C}(x)=P_{C}(y)$,

$$
0=\left\|P_{C}(x)-P_{C}(y)\right\| \leqslant\|x-y\|
$$

Else, if $P_{C}(x) \neq P_{C}(y)$, then,

$$
\begin{aligned}
\left\|P_{C}(x)-P_{C}(y)\right\|^{2}= & \left\langle P_{C}(x)-P_{C}(y), P_{C}(x)-P_{C}(y)\right\rangle \\
= & \left\langle P_{C}(x)-P_{C}(y), P_{C}(x)-x\right\rangle+\left\langle P_{C}(x)-P_{C}(y), y-P_{C}(y)\right\rangle \\
& +\left\langle P_{C}(x)-P_{C}(y), x-y\right\rangle \\
= & \underbrace{\left\langle P_{C}(x)-P_{C}(y), P_{C}(x)-x\right\rangle}_{\leqslant 0}+\underbrace{\left\langle P_{C}(y)-P_{C}(x), P_{C}(y)-y\right\rangle}_{\leqslant 0} \\
& +\left\langle P_{C}(x)-P_{C}(y), x-y\right\rangle \text { by projection theorem } \\
\leqslant & \left\langle P_{C}(x)-P_{C}(y), x-y\right\rangle \\
\leqslant & \left\|P_{C}(x)-P_{C}(y)\right\|\|x-y\|
\end{aligned}
$$

so by $\left\|P_{C}(x)-P_{C}(y)\right\| \neq 0$, we have

$$
\left\|P_{C}(x)-P_{C}(y)\right\| \leqslant\|x-y\|
$$

Lemma 49: (descent lemma) L9-7

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be differentiable on $\emptyset \neq D \subseteq \operatorname{int}(\operatorname{dom}(f))$ such that ∇f is L-Lipschitz over D, D is convex. Then $\forall x, y \in D$,

$$
f(y) \leqslant f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|x-y\|^{2}
$$

Proof. Recall that the fundamental theorem of calculus implies that

$$
\begin{aligned}
f(y)-f(x) & =\int_{0}^{1}\langle\nabla f(x+t(y-x)), y-x\rangle d t \\
& =\langle\nabla f(x), y-x\rangle+\int_{0}^{1}\langle\nabla f(x+t(y-x))-\nabla f(x), y-x\rangle d t
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& |f(y)-f(x)-\langle\nabla f(x), y-x\rangle| \\
= & \left|\int_{0}^{1}\langle\nabla f(x+t(y-x))-\nabla f(x), y-x\rangle d t\right| \\
\leqslant & \int_{0}^{1}|\langle\nabla f(x+t(y-x))-\nabla f(x), y-x\rangle| d t \\
\leqslant & \int_{0}^{1}\|\nabla f(x+t(y-x))-\nabla f(x)\|\|y-x\| d t \\
\leqslant & \int_{0}^{1} L\|x+t(y-x)-x\|\|y-x\| d t \text { by } \nabla f \text { is L-Lipschitz } \\
= & \int_{0}^{1} t L\|y-x\|^{2} d t \\
= & L\|x-y\|^{2} \int_{0}^{1} t d t \\
= & \frac{L}{2}\|x-y\|^{2}
\end{aligned}
$$

Hence,

$$
f(y) \leqslant f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|x-y\|^{2}
$$

Theorem 50: L9-8

Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be convex and differentiable, and let $L>0$. Then the followings are equivalent:

1. ∇f is L-Lipschitz
2. $\forall x, y \in \mathbb{R}^{m}$,

$$
f(y) \leqslant f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|x-y\|^{2}
$$

3. $\forall x, y \in \mathbb{R}^{m}$,

$$
f(y) \geqslant f(x)+\langle\nabla f(x), y-x\rangle+\frac{1}{2 L}\|\nabla f(x)-\nabla f(y)\|^{2}
$$

4. $\forall x, y \in \mathbb{R}^{m}$,

$$
\langle\nabla f(x)-\nabla f(y), x-y\rangle \geqslant \frac{1}{L}\|\nabla f(x)-\nabla f(y)\|^{2}
$$

Proof. - 1) $\Longrightarrow 2)$ This is the descent lemma applied with $D=\mathbb{R}^{m}$

- 2) $\Longrightarrow 3)$ Without loss of generality, we can and do assume that $\nabla f(x) \neq \nabla f(y)$. Otherwise, the conclusion follows immediately using the subgradient inequality and the fact that $\partial f(X)=\{\nabla f(x)\}$
Fix $x \in \mathbb{R}^{m}$ and set,

$$
h_{x}: \mathbb{R}^{m} \rightarrow \mathbb{R}, h_{x}(y)=f(y)-f(x)-\langle\nabla f(x), y-x\rangle
$$

Observe that h_{x} is convex, differentiable and

$$
\nabla h_{x}(y)=\nabla f(y)-\nabla f(x)
$$

We claim that $\forall y, z \in \mathbb{R}^{m}$,

$$
h_{x}(z) \leqslant h_{x}(y)+\left\langle\nabla h_{x}(y), z-y\right\rangle+\frac{L}{2}\|z-y\|^{2}
$$

Indeed,

$$
\begin{aligned}
h_{x}(z)= & f(z)-f(x)-\langle\nabla f(x), z-x\rangle \\
\leqslant & f(y)+\langle\nabla f(y), z-y\rangle+\frac{L}{2}\|z-y\|^{2}-f(x)-\langle\nabla f(x), z-x\rangle \\
= & f(y)-f(x)-\langle\nabla f(x), y-x\rangle-\langle\nabla f(x), z-y\rangle \\
& +\langle\nabla f(y), z-y\rangle+\frac{L}{2}\|z-y\|^{2} \\
= & f(y)-f(x)-\langle\nabla f(x), y-x\rangle+\langle\nabla f(y)-\nabla f(x), z-y\rangle+\frac{L}{2}\|z-y\|^{2} \\
= & h_{x}(y)+\left\langle\nabla h_{x}(y), z-y\right\rangle+\frac{L}{2}\|z-y\|^{2} \ldots(1)
\end{aligned}
$$

Observe that $\nabla h_{x}(x)=\nabla f(x)-\nabla f(x)=0$. Hence, because h_{x} is convex, x is a global minimizer of h_{x}.
That is, $\forall z \in \mathbb{R}^{m}$,

$$
h_{x}(x) \leqslant h_{x}(z) \ldots(2)
$$

Let $y \in \mathbb{R}^{m}$ and let $v \in \mathbb{R}^{m}$ be such that $\|v\|=1$ and $\left\langle\nabla h_{x}(y), v\right\rangle=\left\|\nabla h_{x}(y)\right\|$. Set $z=y-\frac{\left\|\nabla h_{x}(y)\right\|}{L} v \ldots$ (3).
On the one hand applying (2) with z as defined in (3) yields

$$
0=h_{x}(x) \leqslant h_{x}\left(y-\frac{\left\|\nabla h_{x}(y)\right\|}{L} v\right)
$$

On the other hand, (1) implies that

$$
\begin{aligned}
0 & =h_{x}(x) \\
& \leqslant h_{x}(y)-\frac{\left\|\nabla h_{x}(y)\right\|}{L}\left\langle\nabla h_{x}(y), v\right\rangle+\frac{1}{2 L}\left\|\nabla h_{x}(y)\right\|^{2}\|v\|^{2} \\
& =h_{x}(y)-\frac{\left\|\nabla h_{x}(y)\right\|^{2}}{L}+\frac{1}{2 L}\left\|\nabla h_{x}(y)\right\|^{2} \\
& =h_{x}(y)-\frac{1}{2 L}\left\|\nabla h_{x}(y)\right\|^{2} \\
& =f(y)-f(x)-\langle\nabla f(x), y-x\rangle-\frac{1}{2 L}\|\nabla f(x)-\nabla f(y)\|^{2}
\end{aligned}
$$

- 3) $\Longrightarrow 4)$: Using 3) we have

$$
\begin{aligned}
& f(y) \geqslant f(x)+\langle\nabla f(x), y-x\rangle+\frac{1}{2 L}\|\nabla f(x)-\nabla f(y)\|^{2} \\
& f(x) \geqslant f(y)+\langle\nabla f(y), x-y\rangle+\frac{1}{2 L}\|\nabla f(y)-\nabla f(x)\|^{2}
\end{aligned}
$$

Adding the above two inequalities yield 4).

- 4$) \Longrightarrow 1$), Without loss of generality we can and do assume that $\nabla f(x) \neq \nabla f(y)$ (otherwise the conclusion is trivial). Now 4) implies

$$
\|\nabla f(x)-\nabla f(y)\|^{2} \leqslant L\langle\nabla f(x)-\nabla f(y), x-y\rangle \leqslant L\|\nabla f(x)-\nabla f(y)\|\|x-y\|
$$

Since $\nabla f(x) \neq \nabla f(y)$,

$$
\|\nabla f(x)-\nabla f(y)\| \leqslant L\|x-y\|
$$

Example 20: L10-1

Let C be nonempty closed convex subset of \mathbb{R}^{m}. Then $\forall x, y \in \mathbb{R}^{m}$,

$$
\left\|P_{C}(x)-P_{C}(y)\right\|^{2} \leqslant\left\langle P_{C}(x)-P_{C}(y), x-y\right\rangle \ldots(*)
$$

Proof. Observe that $(*)$ can be rewritten as:

$$
\left\langle P_{C}(x)-P_{C}(y), P_{C}(x)-P_{C}(y)-(x-y)\right\rangle \leqslant 0
$$

Now:

$$
\begin{aligned}
& \left\langle P_{C}(x)-P_{C}(y), P_{C}(x)-P_{C}(y)-(x-y)\right\rangle \\
= & \left\langle P_{C}(x)-P_{C}(y), P_{C}(x)-x\right\rangle-\left\langle P_{C}(x)-P_{C}(y), P_{C}(y)-y\right\rangle \\
= & \left\langle P_{C}(x)-P_{C}(y), P_{C}(x)-x\right\rangle+\left\langle P_{C}(y)-P_{C}(x), P_{C}(y)-y\right\rangle \\
\leqslant & 0 \text { by projection theorem }
\end{aligned}
$$

The above property is know as "Firm nonexpansivenes" of the projection onto convex sets.

Example 21: L10-2

Let C be nonempty closed and convex subset of \mathbb{R}^{m}. Consider the function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$, where $f(x)=\frac{1}{2} d_{C}^{2}(x)$. Then the following holds:

1. f is differentiable over \mathbb{R}^{m} and $\forall x \in \mathbb{R}^{m}$,

$$
\nabla f(x)=x-P_{C}(x)
$$

2. ∇f is 1-Lipschitz

Proof.

1. Let $x \in \mathbb{R}^{m}$. Define $\forall y \in \mathbb{R}^{m}$,

$$
h_{x}(y)=f(x+y)-f(x)-\left\langle y, x-P_{C}(x)\right\rangle
$$

Clearly, h_{x} is convex.
By the definition of $\nabla f(x)$, it is sufficient to show that

$$
\frac{\left|h_{x}(y)\right|}{\|y\|} \rightarrow 0 \text { as } y \rightarrow 0
$$

Observe that, $\forall x \in \mathbb{R}^{m}$,

$$
f(x)=\frac{1}{2} d_{C}^{2}(x)=\frac{1}{2}\left\|x-P_{C}(x)\right\|^{2}
$$

Now, on the one hand:

$$
\begin{align*}
h_{x}(y) & =\frac{1}{2}\left\|(x+y)-P_{C}(x+y)\right\|^{2}-\frac{1}{2}\left\|x-P_{C}(x)\right\|^{2}-\left\langle y, x-P_{C}(x)\right\rangle \\
& \leqslant \frac{1}{2}\left\|(x+y)-P_{C}(x)\right\|^{2}-\frac{1}{2}\left\|x-P_{C}(x)\right\|^{2}-\left\langle y, x-P_{C}(x)\right\rangle \\
& =\frac{1}{2}\left\|x-P_{C}(x)\right\|^{2}+\left\langle y, x-P_{C}(x)\right\rangle+\frac{1}{2}\|y\|^{2}-\frac{1}{2}\left\|x-P_{C}(x)\right\|^{2}-\left\langle y, x-P_{C}(x)\right\rangle \\
& =\frac{1}{2}\|y\|^{2} \ldots \text { (1) } \tag{1}
\end{align*}
$$

On the other hand, by the above argument $h_{x}(-y) \leqslant \frac{1}{2}\|y\|^{2}$. Therefore,

$$
\begin{align*}
& 0=h_{x}(0)=h_{x}\left(\frac{1}{2}(y+(-y))\right) \leqslant \frac{1}{2} h_{x}(y)+\frac{1}{2} h_{x}(-y) \\
\Longrightarrow & h_{x}(y) \geqslant-h_{x}(-y) \geqslant-\frac{1}{2}\|y\|^{2} \ldots(2) \tag{2}
\end{align*}
$$

(1) and (2) imply $\left|h_{x}(y)\right| \leqslant \frac{1}{2}\|y\|^{2}$, and

$$
\frac{\left|h_{x}(y)\right|}{\|y\|}=\frac{1}{2}\|y\| \rightarrow 0 \text { as } y \rightarrow 0
$$

2. To show that ∇f is 1 -Lipschitz, let $x, y \in \mathbb{R}^{m}$. Now:

$$
\begin{aligned}
\|\nabla f(x)-\nabla f(y)\|^{2} & =\left\|x-P_{C}(x)-\left(y-P_{C}(y)\right)\right\|^{2} \\
& =\left\|(x-y)-\left(P_{C}(x)-P_{C}(y)\right)\right\|^{2} \\
& =\|x-y\|^{2}-2\left\langle x-y, P_{C}(x)-P_{C}(y)\right\rangle+\left\|P_{C}(x)-P_{C}(y)\right\|^{2} \\
& \leqslant\|x-y\|^{2}-2\left\|P_{C}(x)-P_{C}(y)\right\|^{2}+\left\|P_{C}(x)-P_{C}(y)\right\|^{2} \\
& =\|x-y\|^{2}-\left\|P_{C}(x)-P_{C}(y)\right\|^{2} \\
& \leqslant\|x-y\|^{2}
\end{aligned}
$$

Theorem 51: Second Order Characterization, L10-3

Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be twice continuously differentiable over \mathbb{R}^{m}, and let $L \geqslant 0$. Then the following are equivalent:

1. ∇f is L-Lipschitz
2. $\forall x \in \mathbb{R}^{m},\left\|\nabla^{2} f(x)\right\| \leqslant L$

Proof.

- 1) $\Longrightarrow 2)$. Suppose that ∇f is L-Lipschitz continuous. Observe that for any $y \in \mathbb{R}^{m}$, $\alpha>0$, we have

$$
\|\nabla f(x+\alpha y)-\nabla f(x)\| \leqslant L\|x+\alpha y-x\|=a L\|y\|
$$

That is,

$$
\begin{aligned}
\left\|\nabla^{2} f(x)(y)\right\| & =\lim _{\alpha \downarrow 0} \frac{\|\nabla f(x+\alpha y)-\nabla f(x)\|}{\alpha} \\
& \leqslant \lim _{\alpha \downarrow 0} \frac{L\|x+\alpha y-x\|}{\alpha} \\
& =\lim _{\alpha \downarrow 0} \frac{\alpha L\|y\|}{\alpha} \\
& =L\|y\|
\end{aligned}
$$

Equivalently, $\left\|\nabla^{2} f(x)\right\| \leqslant L$ as desired.

- 2) $\Longrightarrow 1)$: Suppose that for any $x \in \mathbb{R}^{m},\left\|\nabla^{2} f(x)\right\| \leqslant L$. Using the fundamental theorem of calculus we have $\forall x, y \in \mathbb{R}^{m}$,

$$
\begin{aligned}
\nabla f(x) & =\nabla f(y)+\int_{0}^{1} \nabla^{2} f(y+\alpha(x-y))(x-y) d \alpha \\
& =\nabla f(y)+\left[\int_{0}^{1} \nabla^{2} f(y+\alpha(x-y)) d \alpha\right](x-y)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\|\nabla f(x)-\nabla f(y)\| & =\left\|\left[\int_{0}^{1} \nabla^{2} f(y+\alpha(x-y)) d \alpha\right](x-y)\right\| \\
& \leqslant\left\|\int_{0}^{1} \nabla^{2} f(y+\alpha(x-y)) d \alpha\right\|\|(x-y)\| \\
& \leqslant \int_{0}^{1}\left\|\nabla^{2} f(y+\alpha(x-y))\right\| d \alpha\|(x-y)\| \\
& \leqslant L\|x-y\|
\end{aligned}
$$

Fact(L10-4):

Ket A be an $m \times m$ symmetric matrix. Then $\|A\|=\sup _{\|x\|=1}\|A x\|=\max _{1 \leqslant i \leqslant m}\left|\lambda_{i}\right|$, where $\lambda_{1}, \ldots, \lambda_{m}$ are the eigenvalues of A.

Proposition 52: L10-5

Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be twice continuously differentiable. Then f is convex if and only if $\forall x \in \mathbb{R}^{m}, \nabla^{2} f(x)$ is positive semi-definite.

Proof. See A3.

Corollary 53: L10-6

Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be convex and twice continuously differentiable and let $L \geqslant 0$. Then ∇f is L-Lipschitz $\Longleftrightarrow \forall x \in \mathbb{R}^{m}, \lambda_{\max }\left(\nabla^{2} f(x)\right) \leqslant L$.

Proof. Since f is convex and twice continuouly differentiable, we have $\forall x \in \mathbb{R}^{m}, \nabla^{2} f(x)$ is positive semi-definite. Now combine with earlier result 1 to learn that

$$
L \geqslant\left\|\nabla^{2} f(x)\right\|=\left|\lambda_{\max }\left(\nabla^{2} f(x)\right)\right|=\lambda_{\max }\left(\nabla^{2} f(x)\right)
$$

Example 22: L10-7

Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be given by $\forall x \in \mathbb{R}^{m}$,

$$
f(x)=\sqrt{1+\|x\|^{2}}
$$

Prove that:

1. f is convex
2. ∇f is L-Lipschitz

Proof. See A3

Strong Convexity:

Recall that a function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is strongly convex(2) with constant β, if for some $\beta>0$ we have: $\forall x, y \in \operatorname{dom}(f), \forall \lambda \in(0,1)$,

$$
f(\lambda x+(1-\lambda) y) \leqslant \lambda f(x)+(1-\lambda) f(y)-\frac{\beta}{2} \lambda(1-\lambda)\|x-y\|^{2}
$$

Proposition 54: L10-8

Let $\beta>0, f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ is β-strongly convex $\Longleftrightarrow f-\frac{\beta}{2}\|\cdot\|^{2}$ is convex.

Proposition 55: L10-9

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty], g: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ and let $\beta>0$. Suppose that f is β-strongly convex and that g is convex. Then $f+g$ is β-strongly convex.

Proof. Set

$$
h=f+g-\frac{\beta}{2}\|\cdot\|^{2}=(\underbrace{f-\frac{\beta}{2}\|\cdot\|^{2}}_{\text {convex by prev. prop. }})+g
$$

Then h is convex being the sum of two convex functions (see A2). Therefore, applying the previous proposition again with f replaced by $f+g$ yields the desired result.

Fact (L10-10):
Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be strongly convex l.s.c. and proper. Then has a unique minimizer.

3.10 The Proximal Operator

Definition 20: L10-11

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$. The proximal point mapping of f is the operator

$$
\operatorname{Prox}_{f}: \mathbb{R}^{m} \rightrightarrows \mathbb{R}^{m}
$$

given by

$$
\operatorname{Prox}_{f}(x)=\arg \min _{u \in \mathbb{R}^{m}}\left\{f(u)+\frac{1}{2}\|u-x\|^{2}\right\}
$$

Theorem 56: L10-12

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be convex l.s.c. and proper. Then $\forall x \in \mathbb{R}^{m}, \operatorname{Prox}_{f}(x)$ is a singleton.

Proof. Observe that for a fixed $x \in \mathbb{R}^{m} . h_{x}:=\frac{1}{2}\|\cdot-x\|^{2}$ is β-strongly convex for every $\beta<1$. Set $g_{x}:=f+h_{x}$, we learn that g_{x} is strongly convex for every $x \in \mathbb{R}^{m}$. Using A2, we know that $\forall x \in \mathbb{R}^{m}, g_{x}$ is l.s.c (because f is 1.s.c. and h_{x} is l.s.c). And, $\forall x \in \mathbb{R}^{m}, g_{x}$ is proper (because f, h are proper and $\operatorname{dom}(f) \cap \operatorname{dom}\left(h_{x}\right)=\operatorname{dom}(f) \cap \mathbb{R}^{m} \neq \emptyset$). Therefore, applying earlier Fact, we learn that $\forall x \in \mathbb{R}^{m}$, $\arg \min _{u \in \mathbb{R}^{m}} g_{x}=\operatorname{Prox}_{f}(x)$ exists and is unique.

Example 23: L10-13

Let C be a nonempty closed convex subset of \mathbb{R}^{m}. Then $\operatorname{Prox}_{\delta_{C}}=P_{C}$

Proof. Let $x \in \mathbb{R}^{m}$. By definition,

$$
\begin{aligned}
& p=\operatorname{Prox}_{\delta_{C}}(x) \\
\Longleftrightarrow & p=\arg \min _{u \in \mathbb{R}^{m}}\left\{\delta_{C}(x)+\frac{1}{2}\|x-u\|^{2}\right\} \\
\Longleftrightarrow & \forall u \in \mathbb{R}^{m}, \delta_{C}(p)+\frac{1}{2}\|x-p\|^{2} \leqslant \delta_{C}(u)+\frac{1}{2}\|x-u\|^{2} \\
\Longleftrightarrow & p \in C, \forall u \in C,\|x-p\|^{2} \leqslant\|x-u\|^{2} \\
\Longleftrightarrow & p \in C, \forall v \in C,\|x-p\| \leqslant\|x-u\| \\
\Longleftrightarrow & p=P_{C}(x)
\end{aligned}
$$

Proposition 57: L10-14

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be convex l.s.c. and proper. Let $x \in \mathbb{R}^{m}$, let $p \in \mathbb{R}^{m}$. Then

$$
p=\operatorname{Prox}_{f}(x) \Longleftrightarrow \forall y \in \mathbb{R}^{m},\langle y-p, x-p\rangle+f(p) \leqslant f(y)
$$

Proof. Let $y \in \mathbb{R}^{m}$.

- (\Longrightarrow) Suppose that $p=\operatorname{Prox}_{f}(x)$ and set $\forall \lambda \in(0,1), P_{\lambda}=\lambda y+(1-\lambda) p$. Then

$$
f(p)+\frac{1}{2}\|x-p\|^{2} \leqslant f\left(p_{\lambda}\right)+\frac{1}{2}\left\|x-p_{\lambda}\right\|^{2}
$$

which implies that

$$
\begin{aligned}
f(p) & \leqslant f\left(p_{\lambda}\right)+\frac{1}{2}\left\|x-p_{\lambda}\right\|^{2}-\frac{1}{2}\|x-p\|^{2} \\
& =f\left(p_{\lambda}\right)+\frac{1}{2}\|x-\lambda y-(1-\lambda) p\|^{2}-\frac{1}{2}\|x-p\|^{2} \\
& =f\left(p_{\lambda}\right)+\frac{1}{2}\langle x-p-\lambda(y-p)-(x-p), x-p-\lambda(y-p)+(x-p)\rangle \\
& =f\left(p_{\lambda}\right)+\frac{1}{2}\langle-\lambda(y-p), 2(x-p)-\lambda(y-p)\rangle \\
& =f\left(p_{\lambda}\right)+\frac{\lambda^{2}}{2}\|y-p\|^{2}-\lambda\langle x-p, y-p\rangle \\
& =f(\lambda y+(1-\lambda) p)+\frac{\lambda^{2}}{2}\|y-p\|^{2}-\lambda\langle x-p, y-p\rangle
\end{aligned}
$$

By convexity of f we have for every $\lambda \in(0,1)$,

$$
f(p) \leqslant \lambda f(y)+(1-\lambda) f(p)+\frac{\lambda^{2}}{2}\|y-p\|^{2}-\lambda\langle x-p, y-p\rangle
$$

Rearranging yields

$$
\lambda\langle x-p, y-p\rangle+\lambda f(p) \leqslant \lambda f(y)+\frac{\lambda^{2}}{2}\|y-p\|^{2}
$$

Dividing by λ and taking the limit as $\lambda \rightarrow 0$ yields the desired inequality.

- (\Longleftarrow) Suppose that

$$
\langle y-p, x-p\rangle+f(p) \leqslant f(y)
$$

Then

$$
f(p) \leqslant f(y)-\langle y-p, x-p\rangle=f(y)+\langle x-p, p-y\rangle
$$

Therefore,

$$
\begin{aligned}
f(p)+\frac{1}{2}\|x-p\|^{2} & \leqslant f(y)+\langle x-p, p-y\rangle+\frac{1}{2}\|x-p\|^{2} \\
& \leqslant f(y)+\langle x-p, p-y\rangle+\frac{1}{2}\|x-p\|^{2}+\frac{1}{2}\|p-y\|^{2} \\
& =f(y)+\frac{1}{2}\|(x-p)+(p-y)\|^{2} \\
& =f(y)+\frac{1}{2}\|x-y\|^{2}
\end{aligned}
$$

Example 24: L10-15

Let $f: \mathbb{R} \rightarrow \mathbb{R}: x \rightarrow|x|$, then

$$
\operatorname{Prox}_{f}(x)= \begin{cases}x-1, & x>1 \\ 0, & -1 \leqslant x \leqslant 1 \\ x+1, & x<-1\end{cases}
$$

Proof. Let $p \in \mathbb{R}$. Recall that $p=\operatorname{Prox}_{|\cdot|}(x)$

$$
\begin{equation*}
\Longleftrightarrow \forall y \in \mathbb{R},(y-p)(x-p)+|p| \leqslant|y| \ldots \tag{1}
\end{equation*}
$$

Setting $y=0, y=2 p$ respectively yield

$$
\begin{gathered}
-p(x-p)+|p| \leqslant 0, p(x-p)+|p| \leqslant 2|p| \\
\Longrightarrow p(x-p) \geqslant|p|, p(x-p) \leqslant|p| \\
\Longrightarrow p(x-p)=|p| \ldots(2)
\end{gathered}
$$

Therefore, (1) becomes

$$
\begin{aligned}
\forall y & \in \mathbb{R},(y-p)(x-p)+p(x-p) \leqslant|y| \\
& \Longrightarrow \forall y \in \mathbb{R}, y(x-p) \leqslant|y| \\
& \Longrightarrow x-p \leqslant 1, x-p \geqslant-1 \\
& \Longrightarrow p \geqslant x-1, p \leqslant x+1 \ldots(3)
\end{aligned}
$$

- If $x>1$: Then (3) implies $p \geqslant x-1>0$. Hence, (2) implies that $x-p=1$. Equivalently, $p=x-1$.
- If $x<-1$: Proceed similar to the above case
- If $-1 \leqslant x \leqslant 1$: It follows from (3) that

$$
x-p \leqslant 1, x-p \geqslant-1 \Longrightarrow(x-p)^{2}=|x-p|^{2} \geqslant 1
$$

Now, using (1) with $y=x$ yields

$$
|x| \geqslant|p|+(x-p)^{2} \geqslant|p|+1
$$

That is

$$
[0 \leqslant|p| \leqslant|x|-1 \leqslant 1-1 \leqslant 0] \Longleftrightarrow p=0
$$

Proposition 58: L10-16

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be convex l.s.c. and proper. Then

$$
x \text { minimizes } f \text { over } \mathbb{R}^{m} \Longleftrightarrow x=\operatorname{Prox}_{f}(x)
$$

Proof. Recall the prop L10-14. Let $x \in \mathbb{R}^{m}$, then

$$
\begin{aligned}
& x=\operatorname{Prox}_{f}(x) \\
\Longleftrightarrow & \forall y \in \mathbb{R}^{m},\langle y-x, x-x\rangle+f(x) \leqslant f(y) \\
\Longleftrightarrow & \forall y \in \mathbb{R}^{m}, f(x) \leqslant f(y)
\end{aligned}
$$

3.11 More on Proximal Operators

Why Proximal Operators of convex functions are really "nice"? Consider the functions f, g, h defined on the real line:

$$
\begin{aligned}
& \forall x \in \mathbb{R}, \lambda>0 \\
& f(x)=0 \\
& g(x)= \begin{cases}0, & x \neq 0 \\
-\lambda, & x=0\end{cases} \\
& h(x)= \begin{cases}0, & x \neq 0 \\
\lambda, & x=0\end{cases}
\end{aligned}
$$

Clearly, f is convex, but

- $\operatorname{Prox}_{f}:$ Let $x \in \mathbb{R}$. $\operatorname{Prox}_{f}(x)$ is the "unique" minimizer of the function $\frac{1}{2}(y-x)^{2} \geqslant 0$. Clearly, $\forall x \in \mathbb{R}, \operatorname{Prox}_{f}(x)=x$
- Prox $_{g}: g(x)=\left\{\begin{array}{ll}0, & x \neq 0 \\ -\lambda, & x=0\end{array}\right.$. Let $x \in \mathbb{R} . \operatorname{Prox}_{g}(x)$ is the minimizer of function

$$
\begin{aligned}
k(y) & =g(y)+\frac{1}{2}(y-x)^{2} \\
& = \begin{cases}\frac{1}{2}(y-x)^{2}, & y \neq 0 \\
\frac{1}{2} x^{2}-\lambda, & y=0\end{cases}
\end{aligned}
$$

Let $k_{\text {opt }}$ be the minimum value of $k(y)$. Observe that if $x^{2} \geqslant 2 \lambda$, then $k_{\text {opt }} \geqslant 0$.
If $x^{2}>2 \lambda$ (equivalently $|x|>\sqrt{2 \lambda}$), then $k_{\text {opt }}=0$ and is attained $\Longleftrightarrow y=x$.
If $x^{2}=2 \lambda$ (equivalently $|x|=\sqrt{2 \lambda}$), then $k_{\text {opt }}=0$ and is attained $\Longleftrightarrow y \in\{0, x\}$.
If $x^{2}<2 \lambda$ (equivalently $|x|<\sqrt{2 \lambda}$), then $k_{\text {opt }}=\frac{1}{2} x^{2}-2 \lambda$ and is attained $\Longleftrightarrow y=0$
Therefore,

$$
\operatorname{Prox}_{g}(x)= \begin{cases}\{x\}, & |x|>\sqrt{2 \lambda} \\ \{0, x\}, & |x|=\sqrt{2 \lambda} \\ \{0\}, & |x|<\sqrt{2 \lambda}\end{cases}
$$

which shows that Prox_{g} is NOT necessarily single valued.

$$
\operatorname{Prox}_{h}(x)= \begin{cases}\{x\}, & x \neq 0 \\ \emptyset, & x=0\end{cases}
$$

i.e., $\operatorname{Prox}_{h}(x)$ is not defined at $x=0$.

So convexity is critical for the Proximal Operator to be well defined.

Proof. See A3

Example 25: L11-1

Let $f: \mathbb{R} \rightarrow \mathbb{R}: x \rightarrow \lambda|x|, \lambda \geqslant 0$. Then f is convex. We claim that $\forall x \in \mathbb{R}$

$$
\operatorname{Prox}_{f}(x)= \begin{cases}x-\lambda, & x>\lambda \\ 0, & -\lambda \leqslant x \leqslant \lambda \\ x+\lambda, & x<-\lambda\end{cases}
$$

This is know as the soft threshold. The above formula is often written as

$$
\operatorname{Prox}_{f}(x)=\operatorname{sgn}(x)(|x|-\lambda)_{+}
$$

where $\forall y \in \mathbb{R}$,

$$
\begin{aligned}
\operatorname{sgn}(y) & = \begin{cases}1, & y \geqslant 0 \\
-1, & y<0\end{cases} \\
(y)_{+} & = \begin{cases}y, & y \geqslant 0 \\
0, & y<0\end{cases} \\
& =\max \{y, 0\}
\end{aligned}
$$

Theorem 59: L11-2

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be given by $\forall x=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$,

$$
f\left(x_{1}, x_{2}, \ldots, x_{m}\right)=\sum_{i=1}^{m} f_{i}\left(x_{i}\right)
$$

where $\forall i \in\{1, \ldots, m\}$,

$$
f_{i}: \mathbb{R} \rightarrow(-\infty, \infty] \text { is convex l.s.c and proper }
$$

Then $\forall x=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$,

$$
\operatorname{Prox}_{f}(x)=\left(\operatorname{Prox}_{f_{i}}\left(x_{i}\right)\right)_{i=1}^{m}=\left(\operatorname{Prox}_{f_{1}}\left(x_{1}\right), \ldots, \operatorname{Prox}_{f_{m}}\left(x_{m}\right)\right)
$$

Proof. It follows from A2 that f is convex l.s.c and proper.
Let $p=\left(p_{1}, p_{2}, \ldots, p_{m}\right) \in \mathbb{R}^{m}$. Then

$$
\begin{aligned}
& p=\operatorname{Prox}_{f}(x) \\
\Longleftrightarrow & \forall y=\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{R}^{m} \\
& f(y) \geqslant f(p)+\langle y-p, x-p\rangle \text { by L10-14 } \\
\Longleftrightarrow & \forall\left\{y_{1}, \ldots, y_{m}\right\} \subseteq \mathbb{R} \\
& f_{1}\left(y_{1}\right)+\ldots f_{m}\left(y_{m}\right) \geqslant f_{1}\left(p_{1}\right)+\ldots f_{m}\left(p_{m}\right)+\left(y_{1}-p_{1}\right)\left(x_{1}-p_{1}\right)+\ldots+\left(y_{m}-p_{m}\right)\left(x_{m}-p_{m}\right)
\end{aligned}
$$

Setting $\forall i \in\{2, \ldots, m\}, y_{i}=p_{i}$, we learn that $\forall y_{1} \in \mathbb{R}$,

$$
f_{1}\left(y_{1}\right) \geqslant f_{1}\left(p_{1}\right)+\left(y_{1}-p_{1}\right)\left(x_{1}-p_{1}\right) \Longleftrightarrow p_{1}=\operatorname{Prox}_{f_{1}}\left(x_{1}\right)
$$

Similar arguments yield

$$
\forall i \in\{1, \ldots, m\}, p_{i}=\operatorname{Prox}_{f_{i}}(x)
$$

The proof is complete.

Example 26: L11-3

Let $g: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be given by $\alpha>0$,

$$
g(x)= \begin{cases}-\alpha \sum_{i=1}^{m} \log \left(x_{i}\right), & x>0 \\ \infty, & \text { otherwise }\end{cases}
$$

Then,

$$
\operatorname{Prox}_{g}(x)=\left(\frac{x_{i}+\sqrt{x_{i}^{2}+4 \alpha}}{2}\right)_{i=1}^{m}
$$

Proof. Consider the function $f: \mathbb{R} \rightarrow(-\infty, \infty]$ where $\forall x \in \mathbb{R}$,

$$
f(x)= \begin{cases}-\alpha \log (x), & x>0 \\ \infty, & \text { otherwise }\end{cases}
$$

Then f is convex, l.s.c and proper.
Indeed,

$$
\begin{aligned}
& \forall x>0, f \text { is differentiable } \Longrightarrow 1 \text {.s.c } \\
& \forall x>0, f^{\prime \prime}(x)=\frac{\alpha}{x^{2}}>0 \Longrightarrow \text { convex } \\
& \forall x>0, f(x)>-\infty, \operatorname{dom}(f) \neq \emptyset \Longrightarrow \text { proper }
\end{aligned}
$$

We claim that $\forall x \in \mathbb{R}$,

$$
\operatorname{Prox}_{f}(x)=\frac{x+\sqrt{x^{2}+4 \lambda}}{2}
$$

Indeed, recall that $p=\operatorname{Prox}_{f}(x)$ is the unique minimizer of the function.

$$
\begin{aligned}
h(y) & =f(y)+\frac{1}{2}(y-x)^{2} \\
& = \begin{cases}-\alpha \log (y)+\frac{1}{2}(y-x)^{2}, & y>0 \\
\infty, & \text { otherwise }\end{cases}
\end{aligned}
$$

Clearly, h is differentiable on its domain $=(0, \infty)$. Therefore,

$$
\begin{aligned}
p=\operatorname{Prox}_{f}(x) & \Longleftrightarrow h^{\prime}(p)=0 \\
& \Longleftrightarrow\left(-\alpha \log (p)+\frac{1}{2}(p-x)^{2}\right)^{\prime}=0 \\
& \Longleftrightarrow-\frac{\alpha}{p}+p-x=0 \\
& \Longleftrightarrow p^{2}-x p-\alpha=0, p>0 \\
& \Longleftrightarrow p>0, p=\frac{x \pm \sqrt{x^{2}+4 \alpha}}{2} \\
& \Longleftrightarrow p=\frac{x+\sqrt{x^{2}+4 \alpha}}{2}
\end{aligned}
$$

Now combine with $L 11-2$,

$$
f_{1}=f_{2}=\ldots=f_{m}=f
$$

Theorem 60: L11-4

Let $g: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be proper, let $c>0$, let $a \in \mathbb{R}^{m}$, let $\gamma \in \mathbb{R}$, and set $\forall x \in \mathbb{R}^{m}$,

$$
f(x)=g(x)+\frac{c}{2}\|x\|^{2}+\langle a, x\rangle+\gamma
$$

Then $\forall x \in \mathbb{R}^{m}$,

$$
\operatorname{Prox}_{f}(x)=\operatorname{Prox}_{\frac{1}{c+1} g}\left(\frac{x-a}{c+1}\right)
$$

Proof. Indeed, recall that

$$
\begin{aligned}
\operatorname{Prox}_{f}(x) & =\arg \min _{u \in \mathbb{R}^{m}}\left\{f(u)+\frac{1}{2}\|u-x\|^{2}\right\} \\
& =\arg \min _{u \in \mathbb{R}^{m}}\{g(u)+\underbrace{\frac{c}{2}\|u\|^{2}+\langle a, u\rangle+\gamma+\frac{1}{2}\|u-x\|^{2}}_{\text {(1) }}\}
\end{aligned}
$$

Now,

$$
\begin{align*}
& \frac{c}{2}\|u\|^{2}+\langle a, u\rangle+\frac{1}{2}\|u-x\|^{2} \\
= & \frac{c}{2}\|u\|^{2}+\langle a, u\rangle+\frac{1}{2}\|u\|^{2}-\langle u, x\rangle+\frac{1}{2}\|x\|^{2} \\
= & \frac{c+1}{2}\|u\|^{2}-\langle u, x-a\rangle+\frac{1}{2}\|x\|^{2} \\
= & \frac{c+1}{2}\left[\|u\|^{2}-2\left\langle u, \frac{x-a}{c+1}\right\rangle+\frac{1}{c+1}\|x\|^{2}\right] \\
= & \frac{c+1}{2}\left[\left\|u-\frac{x-a}{c+1}\right\|^{2}-\frac{\|x-a\|^{2}}{(c+1)^{2}}+\frac{1}{c+1}\|x\|^{2}\right] \ldots \tag{2}
\end{align*}
$$

Observe that for any function $h, c \in \mathbb{R}, \alpha>0$,

$$
\arg \min _{u \in \mathbb{R}^{m}}\{\alpha h(u)+c\}=\arg \min _{u \in \mathbb{R}^{m}}\{h(u)\}
$$

Combining (1), (2),

$$
\begin{aligned}
\operatorname{Prox}_{f}(x) & =\arg \min _{u \in \mathbb{R}^{m}}\left\{g(u)+\frac{c+1}{2}\left\|u-\frac{x-a}{c+1}\right\|^{2}+\gamma-\frac{\|x-a\|^{2}}{(c+1)^{2}}+\frac{1}{c+1}\|x\|^{2}\right\} \\
& =\arg \min _{u \in \mathbb{R}^{m}}\left\{g(u)+\frac{c+1}{2}\left\|u-\frac{x-a}{c+1}\right\|^{2}\right\} \\
& =\arg \min _{u \in \mathbb{R}^{m}}\left\{(c+1)\left[\frac{1}{c+1} g(u)+\frac{1}{2}\left\|u-\frac{x-a}{c+1}\right\|^{2}\right]\right\} \\
& =\arg \min _{u \in \mathbb{R}^{m}}\left\{\frac{1}{c+1} g(u)+\frac{1}{2}\left\|u-\frac{x-a}{c+1}\right\|^{2}\right\} \\
& =\operatorname{Prox}_{\frac{1}{c+1} g}\left(\frac{x-a}{c+1}\right)
\end{aligned}
$$

Example 27: L11-5

Let $\alpha \in[0, \infty)$, let $C=[0, \alpha]$, set $f=\delta_{C}$. Then $\forall x \in \mathbb{R}$,

$$
\begin{aligned}
\operatorname{Prox}_{f}(x) & =P_{C}(x) \\
& = \begin{cases}0, & x \leqslant 0 \\
x, & 0<x<\alpha \\
\alpha, & x \geqslant \alpha\end{cases} \\
& =\min \{\max \{x, 0\}, \alpha\}
\end{aligned}
$$

Proof. Recall L10-13: If C is a nonempty, closed convex subset of \mathbb{R}^{m}, then $\operatorname{Prox}_{\delta_{C}}=P_{C}$.

Example 28: L11-6

Let $f: \mathbb{R} \rightarrow(-\infty, \infty]$ be given by $\forall x \in \mathbb{R}$,

$$
f(x)= \begin{cases}\mu x, & 0 \leqslant x \leqslant \alpha \\ \infty, & \text { otherwise }\end{cases}
$$

where $\mu \in \mathbb{R}, \alpha \geqslant 0$.
Then $\forall x \in \mathbb{R}$,

$$
f(x)=\mu x+\delta_{[0, \alpha]}(x) \ldots(1)
$$

Moreover,

$$
\operatorname{Prox}_{f}(x)=\min \{\max \{x-\mu, 0\}, \alpha\}
$$

Proof. (1) follows from the definition of

$$
\delta_{[0, \alpha]}(x)= \begin{cases}0, & x \in[0, \alpha] \\ \infty, & \text { otherwise }\end{cases}
$$

f is proper, convex and l.s.c.
Then apply Theorem L11-4 with $c=\gamma=0, g=\delta_{[0, \alpha]}, a=\mu, C=[0, \alpha]$. In the view of L11-5, we yield

$$
\operatorname{Prox}_{f}(x)=\operatorname{Prox}_{g}(x-\mu)=P_{C}(x-\mu)=\min \{\max \{x-\mu, 0\}, \alpha\}
$$

Theorem 61: L12-1

Let $g: \mathbb{R} \rightarrow(-\infty, \infty]$ be convex 1.s.c and proper such that $\operatorname{dom}(g) \subseteq[0, \infty)$ and let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be given by

$$
f(x)=g(\|x\|)
$$

Then

$$
\operatorname{Prox}_{f}(x)= \begin{cases}\operatorname{Prox}_{g}(\|x\|) \frac{x}{\|x\|}, & x \neq 0 \\ \left\{u \in \mathbb{R}^{m} \mid\|u\|=\operatorname{Prox}_{g}(0)\right\}, & x=0\end{cases}
$$

Proof.

- $x=0$: By definition we have $\operatorname{Prox}_{f}(0)$ is the set:

$$
\arg \min _{u \in \mathbb{R}^{m}}\left\{f(u)+\frac{1}{2}\|u\|^{2}\right\}
$$

Using the change of variable, $w=\|u\|$, the above set of minimizers is the same as

$$
\arg \min _{w \in \mathbb{R}}\left\{g(w)+\frac{1}{2} w^{2}\right\}=\operatorname{Prox}_{g}(0)
$$

That is,

$$
\operatorname{Prox}_{f}(0)=\left\{u \in \mathbb{R}^{m} \mid\|u\|=\operatorname{Prox}_{g}(0)\right\}
$$

- $x \neq 0$: In this case $\operatorname{Prox}_{f}(x)$ is the set of solutions of the problem

$$
\begin{aligned}
& \min _{u \in \mathbb{R}^{m}}\left\{g(\|u\|)+\frac{1}{2}\|u-x\|^{2}\right\} \\
= & \min _{u \in \mathbb{R}^{m}}\left\{g(\|u\|)+\frac{1}{2}\|u\|^{2}-\langle u, x\rangle+\frac{1}{2}\|x\|^{2}\right\} \\
= & \min _{\alpha \geqslant 0} \min _{u \in \mathbb{R}^{m}}\left\{g(\alpha)+\frac{1}{2} \alpha^{2}-\langle u, x\rangle+\frac{1}{2}\|x\|^{2}\right\}
\end{aligned}
$$

Observe that

$$
-\langle u, x\rangle=-\|u\|\|x\| \cos \left(\theta_{u, x}\right) \geqslant-\|u\|\|x\|
$$

Therefore,

$$
\min _{\substack{u \in R^{m} \\\|u\|=\alpha}}-\langle u, x\rangle=-\|u\|\|x\|=-\alpha\|x\|
$$

and it is attained at $u=\alpha \frac{x}{\|x\|}$.
The corresponding optimal value of the inner minimization problem is therefore

$$
g(\alpha)+\frac{1}{2} \alpha^{2}-\alpha\|x\|+\frac{1}{2}\|x\|^{2}=g(\alpha)+\frac{1}{2}(\alpha-\|x\|)^{2}
$$

Therefore, $\operatorname{Prox}_{f}(x)=\bar{\alpha} \frac{x}{\|x\|}$, where

$$
\begin{aligned}
\bar{\alpha} & =\min _{\alpha \geqslant 0}\left\{g(\alpha)+\frac{1}{2}(\alpha-\|x\|)^{2}\right\} \\
& =\min _{\alpha \in \mathbb{R}}\left\{g(\alpha)+\frac{1}{2}(\alpha-\|x\|)^{2}\right\} \\
& =\operatorname{Prox}_{g}(\|x\|)
\end{aligned}
$$

The proof is complete.

Example 29: L12-2

Let $\alpha>0, f: \mathbb{R} \rightarrow(-\infty, \infty]$ be given by $\forall x \in \mathbb{R}$,

$$
f(x)= \begin{cases}\lambda|x|, & |x| \leqslant \alpha \\ \infty, & \text { otherwise }\end{cases}
$$

where $\lambda \geqslant 0$. Then f is convex 1.s.c and proper. Moreover, $\forall x \in \mathbb{R}$,

$$
\operatorname{Prox}_{f}(x)=\min \{\max \{|x|-\lambda, 0\}, \alpha\} \operatorname{sgn}(x)
$$

where $\forall x \in \mathbb{R}$,

$$
\operatorname{sgn}(x)= \begin{cases}1, & x \geqslant 0 \\ -1, & x<0\end{cases}
$$

Proof. Define $\forall x \in \mathbb{R}$,

$$
\begin{aligned}
g(x) & = \begin{cases}\lambda x, & 0 \leqslant x \leqslant \alpha \\
\infty, & \text { otherwise }\end{cases} \\
\operatorname{dom}(g) & =[0, \alpha] \subseteq[0, \infty)
\end{aligned}
$$

Moreover, $\forall x \in \mathbb{R}, f(x)<g(|x|)$, using theorem L12-1, we learn that

$$
\operatorname{Prox}_{f}(x)= \begin{cases}\operatorname{Prox}_{g}(|x|) \frac{x}{|x|}, & x \neq 0 \\ \left\{u \in \mathbb{R}| | u \mid=\operatorname{Prox}_{g}(0)\right\}, & x=0\end{cases}
$$

Recalling

$$
g(x)= \begin{cases}\lambda x, & 0 \leqslant x \leqslant \alpha \\ \infty, & \text { otherwise }\end{cases}
$$

and example L11-6, we obtain

$$
|u|=\operatorname{Prox}_{g}(0) \Longleftrightarrow|u|=\min \{\max \{-\lambda, 0\}, \alpha\}=0 \Longleftrightarrow u=0
$$

Hence,

$$
\begin{aligned}
\operatorname{Prox}_{f}(x) & = \begin{cases}\operatorname{Prox}_{g}(|x|) \operatorname{sgn}(x), & x \neq 0 \\
0, & x=0\end{cases} \\
& =\min \{\max \{|x|-\lambda, 0\}, \alpha\} \operatorname{sgn}(x)
\end{aligned}
$$

Example 30: L12-3

Let $w=\left(w_{1}, \ldots, w_{m}\right) \in \mathbb{R}_{+}^{m}$, let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathbb{R}_{+}^{m}$. Let $f: \mathbb{R} \rightarrow(-\infty, \infty]$ be given by

$$
f(x)= \begin{cases}\sum_{i=1}^{m} w_{i}\left|x_{i}\right|, & -\alpha \leqslant x \leqslant \alpha \\ \infty, & \text { otherwise }\end{cases}
$$

Then,

1. $\operatorname{Prox}_{f}(x)=\left(\min \left\{\max \left\{\left|x_{i}\right|-w_{i}, 0\right\}, \alpha_{i}\right\} \operatorname{sgn}\left(x_{i}\right)\right)_{i=1}^{m}$
2. Let $x_{0} \in \mathbb{R}^{m} . \forall n \in \mathbb{N}$, update via

$$
x_{n+1}=\operatorname{Prox}_{f}\left(x_{n}\right)
$$

Then $x_{n} \rightarrow \bar{x}$ where \bar{x} solves the problem

$$
\begin{gathered}
\min \sum_{i=1}^{m} w_{i}\left|x_{i}\right| \\
\text { subject to }\left|x_{i}\right| \leqslant \alpha_{i}, i \in\{1, \ldots, m\}
\end{gathered}
$$

Proof.

1. See A3
2. See A 3 for numerical illustration. Proof later.

4 Nonexpansive, Firmly Nonexpansive and Averaged Operators

From now on, we shall use I_{d} to denote the $m \times m$ identity matrix on \mathbb{R}^{m}, i.e.,

$$
\begin{aligned}
I_{d} & : \mathbb{R}^{m} \rightarrow \mathbb{R}^{m} \\
& : x \rightarrow x
\end{aligned}
$$

Definition 21: L12-4

1. Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$. Then T is nonexpansive if $\forall x, y \in \mathbb{R}^{m}$,

$$
\|T x-T y\| \leqslant\|x-y\|
$$

2. T is firmly nonexpansive if $\forall x, y \in \mathbb{R}^{m}$,

$$
\|T x-T y\|^{2}+\left\|\left(I_{d}-T\right) x-\left(I_{d}-T\right) y\right\|^{2} \leqslant\|x-y\|^{2}
$$

3. Let $\alpha \in(0,1)$, then T is α-averaged if

$$
\begin{aligned}
\exists N: \mathbb{R}^{m} & \rightarrow \mathbb{R}^{m}, N \text { is nonexpansive } \\
T & =(1-\alpha) I_{d}+\alpha N
\end{aligned}
$$

We can show that Firmly nonexpansive (f.n.e) \Longrightarrow Averaged \Longrightarrow (Triangle Inequality) nonexpansive.

Proposition 62: L12-5

Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$. Then the following are equivalent:

1. T is f.n.e.
2. $I_{d}-T$ is f.n.e.
3. $2 T-I_{d}$ is nonexpansive.
4. $\forall x, y \in \mathbb{R}^{m},\|T x-T y\|^{2} \leqslant\langle x-y, T x-T y\rangle$
5. $\forall x, y \in \mathbb{R}^{m},\left\langle T x-T y,\left(I_{d}-T\right) x-\left(I_{d}-T\right) y\right\rangle \geqslant 0$

Proof.

- $(1) \Longleftrightarrow(2)$: clear from the definition
- $(1) \Longleftrightarrow(3) \Longleftrightarrow(4) \Longleftrightarrow(5)$ See A3

For linear operators the previous Proposition can be defined as follows:

Proposition 63: L12-6

Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be linear. Then the following are equivalent

1. T is f.n.e
2. $\left\|2 T-I_{d}\right\| \leqslant 1$
3. $\forall x \in \mathbb{R}^{m},\|T x\|^{2} \leqslant\langle x, T x\rangle$
4. $\forall x \in \mathbb{R}^{m},\langle T x, x-T x\rangle \geqslant 0$

Proof.

- Using Prop L12-5, we have T is f.n.e $\Longleftrightarrow 2 T-I_{d}$ is nonexpansive. Since T ie linear, so is $2 T-I_{d}$. Therefore, $2 T-I_{d}$ is nonexpansive $\Longleftrightarrow \forall x, y \in \mathbb{R}^{m}$,

$$
\begin{aligned}
& \left\|\left(2 T-I_{d}\right) x-\left(2 T-I_{d}\right) y\right\| \leqslant\|x-y\| \\
\Longleftrightarrow & \forall z \in \mathbb{R}^{m}\left\|\left(2 T-I_{d}\right) z\right\| \leqslant\|z\| \\
\Longrightarrow & \forall z \in \mathbb{R}^{m} \backslash\{0\}, \frac{\left\|\left(2 T-I_{d}\right) z\right\|}{\|z\|} \leqslant 1 \\
\Longrightarrow & \sup \frac{\left\|\left(2 T-I_{d}\right) z\right\|}{\|z\|} \leqslant 1 \\
\Longrightarrow & \left\|2 T-I_{d}\right\| \leqslant 1
\end{aligned}
$$

- Conversely, suppose that $\left\|2 T-I_{d}\right\| \leqslant 1$, then $\forall z \in \mathbb{R}^{m} \backslash\{0\}$,

$$
\frac{\left\|\left(2 T-I_{d}\right) z\right\|}{\|z\|} \leqslant \sup _{z \neq 0} \frac{\left\|\left(2 T-I_{d}\right) z\right\|}{\|z\|}=\left\|2 T-I_{d}\right\| \leqslant 1
$$

which implies

$$
\forall z \in \mathbb{R}^{m},\left\|\left(2 T-I_{d}\right) z\right\| \leqslant\|z\|
$$

let $x, y \in \mathbb{R}^{m}$, setting $z=x-y$ shows that $2 T-I_{d}$ is nonexpansive, so we yield the desired results.

Remark. L12-7 It follows from the equivalence,

$$
T \text { is f.n.e } \Longleftrightarrow 2 T-I_{d} \text { is nonexpansive }
$$

that T is f.n.e $\Longleftrightarrow T$ is $\frac{1}{2}-$ averaged.
Indeed,

$$
\begin{aligned}
T \text { is f.n.e } & \Longleftrightarrow 2 T-I_{d}=: N \text { is nonexpansive } \\
& \Longleftrightarrow 2 T=I_{d}+N, N \text { nonexpansive } \\
& \Longleftrightarrow T=\frac{1}{2} I_{d}+\frac{1}{2} N, N \text { nonexpansive }
\end{aligned}
$$

Example 31: L12-8

Let C be convex closed nonempty subset of \mathbb{R}^{m}. Then P_{C} is f.n.e. Simply recall L10-1 and L12-5.

Example 32: L12-9

Suppose that $T=-\frac{1}{2} I_{d}$. Then T is averaged but NOT f.n.e.
Indeed,

$$
T=\frac{1}{4} I_{d}+\frac{3}{4}\left(-I_{d}\right) \Longrightarrow T \text { is } \frac{3}{4} \text {-averaged }
$$

T is NOT f.n.e as $\forall x \in \mathbb{R}^{m}$,

$$
\|T x\|^{2}+\|x-T x\|^{2}=\frac{1}{4}\|x\|^{2}+\frac{9}{4}\|x\|^{2}=\frac{10}{4}\|x\|^{2}=\frac{5}{2}\|x\|^{2}>\|x\|^{2}
$$

whenever $x \neq 0$.

Example 33: L12-10

Suppose that $T=-I_{d}$. Then T is nonexpansive, but T is NOT average. Indeed,
T is averaged

$$
\begin{aligned}
& \Longleftrightarrow \exists \alpha \in(0,1), N: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m} \text { nonexpansive, } T=(1-\alpha) I_{d}+\alpha N \\
& \Longleftrightarrow \exists \alpha \in(0,1),-I_{d}=(1-\alpha) I_{d}+\alpha N \\
& \Longleftrightarrow \exists \alpha \in(0,1),(-2+\alpha) I_{d}=\alpha N \\
& \Longleftrightarrow \exists \alpha \in(0,1), N=\frac{\alpha-2}{\alpha} I_{d}
\end{aligned}
$$

and so
N is nonexpansive

$$
\begin{aligned}
& \Longleftrightarrow\left|\frac{\alpha-2}{\alpha}\right| \leqslant 1 \\
& \Longleftrightarrow \frac{2-\alpha}{\alpha} \leqslant 1 \\
& \Longleftrightarrow 2-\alpha \leqslant \alpha \\
& \Longleftrightarrow 2 \alpha \geqslant 2 \Longleftrightarrow \alpha \geqslant 1
\end{aligned}
$$

which is absurd (contradiction).

Proposition 64: L12-11

Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be nonexpansive. Then T is continuous.

Proof. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathbb{R}^{m} such that $x_{n} \rightarrow \bar{x}$. Goal: $T\left(x_{n}\right) \rightarrow T(\bar{x})$. Indeed, $\forall n \in \mathbb{N}$,

$$
0 \leqslant\left\|T\left(x_{n}\right)-T(\bar{x})\right\| \leqslant\left\|x_{n}-\bar{x}\right\|
$$

Letting $n \rightarrow \infty$,

$$
0 \leqslant \lim _{n \rightarrow \infty}\left\|T\left(x_{n}\right)-T(\bar{x})\right\| \leqslant 0
$$

which shows

$$
T\left(x_{n}\right)-T(\bar{x})
$$

, as claimed.

4.1 Fixed Points

Definition 22: L12-12
Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$. Then

$$
\operatorname{Fix}(T)=\left\{x \in \mathbb{R}^{m} \mid x=T x\right\}
$$

Definition 23: L13-1

Let C be a nonempty subset of \mathbb{R}^{m} and let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathbb{R}^{m}. Then $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Fejér monotone with respect to C if $\forall c \in C, n \in \mathbb{N}$,

$$
\left\|x_{n+1}-c\right\| \leqslant\left\|x_{n}-c\right\|
$$

Example 34: L13-2

Recall $\operatorname{Fix}(T)=\{x \mid T x=x\}$. Say $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ nonexpansive, Fix $(T) \neq \emptyset$. Let $x_{0} \in \mathbb{R}^{m}, \forall n \in \mathbb{N}$ update via

$$
x_{n+1}=T\left(x_{n}\right)
$$

Then $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Fejér monotone with respect to $\operatorname{Fix}(T)$. Indeed, observe that $\forall f \in \operatorname{Fix}(T)$,

$$
f=T(f)=T^{2}(f)=T^{3}(f)=\ldots
$$

Observe also that $\forall n \in \mathbb{N}$,

$$
x_{n+1}=T\left(x_{n}\right)=T\left(T\left(x_{n-1}\right)\right)=T^{2}\left(x_{n-1}\right)=\ldots T^{n}\left(x_{0}\right)
$$

Now, let $n \in \mathbb{N}$, let $f \in \operatorname{Fix}(T)$.
Then

$$
\begin{aligned}
\left\|x_{n+1}-f\right\| & =\left\|T^{n}\left(x_{0}\right)-T^{n}(f)\right\| \\
& =\left\|T\left(T^{n-1}\left(x_{0}\right)\right)-T\left(T^{n-1}(f)\right)\right\| \\
& =\left\|T\left(x_{n}\right)-T(f)\right\| \\
& \leqslant\left\|x_{n}-f\right\|
\end{aligned}
$$

Proposition 65: L13-3

Let $\emptyset \neq C \subseteq \mathbb{R}^{m}$, let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathbb{R}^{m}. Suppose $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Fejér monotone with respect to C. Then the following hold:

1. $\left(x_{n}\right)_{n \in \mathbb{N}}$ is bounded.
2. For every $c \in C,\left(\left\|x_{n}-c\right\|\right)_{n \in \mathbb{N}}$ converges.
3. $\left(d_{C}\left(x_{n}\right)\right)_{n \in \mathbb{N}}$ is decreasing and converges.

Proof. 1. Let $c \in C$. By the triangle inequality, $\forall n \in \mathbb{N}$, have

$$
\begin{aligned}
\left\|x_{n}\right\| & \leqslant\|c\|+\left\|x_{n}-c\right\| \\
& \leqslant\|c\|+\left\|x_{n-1}-c\right\| \\
& \vdots \\
& \leqslant\|c\|+\left\|x_{0}-c\right\|
\end{aligned}
$$

Hence, $\left(x_{n}\right)_{n \in \mathbb{N}}$ is bounded as claimed.
2. Observe that $\forall n \in \mathbb{N}, c \in C$,

$$
0 \leqslant\left\|x_{n+1}-c\right\| \leqslant\left\|x_{n}-c\right\|
$$

That is the sequence $\left(\left\|x_{n}-c\right\|\right)_{n \in \mathbb{N}}$ is a non increasing sequence of real number, bounded below implies that $\left(\left\|x_{n}-c\right\|\right)_{n \in \mathbb{N}}$ converges.
3. Recall that $\forall n \in \mathbb{N}, c \in C$,

$$
\left\|x_{n+1}-c\right\| \leqslant\left\|x_{n}-c\right\|
$$

Now take the infimum over $c \in C$ to learn that

$$
0 \leqslant d_{C}\left(x_{n+1}\right) \leqslant d_{C}\left(x_{n}\right)
$$

so it converges.

Lemma 66: L13-4

Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathbb{R}^{m} and let $C \neq \emptyset$ subset of \mathbb{R}^{m}. Suppose that for every $c \in C$, $\left(\left\|x_{n}-c\right\|\right)_{n \in \mathbb{N}}$ converges and that every cluster point of $\left(x_{n}\right)_{n \in \mathbb{N}}$ lies in C. Then $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges to a point in C.

Proof. Observe that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is bounded, because $\left\|x_{n}\right\| \leqslant\left\|x_{n}-c\right\|+\|c\|$ where $\left\|x_{n}-c\right\|$ converges and $\|c\|$ is a constant.
Let x, y be two cluster points of $\left(x_{n}\right)_{n \in \mathbb{N}}$. That is

$$
x_{k_{n}} \rightarrow x, x_{l_{n}} \rightarrow y
$$

By assumption $x \in C, y \in C$, observe that

$$
\begin{aligned}
& \left\|x_{n}-y\right\|^{2}-\left\|x_{n}-x\right\|^{2}+\|x\|^{2}-\|y\|^{2} \\
= & \left\|x_{n}\right\|^{2}+\|y\|^{2}-2\left\langle x_{n}, y\right\rangle-\left\|x_{n}\right\|^{2}-\|x\|^{2}+2\left\langle x_{n}, x\right\rangle+\|x\|^{2}-\|y\|^{2} \\
= & 2\left\langle x_{n}, x-y\right\rangle
\end{aligned}
$$

Since $\left(x_{n}-y\right)$ and $\left(x_{n}-x\right)$ converges, we have $\left\langle x_{n}, x-y\right\rangle$ converges say to l.
Taking the limit along $x_{k_{n}}$ and $x_{l_{n}}$ respectively yield

$$
\begin{aligned}
\langle x, x-y\rangle & =\langle y, x-y\rangle=l \\
\Longrightarrow\|x-y\|^{2} & =\langle x, x-y\rangle-\langle y, x-y\rangle \\
& =0 \\
\Longrightarrow x & =y
\end{aligned}
$$

Theorem 67: L13-5

Let $\emptyset \neq C \subseteq \mathbb{R}^{m}$ and let $\left(x_{n}\right)$ be a sequence in \mathbb{R}^{m}. Suppose that $\left(x_{n}\right)_{n \in \mathbb{N}}$ if Fejér with respect to C, and that every cluster of $\left(x_{n}\right)_{n \in \mathbb{N}}$ lies in C. Then $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges to a point in C.

Proof. By Fejér monotonicity of $\left(x_{n}\right)$ we have
For every $c \in C,\left(\left\|x_{n}-c\right\|\right)_{n \in \mathbb{N}}$ converges
Now combine with Lemma 13-4
Let $x \in \mathbb{R}^{m}$, let $y \in \mathbb{R}^{m}$ and let $\alpha \in \mathbb{R}$. One could directly verify that

$$
\|\alpha x+(1-\alpha) y\|^{2}+\alpha(1-\alpha)\|x-y\|^{2}=\alpha\|x\|^{2}+(1-\alpha)\|y\|^{2}
$$

Indeed:

$$
\begin{gathered}
\|\alpha x+(1-\alpha) y\|^{2}=\alpha^{2}\|x\|^{2}+2 \alpha(1-\alpha)\langle x, y\rangle+(1-\alpha)^{2}\|y\|^{2} \\
\alpha(1-\alpha)\|x-y\|^{2}=\alpha(1-\alpha)\|x\|^{2}+\alpha(1-\alpha)\|y\|^{2}-2 \alpha(1-\alpha)\langle x, y\rangle
\end{gathered}
$$

Adding yields:

$$
\begin{aligned}
& \|\alpha x+(1-\alpha) y\|^{2}+\alpha(1-\alpha)\|x-y\|^{2} \\
= & \left(\alpha^{2}+\left(\alpha-\alpha^{2}\right)\right)\|x\|^{2}+(1-\alpha)(1-\alpha+\alpha)\|y\|^{2} \\
= & \alpha\|x\|^{2}+(1-\alpha)\|y\|^{2}
\end{aligned}
$$

Theorem 68: L13-6

Let $\alpha \in(0,1)$ and let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be α-averaged, such that $F i x(T) \neq \emptyset$. Let $x_{0} \in \mathbb{R}^{m}$. Update via $\forall n \in \mathbb{N}$,

$$
x_{n+1}=T\left(x_{n}\right)
$$

Then the following hold:

1. $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Fejér monotone with respect to $\operatorname{Fix}(T)$
2. $\frac{1}{\alpha}\left(T-(1-\alpha) I_{d}\right)\left(x_{n}\right)-x_{n} \rightarrow 0$
3. $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges to a point in $\operatorname{Fix}(T)$.

Proof.

1. T is averaged implies that T is nonexpansive. Now we use the example L13-2
2. By assumption, $\exists N: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}, N$ is nonexpansive, such that

$$
T=(1-\alpha) I_{d}+\alpha N \Longrightarrow N=\frac{1}{\alpha}\left(T-(1-\alpha) I_{d}\right)
$$

Hence $\forall n \in \mathbb{N}$,

$$
x_{n+1}=T\left(x_{n}\right)=(1-\alpha) x_{n}+\alpha N\left(x_{n}\right)
$$

Now let $f \in \operatorname{Fix}(T)$,

$$
\begin{aligned}
\left\|x_{n+1}-f\right\|^{2} & =\left\|(1-\alpha) x_{n}+\alpha N\left(x_{n}\right)-f\right\|^{2} \\
& =\|(1-\alpha)\left(x_{n}-f\right)+\alpha\left(N\left(x_{n}-f\right) \|^{2}\right. \\
& =(1-\alpha)\left\|x_{n}-f\right\|^{2}+\alpha\left\|N\left(x_{n}\right)-N(f)\right\|^{2}-\alpha(1-\alpha)\left\|N\left(x_{n}\right)-x_{n}\right\|^{2} \\
& \leqslant(1-\alpha)\left\|x_{n}-f\right\|^{2}+\alpha\left\|x_{n}-f\right\|^{2}-\alpha(1-\alpha)\left\|N\left(x_{n}\right)-x_{n}\right\|^{2} \\
& =\left\|x_{n}-f\right\|^{2}-\alpha(1-\alpha)\left\|N\left(x_{n}\right)-x_{n}\right\|^{2}
\end{aligned}
$$

Telescoping, yields

$$
\sum_{n=0}^{\infty} \alpha(1-\alpha)\left\|N\left(x_{n}\right)-x_{n}\right\|^{2} \leqslant\left\|x_{0}-f\right\|^{2}<\infty
$$

That is,

$$
\begin{aligned}
& \alpha(1-\alpha)\left\|N\left(x_{n}\right)-x_{n}\right\|^{2} \rightarrow 0 \\
\Longleftrightarrow & \left\|N\left(x_{n}\right)-x_{n}\right\| \rightarrow 0
\end{aligned}
$$

Recall that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Fejér monotone with respect to $\operatorname{Fix}(T)$, Observe also that

$$
\operatorname{Fix}(T)=\operatorname{Fix}(N)
$$

Indeed, let $x \in \mathbb{R}^{m}$, then

$$
\begin{aligned}
x \in \text { Fix }(T) & \Longleftrightarrow x=T(x) \\
& \Longleftrightarrow x=(1-\alpha) x+\alpha N(x) \\
& \Longleftrightarrow x=x-\alpha x+\alpha N(x) \\
& \Longleftrightarrow \alpha x=\alpha N(x) \\
& \Longleftrightarrow x=N(x) \\
& \Longleftrightarrow x \in F i x(N)
\end{aligned}
$$

Altogether, we learn that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Fejér monotone with respect to $\operatorname{Fix}(N)$.
3. Let \bar{x} be a cluster point of $\left(x_{n}\right)_{n \in \mathbb{N}}$ say $x_{k_{n}} \rightarrow \bar{x}$. Observe that N is nonexpansive implies N is continuous. Now, recall

$$
N x_{n}-x_{n} \rightarrow 0
$$

Taking the limit along the subsequence $x_{k_{n}}$, we learn that

$$
N \bar{x}-\bar{x}=0
$$

equivalently, $N \bar{x}=\bar{x}$.
That is, every cluster point of $\left(x_{n}\right)_{n \in \mathbb{N}}$ lies in $\operatorname{Fix}(N)=\operatorname{Fix}(T)$. Now combine with theorem L13-5

Corollary 69: L14-1

Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be f.n.e and suppose that $\operatorname{Fix}(T) \neq \emptyset$. Let $x_{0} \in \mathbb{R}^{m} . \forall n \in \mathbb{N}$, update via

$$
x_{n+1}=T\left(x_{n}\right)
$$

Then $\exists \bar{x} \in \operatorname{Fix}(T)$ such that

$$
x_{n} \rightarrow \bar{x}
$$

Proof. Since T is f.n.e T is averaged. Now combine with Theorem L13-6

Proposition 70: L14-2

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be convex lsc and proper. Then Prox_{f} is f.n.e.

Proof. Let $x, y \in \mathbb{R}^{m}$. Set

$$
p=\operatorname{Prox}_{f}(x), q=\operatorname{Prox}_{f}(y)
$$

Using we have Prop L10-14, $\forall z \in \mathbb{R}^{m}$,

$$
\begin{align*}
& \langle z-p, x-p\rangle+f(p) \leqslant f(z) \tag{4.1}\\
& \langle z-q, y-q\rangle+f(q) \leqslant f(z) \tag{4.2}
\end{align*}
$$

Choosing $z=q$ in (4.1), $z=p$ in (4.2), we obtain

$$
\begin{aligned}
& \langle q-p, x-p\rangle+f(p) \leqslant f(q) \\
& \langle p-q, y-q\rangle+f(q) \leqslant f(p)
\end{aligned}
$$

Adding the last two inequalities yields

$$
\langle q-p,(x-p)-(y-p)\rangle \leqslant 0
$$

Equivalently,

$$
\langle p-q,(x-p)-(y-p)\rangle \geqslant 0
$$

Now recall that

$$
p=\operatorname{Prox}_{f}(x), q=\operatorname{Prox}_{f}(y)
$$

Combining L12-5(5) with the conclusion yields the desired results.

Corollary 71: L14-3

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be convex lsc and proper, such that $\arg \min f \neq \emptyset$. Let $x_{0} \in \mathbb{R}^{m}$, $\forall n \in \mathbb{N}$, update via

$$
x_{n+1}=\operatorname{Prox}_{f}\left(x_{n}\right)
$$

Then $\exists \bar{x} \in \arg \min f$ such that

$$
x_{n} \rightarrow \bar{x}
$$

Proof. Observe that by L10-16,

$$
\arg \min f=\operatorname{Fix}\left(\text { Prox }_{f}\right) \neq \emptyset
$$

Recall the Prox $_{f}$ is f.n.e by L14-2
Now combine with L14-1 applied with T replaced by Prox_{f}

The following simple identity will be used in the next result.
Let $x, y \in \mathbb{R}^{m}, \alpha \in \mathbb{R} \backslash\{0\}$, then

$$
\alpha^{2}\left(\|x\|^{2}-\left\|\left(1-\frac{1}{\alpha}\right) x+\frac{1}{\alpha} y\right\|^{2}\right)=\alpha\left(\|x\|^{2}-\frac{1-\alpha}{\alpha}\|x-y\|^{2}-\|y\|^{2}\right)
$$

Indeed,

$$
\begin{aligned}
L H S & =\alpha^{2}\left(\|x\|^{2}-\left\|\left(1-\frac{1}{\alpha}\right) x+\frac{1}{\alpha} y\right\|^{2}\right) \\
& =\alpha^{2}\left(\|x\|^{2}-\left(1-\frac{1}{\alpha}\right)^{2}\|x\|^{2}-\frac{1}{\alpha^{2}}\|y\|^{2}+2 \frac{\alpha-1}{\alpha-2}\langle x, y\rangle\right) \\
& =\alpha^{2}\left(\left(\frac{2}{\alpha}-\frac{1}{\alpha^{2}}\right)\|x\|^{2}-\frac{1}{\alpha^{2}}\|y\|^{2}+2 \frac{\alpha-1}{\alpha-2}\langle x, y\rangle\right) \\
& =(2 \alpha-1)\|x\|^{2}-\|y\|^{2}+2(\alpha-1)\langle x, y\rangle \\
\text { RHS } & =\alpha\left(\|x\|^{2}-\frac{1-\alpha}{\alpha}\|x-y\|^{2}-\|y\|^{2}\right) \\
& =\alpha\left(\|x\|^{2}-\frac{1-\alpha}{\alpha}\|x\|^{2}-\frac{1-\alpha}{\alpha}\|y\|^{2}+\frac{2(1-\alpha)}{\alpha}\langle x, y\rangle-\|y\|^{2}\right) \\
& =\alpha\|x\|^{2}-(1-\alpha)\|x\|^{2}-(1-\alpha)\|y\|^{2}+2(1-\alpha)\langle x, y\rangle-\alpha\|y\|^{2} \\
& =(2 \alpha-1)\|x\|^{2}-\|y\|^{2}+2(\alpha-1)\langle x, y\rangle \\
& =L H S
\end{aligned}
$$

4.1.1 Composition of Averaged Operators

Proposition 72: L14-4

Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be nonexpansive and let $\alpha \in(0,1)$. Then the following are equivalent:

1. T is α-average
2. $\left(1-\frac{1}{\alpha}\right) I_{d}+\frac{1}{\alpha} T$ is nonexpansive
3. $\forall x, y \in \mathbb{R}^{m}$

$$
\|T(x)-T(y)\|^{2} \leqslant\|x-y\|^{2}-\frac{1-\alpha}{\alpha}\left\|\left(I_{d}-T\right)(x)-\left(I_{d}-T\right)(y)\right\|^{2}
$$

Proof.

1. 2) $\Longleftrightarrow 2)$:
T is α-averaged
$\Longleftrightarrow \exists N: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}, \quad N$ nonexpansive

$$
T=(1-\alpha) I_{d}+\alpha N \Longleftrightarrow \quad N=\frac{1}{\alpha}\left(T-(1-\alpha) I_{d}\right) \text { is nonexpansive }
$$

$\Longleftrightarrow\left(1-\frac{1}{\alpha}\right) I_{d}+\frac{1}{\alpha} T$ is nonexpansive
2. Recalling the previous identity

$$
\begin{aligned}
\alpha^{2}\left(\|x\|^{2}-\left\|\left(1-\frac{1}{\alpha}\right) x+\frac{1}{\alpha} y\right\|^{2}\right) & =\alpha\left(\|x\|^{2}-\frac{1-\alpha}{\alpha}\|x-y\|^{2}-\|y\|^{2}\right) \\
\left(\|x\|^{2}-\left\|\left(1-\frac{1}{\alpha}\right) x+\frac{1}{\alpha} y\right\|^{2}\right) & =\frac{\alpha}{\alpha^{2}}\left(\|x\|^{2}-\frac{1-\alpha}{\alpha}\|x-y\|^{2}-\|y\|^{2}\right)
\end{aligned}
$$

Now, 2) $\Longleftrightarrow \forall x, y \in \mathbb{R}^{m}$,

$$
\left\|\left(1-\frac{1}{\alpha}\right) x+\frac{1}{\alpha} T(x)-\left(1-\frac{1}{\alpha}\right) y-\frac{1}{\alpha} T(y)\right\|^{2} \leqslant\|x-y\|^{2}
$$

We then rewrite the left hand side as

$$
\begin{aligned}
& \left\|\left(1-\frac{1}{\alpha}\right)(x-y)+\frac{1}{\alpha}(T(x)-T(y))\right\|^{2} \\
= & \|x-y\|^{2}-\frac{1}{\alpha}\left(\|x-y\|^{2}-\frac{1-\alpha}{\alpha}\|(x-T(x))-(y-T(y))\|^{2}-\|T(x)-T(y)\|^{2}\right) \\
\leqslant & \|x-y\|^{2}
\end{aligned}
$$

Now, we have

$$
\begin{aligned}
& -\frac{1}{\alpha}\left(\|x-y\|^{2}-\frac{1-\alpha}{\alpha}\|(x-T(x))-(y-T(y))\|^{2}-\|T(x)-T(y)\|^{2}\right) \leqslant 0 \\
\Longleftrightarrow & \|x-y\|^{2}-\frac{1-\alpha}{\alpha}\|(x-T(x))-(y-T(y))\|^{2}-\|T(x)-T(y)\|^{2} \geqslant 0
\end{aligned}
$$

Theorem 73: L14-5

Let $\alpha_{1}, \alpha_{2} \in(0,1)$, let $T_{i}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be α_{i}-averaged. Set

$$
T:=T_{1} T_{2}, \alpha:=\frac{\alpha_{1}+\alpha_{2}-2 \alpha_{1} \alpha_{2}}{1-\alpha_{1} \alpha_{2}}
$$

Then T is α-averaged.

Proof. First observe that $\alpha \in(0,1)$. Indeed, clearly $\alpha_{1}, \alpha_{2} \in(0,1)$.
Now,

$$
\begin{aligned}
\alpha \in(0,1) & \Longleftrightarrow \alpha_{1}+\alpha_{2}-2 \alpha_{1} \alpha_{2}<1-\alpha_{1} \alpha_{2} \\
& \Longleftrightarrow \alpha_{1}+\alpha_{2}<1+\alpha_{1} \alpha_{2} \\
& \Longleftrightarrow \alpha_{1}-\alpha_{1} \alpha_{2}<1-\alpha_{2} \\
& \Longleftrightarrow \alpha_{1}\left(1-\alpha_{2}\right)<1-\alpha_{2}
\end{aligned}
$$

Hence, $\alpha \in(0,1)$ as claimed. Recalling L14-4
Now, call the inequality below (4.3),

$$
\begin{aligned}
\|T(x)-T(y)\|^{2} & =\left\|T_{1}\left(T_{2}(x)\right)-T_{1}\left(T_{2}(y)\right)\right\|^{2} \\
& \leqslant\left\|T_{2}(x)-T_{2}(y)\right\|^{2}-\frac{1-\alpha_{1}}{\alpha_{1}}\left\|\left(I_{d}-T_{1}\right)\left(T_{2}(x)\right)-\left(I_{d}-T_{1}\right)\left(T_{2}(y)\right)\right\|^{2} \\
\leqslant & \|x-y\|^{2}-\underbrace{\frac{1-\alpha_{2}}{\alpha_{2}}\left\|\left(I_{d}-T_{2}\right)(x)-\left(I_{d}-T_{2}\right)(y)\right\|^{2}}_{(1)} \\
& \underbrace{-\frac{1-\alpha_{1}}{\alpha_{1}}\left\|\left(I_{d}-T_{1}\right)\left(T_{2}(x)\right)-\left(I_{d}-T_{1}\right)\left(T_{2}(y)\right)\right\|^{2}}_{(2)}
\end{aligned}
$$

Set $\beta=\frac{1-\alpha_{1}}{\alpha_{1}}+\frac{1-\alpha_{2}}{\alpha_{2}}>0$, we claim that

$$
\begin{equation*}
(1)+(2) \geqslant \frac{\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}{\beta \alpha_{1} \alpha_{2}}\left\|\left(I_{d}-T\right)(x)-\left(I_{d}-T\right)(y)\right\|^{2} \ldots \tag{3}
\end{equation*}
$$

Indeed, we have

$$
\begin{aligned}
\frac{1}{\beta}((1)+(2))= & \frac{1-\alpha_{2}}{\beta \alpha_{2}}\left\|\left(I_{d}-T_{2}\right)(x)-\left(I_{d}-T_{2}\right)(y)\right\|^{2} \\
& +\frac{1-\alpha_{1}}{\beta \alpha_{1}}\left\|\left(I_{d}-T_{1}\right)\left(T_{2}(x)\right)-\left(I_{d}-T_{1}\right)\left(T_{2}(y)\right)\right\|^{2} \\
= & \left\|\frac{1-\alpha_{1}}{\beta \alpha_{1}}\left(\left(I_{d}-T_{1}\right)\left(T_{2}(x)\right)-\left(I_{d}-T_{1}\right)\left(T_{2}(y)\right)\right)-\frac{1-\alpha_{2}}{\beta \alpha_{2}}\left(\left(I_{d}-T_{2}\right)(x)-\left(I_{d}-T_{2}\right)(y)\right)\right\|^{2} \\
& +\frac{\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}{\beta^{2} \alpha_{1} \alpha_{2}}\|(I_{d}-\underbrace{T_{1} T_{2}}_{T})(x)-\left(I_{d}-T_{1} T_{2}\right)(y)\|^{2} \\
\geqslant & \frac{\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}{\beta^{2} \alpha_{1} \alpha_{2}}\left\|\left(I_{d}-T\right)(x)-\left(I_{d}-T\right)(y)\right\|^{2}
\end{aligned}
$$

Note we go from the first equation to second one by, $\bar{\alpha} \in \mathbb{R}$,

$$
\|\bar{\alpha} x-(1-\bar{\alpha}) y\|^{2}+\bar{\alpha}(1-\bar{\alpha})\|x-y\|^{2}=\bar{\alpha}\|x\|^{2}+(1-\bar{\alpha})\|y\|^{2}
$$

So we have proved (3).
Consequently, (4.3) becomes

$$
\|T(x)-T(y)\|^{2} \leqslant\|x-y\|^{2}-\frac{\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}{\beta \alpha_{1} \alpha_{2}}\left\|\left(I_{d}-T\right)(x)-\left(I_{d}-T\right)(y)\right\|^{2}
$$

Finally, recalling that

$$
\alpha=\frac{\alpha_{1}+\alpha_{2}-2 \alpha_{1} \alpha_{2}}{1-\alpha_{1} \alpha_{2}}
$$

we can verify that

$$
\frac{\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}{\beta \alpha_{1} \alpha_{2}}=\frac{1-\alpha}{\alpha}
$$

Indeed,

$$
\begin{aligned}
\frac{\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}{\alpha_{1} \alpha_{2}\left(\frac{1-\alpha_{1}}{\alpha_{1}}+\frac{1-\alpha_{2}}{\alpha_{2}}\right)} & =\frac{\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)}{\alpha_{2}\left(1-\alpha_{2}\right)+\alpha_{1}\left(1-\alpha_{2}\right)} \\
& =\frac{1-\alpha_{1}-\alpha_{2}+\alpha_{1} \alpha_{2}}{\alpha_{1}+\alpha_{2}-2 \alpha_{1} \alpha_{2}} \\
\frac{1-\alpha}{\alpha} & =\frac{1-\frac{\alpha_{1}+\alpha_{2}-2 \alpha_{1} \alpha_{2}}{1-\alpha_{1} \alpha_{2}}}{\frac{\alpha_{1}+\alpha_{2}-2 \alpha_{1} \alpha_{2}}{1-\alpha_{1} \alpha_{2}}} \\
& =\frac{1-\alpha_{1} \alpha_{2}-\alpha_{1}-\alpha_{2}+2 \alpha_{1} \alpha_{2}}{\alpha_{1}+\alpha_{2}-2 \alpha_{1} \alpha_{2}} \\
& =\frac{1-\alpha_{1}-\alpha_{2}+\alpha_{1} \alpha_{2}}{\alpha_{1}+\alpha_{2}-2 \alpha_{1} \alpha_{2}}
\end{aligned}
$$

Now we use L14-4 to get our result.

5 Constrained Convex Optimization

We now consider the problem

$$
(P) \begin{aligned}
& \min f(x) \\
& \text { subject to } x \in C
\end{aligned}
$$

- $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ convex, 1.s.c., proper
- $C \neq \emptyset$, convex and closed.

Recall L7-5, we shall see now some weaker results, in the absence of convexity.

Theorem 74: L15-2

$f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ proper, $g: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ convex l.s.c. proper. $\operatorname{dom}(g) \subseteq$ $\operatorname{int}(\operatorname{dom}(f))$
Consider the problem:

$$
\min _{x \in \mathbb{R}^{m}} f(x)+g(x)
$$

1. If $x^{*} \in \operatorname{dom}(g)$ is a local optimal of (P) and f is differentiable at x^{*}, then

$$
-\nabla f\left(x^{*}\right) \in \partial g\left(x^{*}\right)
$$

2. Suppose that f is convex. If f is differentiable at $x^{*} \in \operatorname{dom}(g)$ then

$$
x^{*} \text { is a global minimizer of }(P) \Longleftrightarrow-\nabla f\left(x^{*}\right) \in \partial g\left(x^{*}\right)
$$

Proof.

1. Let $y \in \operatorname{dom}(g)$. Since g is convex, we know that $\operatorname{dom}(g)$ is convex. Hence $\forall \lambda \in(0,1)$:

$$
x^{*}+\lambda\left(y-x^{*}\right)=\underbrace{(1-\lambda) x^{*}+\lambda y}_{:=x_{\lambda}} \in \operatorname{dom}(g)
$$

Therefore, for sufficiently small λ

$$
\begin{aligned}
& f\left(x_{\lambda}\right)+g\left(x_{\lambda}\right) \geqslant f\left(x^{*}\right)+g\left(x^{*}\right) \\
\Longrightarrow & f\left((1-\lambda) x^{*}+\lambda y\right)+g\left((1-\lambda) x^{*}+\lambda y\right) \geqslant f\left(x^{*}\right)+g\left(x^{*}\right)
\end{aligned}
$$

By the convexity of g we learn that

$$
f\left((1-\lambda) x^{*}+\lambda y\right)+(1-\lambda) g\left(x^{*}\right)+\lambda g(y) \geqslant f\left(x^{*}\right)+g\left(x^{*}\right)
$$

Rearranging yield

$$
\lambda g\left(x^{*}\right)-\lambda g(y) \leqslant f\left((1-\lambda) x^{*}+\lambda y\right)-f\left(x^{*}\right)
$$

Equivalently,

$$
g\left(x^{*}\right)-g(y) \leqslant \frac{f\left((1-\lambda) x^{*}+\lambda y\right)-f\left(x^{*}\right)}{\lambda}
$$

Taking the limit as $\lambda \rightarrow 0^{+}$, we obtain

$$
g\left(x^{*}\right)-g(y) \leqslant f^{\prime}\left(x^{*} ; y-x^{*}\right)=\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle
$$

That is: for any $y \in \operatorname{dom}(g)$,

$$
g(y) \geqslant g\left(x^{*}\right)+\left\langle-\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \Longrightarrow-\nabla f\left(x^{*}\right) \in \partial g\left(x^{*}\right)
$$

2. Suppose that f is convex. Observe that 1) prove (\Longleftarrow). Now suppose that $-\nabla f\left(x^{*}\right) \in$ $\partial g\left(x^{*}\right)$. On the one hand, for any $y \in \operatorname{dom}(g)$,

$$
g(y) \geqslant g\left(x^{*}\right)+\left\langle-\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \ldots(1)
$$

On the other hand, since f is convex, differentiable at x^{*}, then, $\forall y \in \operatorname{dom}(g) \subseteq \operatorname{dom}(f)$,

$$
\begin{equation*}
f(y) \geqslant f\left(x^{*}\right)+\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \ldots \tag{2}
\end{equation*}
$$

Adding (1) and (2) yields for any $y \in \operatorname{dom}(g)$,

$$
f(y)+g(y) \geqslant f\left(x^{*}\right)+g\left(x^{*}\right)
$$

That is, x^{*} is optimal solution of (P)

5.1 KKT Conditions

In the following we assume, f, g_{1}, \ldots, g_{n} are functions from $\mathbb{R}^{m} \rightarrow \mathbb{R}$ (full domain). $I=$ $\{1, \ldots, n\}$
Consider the problem,

$$
\begin{aligned}
& \min f(x) \\
& \text { s.t. } g_{i}(x) \leqslant 0, \quad(\forall i \in I)
\end{aligned}
$$

We assume that (P) has at least one solution and that

$$
\mu:=\min \left\{f(x) \mid \forall i \in I, g_{i}(x) \leqslant 0\right\} \in \mathbb{R}
$$

is the optimal value.
Define

$$
F(x):=\max \{\underbrace{f(x)-\mu}_{=: g_{0}(x)}, g_{1}(x), \ldots, g_{n}(x)\}
$$

Lemma 75: L15-3

We have $\forall x \in \mathbb{R}^{m}, F(x) \geqslant 0$. Moreover, solutions of (P) is

$$
\text { minimizers of } F=\{x \mid F(x)=0\}
$$

Proof. Let $x \in \mathbb{R}^{m}$.

1. x does not solve (P)
(a) x is infeasible for (P), i.e., x doesn't satisfy the constraints. Then

$$
\begin{aligned}
& \Longrightarrow \exists j \in I \text { such that } g_{j}(x)>0 \\
& \Longrightarrow F(x) \geqslant g_{j}(x)>0
\end{aligned}
$$

(b) x is feasible $\left(g_{i}(x) \leqslant 0, \forall i\right)$, but not optimal $\Longrightarrow f(x)>\mu$,

$$
\Longrightarrow F(x) \geqslant g_{0}(x)=f(x)-\mu>0
$$

2. x solves (P), implies that

$$
x \text { is feasible and } f(x)=\mu
$$

also,

$$
\begin{aligned}
x \text { is feaisble } & \Longleftrightarrow \forall i \in I, g_{i}(X) \leqslant 0 \\
f(x)=\mu & \Longleftrightarrow g_{0}(x)=f(x)-\mu=0
\end{aligned}
$$

Hence, $F(x)=0$

Fact L15-4 (max rule for subdifferential calculus):
Let $g_{1}, \ldots, g_{n}: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be convex l.s.c. and proper. Define

$$
\begin{aligned}
g(x) & =\max \left\{g_{1}(x), \ldots, g_{n}(x)\right\} \\
A(x) & =\left\{i \in\{1, \ldots, n\} \mid g_{i}(x)=g(x)\right\}
\end{aligned}
$$

Let $x \in \cap_{i=1}^{n}\left(\operatorname{int}\left(\operatorname{dom}\left(g_{i}\right)\right)\right)$, then

$$
\partial g(x)=\operatorname{Conv}\left(\cup_{i \in A(x)} \partial g_{i}(x)\right)
$$

Theorem 76: L15-5(Fritz-John necessary optimality conditions

Suppose that f, g_{1}, \ldots, g_{n} are convex and x^{*} solves (P). Then $\exists \alpha_{0} \geqslant 0, \ldots, \alpha_{n} \geqslant 0$ not all 0 , for which

$$
0 \in \alpha_{0} \partial f\left(x^{*}\right)+\sum_{i \in I} \alpha_{i} \partial g_{i}\left(x^{*}\right)
$$

amd $\forall i \in I$,

$$
\alpha_{i} g_{i}\left(x^{*}\right)=0 \leftarrow \text { complementary slackness }
$$

Proof. Recall that

$$
F(x)=\max \left\{f(x)-\mu, g_{1}(x), \ldots, g_{n}(x)\right\}
$$

By the previous lemma,

$$
F\left(x^{*}\right)=0=\min F\left(\mathbb{R}^{m}\right)
$$

Hence,

$$
0 \in \partial F\left(x^{*}\right)=\operatorname{Conv}_{i \in A\left(x^{*}\right)} \partial g_{i}\left(x^{*}\right)
$$

where

$$
A\left(x^{*}\right):=\{i \in\{0,1, \ldots, n\} \mid g_{i}\left(x^{*}\right)=\underbrace{0}_{F\left(X^{*}\right)=0}\}
$$

Observe that $0 \in \partial F\left(x^{*}\right)$ because $g_{0}\left(x^{*}\right)=f\left(x^{*}\right)-\mu=0=\min F\left(\mathbb{R}^{m}\right)$. Moreover, $\partial g_{0}=$ $\partial f\left(g_{0}=f-\mu\right)$
Hence, $\forall i \in A\left(x^{*}\right), \exists \alpha_{i} \geqslant 0$,

$$
\sum_{i \in A\left(x^{*}\right)} \alpha_{i}=1
$$

and

$$
\begin{aligned}
0 & \in \sum_{i \in A\left(x^{*}\right)} \alpha_{i} \partial g_{i}\left(x^{*}\right) \\
& =\alpha_{0} \partial g_{0}\left(x^{*}\right)+\sum_{i \in A\left(x^{*}\right) \backslash\{0\}} \alpha_{i} \partial g_{i}\left(x^{*}\right) \\
& =\alpha_{0} \partial f\left(x^{*}\right)+\sum_{i \in A\left(x^{*}\right) \backslash\{0\}} \alpha_{i} \partial g_{i}\left(x^{*}\right)
\end{aligned}
$$

Now, for $i \in I \backslash A\left(x^{*}\right)$, set $\alpha_{i}=0$.
If $i \in A\left(x^{*}\right) \cap I$, then

$$
g_{i}\left(x^{*}\right)=0
$$

Hence,

$$
\begin{aligned}
& i \in A\left(x^{*}\right) \cap I \Longrightarrow \alpha_{i} \underbrace{g_{i}\left(x^{*}\right)}_{=0}=0 \\
& i \notin A\left(x^{*}\right) \cap I=I \backslash A\left(x^{*}\right) \Longrightarrow \underbrace{\alpha_{i}}_{=0} g_{i}\left(x^{*}\right)=0
\end{aligned}
$$

Altogether, $\forall i \in I$,

$$
\alpha_{i} g_{i}\left(x^{*}\right)=0 \leftarrow \text { complementary slackness }
$$

5.1.1 KKT conditions

KKT: Karush-Kuhn-Tucker conditions.

In the following we assume, f, g_{1}, \ldots, g_{n} are functions from $\mathbb{R}^{m} \rightarrow \mathbb{R}$ (full domain). $I=$ $\{1, \ldots, n\}$
Consider the problem,

$$
(P) \begin{aligned}
& \min f(x) \\
& \text { s.t. } g_{i}(x) \leqslant 0,(\forall i \in I)
\end{aligned}
$$

Theorem 77: L16-1:KKT Conditions Necessary Part

Suppose f, g_{1}, \ldots, g_{n} are convex, x^{*} solved (P). Suppose that Slater's conditions holds, i.e.,

$$
\exists s \in \mathbb{R}^{m}, \forall i \in I=\{1,2, \ldots, n\}, g_{i}(s)<0
$$

Then $\exists \lambda_{1}, \ldots, \lambda_{n} \geqslant 0$ such that the KKT conditions:

1. $0 \in \partial f\left(x^{*}\right)+\sum_{i \in I} \lambda_{i} \partial g_{i}\left(x^{*}\right)$, stationarity condition
2. $\forall i \in I, \lambda_{i} g_{i}\left(x^{*}\right)=0$, complementary slackness condition
hold.

Proof. Recalling Fritz-John.
$\exists \alpha_{0}, \alpha_{1}, \ldots, \alpha_{n} \geqslant 0$, Not all 0 , such that

$$
0 \in \alpha_{0} \partial f\left(x^{*}\right)+\sum_{i \in I} \alpha_{i} \partial g_{i}\left(x^{*}\right) \ldots(*)
$$

and

$$
\forall i \in I, \alpha_{i} g_{i}\left(x^{*}\right)=0
$$

Done if we can show that $\alpha_{0}>0$!
Suppose for eventual contradiction that $\alpha_{0}=0$.
By $(*), \forall i \in I, \exists y_{i} \in \partial g_{i}\left(x^{*}\right)$

$$
\sum_{i \in I} \alpha_{i} y_{i}=0
$$

Hence, $i \in I, \forall y \in \mathbb{R}^{m}$,

$$
g_{i}\left(x^{*}\right)+\left\langle y_{i}, y-x^{*}\right\rangle \leqslant g_{i}(y)
$$

In particular:

$$
g_{i}\left(x^{*}\right)+\left\langle y_{i}, s-x^{*}\right\rangle \leqslant g_{i}(s)
$$

Multiplying the inequality above by $\alpha_{i} \geqslant 0$, then $\forall i \in I$,

$$
\alpha_{i} g_{i}\left(x^{*}\right)+\left\langle\alpha_{i} y_{i}, s-x^{*}\right\rangle \leqslant \alpha_{i} g_{i}(s)
$$

Adding the above inequalities,

$$
\sum_{i \in I} \underbrace{\alpha_{i} g_{i}\left(x^{*}\right)}_{=0}+\langle\underbrace{\left.\sum_{i \in I} \alpha_{i} y_{i}, s-x^{*}\right\rangle \leqslant \underbrace{\sum_{i \in I} \underbrace{\alpha_{i}}_{\geqslant 0} \underbrace{g_{i}(s)}_{<0}}_{<0}, \underbrace{}_{<0}}_{=0}
$$

which implies

$$
0<0
$$

which is a contradiction. Hence, $\alpha_{0}>0$.
Now divide $(*)$ and $\alpha_{i} g_{i}\left(x^{*}\right)=0$ by α_{0} and set $\forall i \in I$,

$$
\lambda_{i}=\frac{\alpha_{i}}{\alpha_{0}} \geqslant 0
$$

Theorem 78: L16-2 KKT Conditions, Sufficient Parts

Suppose f, g_{1}, \ldots, g_{n} are convex and $x^{*} \in \mathbb{R}^{m}$ satisfies:

1. $\forall i \in I, g_{i}\left(x^{*}\right) \leqslant 0$, Primal feasibility.
2. $\forall i \in I, \lambda_{i} \geqslant 0$, Dual feasibility.
3. $0 \in \partial f\left(x^{*}\right)+\sum_{i \in I} \lambda_{i} \partial g_{i}\left(x^{*}\right)$, Stationarity.
4. $\forall i \in I, \lambda_{i} g_{i}\left(x^{*}\right)=0$, Complementary Slackness.

Then x^{*} solves (P).

Proof. Define

$$
h(x):=f(x)+\sum_{i \in I} \lambda_{i} g_{i}(x)
$$

By 2), $h(x)$ is convex. Observe that the sum rule applies to the sum of convex functions $f, \lambda_{i} g_{i}, i \in$ I.

Therefore, $\forall x \in \mathbb{R}^{m}$,

$$
\begin{aligned}
\partial h(x) & =\partial\left(f+\sum_{i \in I} \lambda_{i} g_{i}\right)(x) \\
& \underbrace{=}_{\text {sum rule }} \partial f(x)+\sum_{i \in I} \lambda_{i} \partial g_{i}(x)
\end{aligned}
$$

Consequently,

$$
0 \in \partial h\left(x^{*}\right) \underbrace{=}_{3)} \partial f\left(x^{*}\right)+\sum_{i \in I} \lambda_{i} \partial g_{i}\left(x^{*}\right)
$$

By Fermat: x^{*} is a global minimizer of h.
Now, let x be feasible for (P), i.e.,

$$
\forall i \in I, g_{i}(x) \leqslant 0
$$

Then,

$$
\begin{aligned}
& f\left(x^{*}\right) \underbrace{}_{4)}=f\left(x^{*}\right)+\sum_{i \in I} \lambda_{i} g_{i}\left(x^{*}\right) \\
&=h\left(x^{*}\right) \\
& \leqslant h(x) \\
&=f(X)+\sum_{i \in I} \underbrace{\lambda_{i}}_{\geqslant 0} \underbrace{g_{i}(x)}_{\leqslant 0} \\
& \underbrace{}_{1), 2)} \leqslant f(x)
\end{aligned}
$$

5.2 Algorithms

Subgradient methods:

Gradient descent: classical theory
Consider the problem:

$$
(P) \min _{x \in \mathbb{R}^{m}} f(x)
$$

Definition 24: L16-3

Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be proper and let $x \in \operatorname{int}(\operatorname{dom}(f)), d \in \mathbb{R}^{m} \backslash\{0\}$ is a descent direction of f at x if the directional derivative satisfies

$$
f^{\prime}(x ; d)<0 \ldots(*)
$$

Remark. L16-4

1. $0 \neq \nabla f(x)$ exists at $x \Longrightarrow-\nabla f(x)$ is a descent direction Indeed:

$$
\begin{aligned}
f^{\prime}(x ;-\nabla f(x)) & =\langle\nabla f(x),-\nabla f(x)\rangle \\
& =-\|\nabla f(x)\|^{2} \\
& <0
\end{aligned}
$$

2. $(*) \Longrightarrow \exists \varepsilon>0, \forall 0<t \leqslant \varepsilon, f(x+t d)<f(x)$

$$
\begin{aligned}
x_{n+1} & :=x_{n}-t_{n} \nabla f\left(x_{n}\right) \\
t_{n} & \in \arg \min _{t \geqslant 0} f\left(x_{n}-t \nabla f\left(x_{n}\right)\right)
\end{aligned}
$$

If f is strictly convex and coercive,

$$
x_{n} \rightarrow \text { unique minimizer of } f
$$

"Peressini, Sullivan, Uhl"

In the lack of smoothness

Example 35: L16-5 (L.Vandenberghe)
Negative subgradients are NOT necessarily descent directions.
Consider

$$
\begin{aligned}
f & : \mathbb{R}^{2} \rightarrow \mathbb{R}_{+} \\
& :\left(x_{1}, x_{2}\right) \mapsto\left|x_{1}\right|+2\left|x_{2}\right|
\end{aligned}
$$

f convex (sum of convex functions), full domain \Longrightarrow continuous.

$$
\begin{aligned}
\partial f(1,0) & =\{1\} \times[-2,2] \\
& \ni(1,2)
\end{aligned}
$$

Consider $d=-(1,2)=(-1,-2)$, let $t>0$, then

$$
\begin{aligned}
f((1,0)+t *(-1,-2)) & =f(1-t,-2 t) \\
& =|1-t|+2|-2 t| \\
& =|1-t|+4|t| \\
& = \begin{cases}1+3 t, & 0 \leqslant t \leqslant 1 ; \\
-1-3 t, & t<0 ; \\
5 t-1, & t \geqslant 1 ;\end{cases}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& f^{\prime}((1,0) ;(-1,-2)) \\
= & \lim _{t \downarrow 0} \frac{f((1,0)+t(-1,2))-f(1,0)}{t} \\
= & \lim _{t \downarrow 0} \frac{1+3 t-1}{t} \\
= & 3>0
\end{aligned}
$$

Hence $(-1,2)$ is NOT a descent direction. Moreover,

$$
\forall t>0, f(1,0)=1<f((1,0)+t(-1,-2))
$$

Example 36: L16-6 (Wolfe)

Let $\gamma>1$. Consider the function:

$$
\begin{aligned}
& f: \mathbb{R}^{2} \rightarrow \mathbb{R} \\
& \quad:\left(x_{1}, x_{2}\right) \mapsto \begin{cases}\sqrt{x_{1}^{2}+\gamma x_{2}^{2}}, & \left|x_{2}\right| \leqslant x_{1} ; \\
\frac{x_{1}+\gamma\left|x_{2}\right|}{\sqrt{1+\gamma}}, & \text { otherwise }\end{cases}
\end{aligned}
$$

Observe that $\arg \min _{x \in \mathbb{R}^{m}} f(x)=\varphi$
Indeed, $\inf _{x \in \mathbb{R}^{m}} f(x)=-\infty$, as

$$
f(r, 0)=\frac{r}{\sqrt{1+\gamma}} \rightarrow-\infty, \text { as } r \rightarrow-\infty
$$

Plot of f with $\gamma=2$

One can show that

$$
f=\sigma_{C}
$$

, where

$$
C=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \left\lvert\, x_{1}^{2}+\frac{x_{2}^{2}}{\gamma} \leqslant 1\right., x_{1} \geqslant \frac{1}{\sqrt{1+\gamma}}\right\}
$$

Therefore, f is convex.
Also, f is differentiable on

$$
\mathbb{R}^{2} \backslash((-\infty, 0] \times\{0\})
$$

Now, let $x_{0}=(\gamma, 1)$ be in the set above.
The steepest descent will generate a sequence (details omitted)

$$
x_{n}=\left(\gamma\left(\frac{\gamma-1}{\gamma+1}\right)^{n},(-1)^{n}\left(\frac{\gamma-1}{\gamma+1}\right)^{n}\right) \rightarrow(0,0)
$$

Observe that $(0,0)$ is NOT a minimizer of f. In the absence of smoothness a lot of pathologies happen.

5.3 Projected Subgradient Method

$$
(P) \begin{gathered}
\min f(x) \\
\text { s.t. } x \in C
\end{gathered}
$$

where

- $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ is convex, 1.s.c., proper.
- $C \neq \emptyset$ convex closed subset of $\operatorname{int}(\operatorname{dom}(f))$
- $S:=\arg \min _{x \in C} f(x) \neq \emptyset$
- $\mu:=\min _{x \in C} f(x)$
- $\exists L>0, \sup \|\partial f(C)\| \leqslant L<\infty \Longleftrightarrow \forall c \in C, \forall u \in \partial f(c),\|u\| \leqslant L$

Projected Subgradient Method

$\overline{\text { Get } x_{0} \in C . \forall n \in \mathbb{N} \text {, note } \operatorname{in} t}(\operatorname{dom}(f)) \subseteq \operatorname{dom}(\partial f)$, given x_{n}, pick a stepsize $t_{n}>0$ and $" f^{\prime}\left(x_{n}\right) " \in \partial f\left(x_{n}\right)$. Here $f^{\prime}\left(x_{n}\right)$ means the subgradient of f at x_{n}.
Update via

$$
x_{n+1}:=P_{C}\left(x_{n}-t_{n} f^{\prime}\left(x_{n}\right)\right)
$$

Recall that $C \subseteq \operatorname{int}(\operatorname{dom}(f))$, hence $\forall n \in \mathbb{N}, x_{n} \in \operatorname{int}(\operatorname{dom}(f))$. Therefore $\partial f\left(x_{n}\right) \neq \emptyset$, and $\left(x_{n}\right)_{n \in \mathbb{N}}$ is well-defined.

Lemma 79: L17-1

Let $s \in S=\arg \min _{x \in C} f(x)$ and $f(s)=\mu$. Then

$$
\left\|x_{n}-s\right\|^{2} \leqslant\left\|x_{n}-s\right\|^{2}-2 t_{n}\left(f\left(x_{n}\right)-\mu\right)+t_{n}^{2}\left\|f^{\prime}\left(x_{n}\right)\right\|^{2}
$$

Observe that $S \subseteq C$

Proof.

$$
\begin{aligned}
& \left\|x_{n+1}-s\right\|^{2}=\|P_{c}\left(x_{n}-t_{n} f^{\prime}\left(x_{n}\right)\right)-\underbrace{P_{C}(s)}_{s \in C, P_{C}(s)=s}\|^{2} \\
& \underbrace{\leqslant}_{P_{C} f . n . e, \text { nonexp }}\left\|x_{n}-t_{n} f^{\prime}\left(x_{n}\right)-s\right\|^{2} \\
& \quad=\left\|\left(x_{n}-s\right)-t_{n} f^{\prime}\left(x_{n}\right)\right\|^{2} \\
& \quad=\left\|x_{n}-s\right\|^{2}+t_{n}^{2}\left\|f^{\prime}\left(x_{n}\right)\right\|^{2}-2 t_{n}\left\langle x_{n}-s, f^{\prime}\left(x_{n}\right)\right\rangle
\end{aligned}
$$

Recall we want to show

$$
\left\|x_{n}-s\right\|^{2}+t_{n}^{2}\left\|f^{\prime}\left(x_{n}\right)\right\|^{2}-2 t_{n}\left(f\left(x_{n}\right)-\mu\right)
$$

Done if

$$
-2 t_{n}\left\langle x_{n}-s, f^{\prime}\left(x_{n}\right)\right\rangle \leqslant-2 t_{n}\left(f\left(x_{n}\right)-\mu\right)
$$

Equivalent lt,

$$
\left\langle x_{n}-s, f^{\prime}\left(x_{n}\right)\right\rangle \geqslant\left(f\left(x_{n}\right)-\mu\right)
$$

which is true by the subgradient inequality which is

$$
\underbrace{f(s)}_{\mu} \geqslant f\left(x_{n}\right)+\left\langle f^{\prime}\left(x_{n}\right), s-x_{n}\right\rangle
$$

What is a good stepsize t_{n}

Let us minimizer the upper bound

$$
\begin{aligned}
0 & =\frac{d}{d t_{n}} \text { RHS } \\
& =\frac{d}{d t_{n}}\left(-2 t_{n}\left(f\left(x_{n}\right)-\mu\right)+t_{n}^{2}\left\|f^{\prime}\left(x_{n}\right)\right\|^{2}\right) \\
& =-2\left(f\left(x_{n}-\mu\right)+2 t_{n}\left\|f^{\prime}\left(x_{n}\right)\right\|^{2}\right.
\end{aligned}
$$

Assuming $f^{\prime}\left(x_{n}\right) \neq 0$ (else, $0 \in \partial f\left(x_{n}\right)$ and hence, by Fermat x_{n} is a global minimizer and we are DONE). Pick

$$
t_{n}=\frac{f\left(x_{n}\right)-\mu}{\left\|f^{\prime}\left(x_{n}\right)\right\|^{2}}
$$

which is known as Polyak's rule.

$$
(P) \begin{gathered}
\min f(x) \\
\text { s.t. } x \in C
\end{gathered}
$$

where

- $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ is convex, 1.s.c., proper.
- $C \neq \emptyset$ convex closed subset of $\operatorname{int}(\operatorname{dom}(f))$
- $S:=\arg \min _{x \in C} f(x) \neq \emptyset$
- $\mu:=\min _{x \in C} f(x)$
- $\exists L>0, \sup \|\partial f(C)\| \leqslant L<\infty \Longleftrightarrow \forall c \in C, \forall u \in \partial f(c),\|u\| \leqslant L$
- $x_{0} \in C$,

$$
x_{n+1}:=P_{C}\left(x_{n}-t_{n} f^{\prime}\left(x_{n}\right)\right)
$$

Polyak's stepsize

$$
t_{n}=\frac{f\left(x_{n}\right)-\mu}{\left\|f^{\prime}\left(x_{n}\right)\right\|^{2}}
$$

Theorem 80: L17-2

We have

1. $\forall s \in S, \forall n \in \mathbb{N},\left\|x_{n+1}-s\right\| \leqslant\left\|x_{n}-s\right\|$. " $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Fejér monotone w.r.t. S "
2. $f\left(x_{n}\right) \rightarrow \mu$
3. $\mu_{n}-\mu \leqslant \frac{L d_{s}\left(x_{0}\right)}{\sqrt{n+1}}=O\left(\frac{1}{\sqrt{n}}\right)$, where $\forall n \in \mathbb{N}, \mu_{n}:=\min _{0 \leqslant k \leqslant n} f\left(x_{k}\right)$
4. Let $\varepsilon>0$. If $n \geqslant \frac{L^{2} d_{s}^{2}\left(x_{0}\right)}{\varepsilon^{2}}-1 \Longrightarrow \mu_{n} \leqslant \mu+\varepsilon$

Proof. Let $s \in S, n \in \mathbb{N}$.
1.

$$
\begin{aligned}
\left\|x_{n+1}-s\right\|^{2} & \leqslant\left\|x_{n}-s\right\|^{2}-2 t_{n}\left(f\left(x_{n}\right)-\mu\right)+t_{n}^{2}\left\|f^{\prime}\left(x_{n}\right)\right\|^{2} \\
& =\left\|x_{n}-s\right\|^{2}-2 \frac{f\left(x_{n}\right)-\mu}{\left\|f^{\prime}\left(x_{n}\right)\right\|^{2}}\left(f\left(x_{n}\right)-\mu\right)+\left(\frac{f\left(x_{n}\right)-\mu}{\left\|f^{\prime}\left(x_{n}\right)\right\|^{2}}\right)^{2}\left\|f^{\prime}\left(x_{n}\right)\right\|^{2} \\
& =\left\|x_{n}-s\right\|^{2}-2 \frac{\left(f\left(x_{n}\right)-\mu\right)^{2}}{\left\|f^{\prime}\left(x_{n}\right)\right\|^{2}}+\frac{\left(f\left(x_{n}\right)-\mu\right)^{2}}{\left\|f^{\prime}\left(x_{n}\right)\right\|^{2}} \\
& =\left\|x_{n}-s\right\|^{2}-\frac{\left(f\left(x_{n}\right)-\mu\right)^{2}}{\left\|f^{\prime}\left(x_{n}\right)\right\|^{2}} \\
& \leqslant\left\|x_{n}-s\right\|^{2}-\frac{\left(f\left(x_{n}\right)-\mu\right)^{2}}{L^{2}} \\
& \leqslant\left\|x_{n}-s\right\|^{2}
\end{aligned}
$$

Note $\left\|f^{\prime}\left(x_{n}\right)\right\|^{2} \leqslant L^{2} \Longrightarrow \frac{1}{\left\|f^{\prime}\left(x_{n}\right)\right\|^{2}} \leqslant \frac{1}{L^{2}} \Longrightarrow-\frac{1}{\left\|f^{\prime}\left(x_{n}\right)\right\|^{2}} \leqslant-\frac{1}{L^{2}}$
2. Observe that $\forall k \in \mathbb{N}$,

$$
\frac{\left(f\left(x_{k}\right)-\mu\right)^{2}}{L^{2}} \leqslant\left\|x_{k}-s\right\|^{2}-\left\|x_{k+1}-s\right\|^{2}
$$

Summing the above inequalities over $k=0$ to $k=n$ yields

$$
\begin{equation*}
\frac{1}{L^{2}} \sum_{k=0}^{n}\left(f\left(x_{k}\right)-\mu\right)^{2} \leqslant\left\|x_{0}-s\right\|^{2}-\left\|x_{n+1}-s\right\|^{2} \leqslant\left\|x_{0}-s\right\|^{2} \ldots \tag{*}
\end{equation*}
$$

Letting $n \rightarrow \infty$, we learn that

$$
0 \leqslant \sum_{k=0}^{\infty}\left(f\left(x_{k}\right)-\mu\right)^{2} \leqslant L^{2}\left\|x_{0}-s\right\|^{2}<\infty
$$

which implies

$$
f\left(x_{k}\right)-\mu \rightarrow 0 \Longleftrightarrow f\left(x_{k}\right) \rightarrow \mu
$$

3. Recall $\forall n \in \mathbb{N}, \mu_{n}:=\min _{0 \leqslant k \leqslant n} f\left(x_{k}\right)$. Let $n \geqslant 0$.

Then $\forall k \in\{0, \ldots, n\}$,

$$
\begin{aligned}
&\left(\mu_{n}-\mu\right)^{2} \leqslant\left(f\left(x_{k}\right)-\mu\right)^{2} \\
& \Longrightarrow(n+1) \frac{\left(\mu_{n}-\mu\right)^{2}}{L^{2}} \leqslant \frac{1}{L^{2}} \sum_{k=0}^{n}\left(f\left(x_{k}\right)-\mu\right)^{2} \\
& \underbrace{}_{(*)} \leqslant\left\|x_{0}-s\right\|^{2}
\end{aligned}
$$

Minimizing over $s \in S$, we get

$$
(n+1) \frac{\left(\mu_{n}-\mu\right)^{2}}{L^{2}} \leqslant d_{S}^{2}\left(x_{0}\right)
$$

4.

$$
\begin{aligned}
& n \geqslant \frac{L^{2} d_{S}^{2}\left(x_{0}\right)}{\varepsilon^{2}}-1 \\
& \Longleftrightarrow \frac{d_{S}\left(x_{0}\right)^{2} L^{2}}{(n+1)} \leqslant \varepsilon^{2}
\end{aligned}
$$

Then by 3), we have

$$
\left(\mu_{n}-\mu\right)^{2} \leqslant \frac{d_{S}^{2}\left(x_{0}\right) L^{2}}{n+1} \leqslant \varepsilon^{2}
$$

which implies

$$
\mu_{n}-\mu \leqslant \varepsilon \Longrightarrow \mu_{n} \leqslant \mu+\varepsilon
$$

Recall that: Theorem L13-5
Theorem 81: L17-3 Convergence of Projected Subgradient
Suppose that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is generated as in (P). Then

$$
x_{n} \rightarrow \text { a solution of }(P) \text { in } S
$$

Proof. By the previous theorem, $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Fejér monotone w.r.t. S.
Since $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Fejér monotone w.r.t to $S,\left(x_{n}\right)_{n \in \mathbb{N}}$ is bounded.
Also, by the previous theorem,

$$
f\left(x_{n}\right) \rightarrow \mu=\min _{x \in C} f(x)
$$

By Bolzano-Weirestrass, $\exists x_{k_{n}} \rightarrow \bar{x}$ and $\bar{x} \in C$ (because $\left(x_{n}\right)_{n \in \mathbb{N}}$ lies in C by construction, C is closed).
Now,

$$
\mu=\min _{x \in C} f(x) \leqslant f(\bar{x}) \underbrace{\leqslant}_{f \text { is lsc }} \liminf _{n \rightarrow \infty} f\left(x_{k_{n}}\right)=\mu
$$

which implies $f(\bar{x})=\mu$. Hence, $\bar{x} \in S$ That is, all cluster point of $\left(x_{n}\right)_{n \in \mathbb{N}}$ lies in S. $x_{n} \rightarrow \bar{x} \in S$ by the Fejér monotone theorem.

Example 37: L18-1

Let $C \subseteq \mathbb{R}^{m}$ be convex closed and nonempty and let $x \in \mathbb{R}^{m}$. Then

$$
\partial d_{C}(x)= \begin{cases}\frac{x-P_{C}(x)}{d_{C}(x)}, & x \notin C \\ N_{C}(x) \cap B(0 ; 1), & x \in C\end{cases}
$$

Consequently, $\forall x \in \mathbb{R}^{m}$,

$$
\sup \left\|\partial d_{C}(x)\right\| \leqslant 1
$$

Proof. Omitted. The bound can be easily verified.

Lemma 82: L18-2

Let f be convex, l.s.c, proper and let $\lambda>0$. Then

$$
\partial(\lambda f)=\lambda \partial f
$$

Proof. Easy

5.4 The Convex Feasibility Problem

- Given k closed convex subsets S_{i} of \mathbb{R}^{m} such that

$$
S=S_{1} \cap S_{2} \cap \ldots S_{k} \neq \emptyset
$$

- Problem: Find $x \in S$
- Can we use the Projected subgradient method for (P) ? What is f ? What is C ? What is L ?

Set $C=\mathbb{R}^{m}, P_{C}=I_{d}$. Set $f(x)=\max \left\{d_{S_{1}}(x), \ldots, d_{S_{k}}(x)\right\}$, then $f(x) \geqslant 0, \forall x \in \mathbb{R}^{m}$. And

$$
\begin{aligned}
& f(x)=0 \\
& \Longleftrightarrow \forall i \in\{1, \ldots, k\}, d_{S_{i}}(x)=0 \\
& \Longleftrightarrow \forall i \in\{1, \ldots, k\}, x \in S_{i} \\
& \Longleftrightarrow x \in \bigcap_{i=1}^{k} S_{i}=S \\
& s \neq \emptyset \Longrightarrow \mu=\min _{x \in \mathbb{R}^{m}} f(x)=0
\end{aligned}
$$

$L=1$ by the previous example.
Finally, observe that the max formula for subdifferentials implies that $x \notin S$.

$$
\begin{aligned}
\partial f(x) & =\operatorname{Conv}\left\{\partial d_{S_{i}}(x) \mid d_{S_{i}}(x)=f(x)\right\} \\
& =\operatorname{Conv}\left\{\left.\frac{x-P_{S_{i}}(x)}{d_{S_{i}}(x)} \right\rvert\, d_{S_{i}}(x)=f(x)\right\}
\end{aligned}
$$

What do we do with that?
Well, given x_{n} pick an index i_{n} such that

$$
d_{S_{i_{n}}}\left(x_{n}\right)=f\left(x_{n}\right)
$$

Set

$$
f^{\prime}\left(x_{n}\right):=\frac{x_{n}-P_{S_{i_{n}}}\left(x_{n}\right)}{d_{S_{i_{n}}}}
$$

What about t_{n} ?
Polyak's step size:

$$
\begin{aligned}
t_{n} & =\frac{f\left(x_{n}\right)-\mu}{\left\|f^{\prime}\left(x_{n}\right)\right\|^{2}} \\
& =\frac{d_{S_{i_{n}}}\left(x_{n}\right)-0}{\| \frac{x_{n}-P_{S_{i_{n}}} \|^{2}}{d_{S_{i_{n}}\left(x_{n}\right)} \|^{2}}} \\
& =\frac{d_{S_{i_{n}}}\left(x_{n}\right)}{\frac{\left\|x_{n}-P_{S_{n}}\right\|^{2}}{d_{S_{S_{n}}}^{2}\left(x_{n}\right)}} \\
& =d_{S_{i_{n}}}\left(x_{n}\right)
\end{aligned}
$$

The update leads to the Greedy Projection Algorithm.

$$
\begin{aligned}
x_{n+1} & =x_{n}-t_{n} f^{\prime}\left(x_{n}\right) \\
& =x_{n}-d_{S_{i_{n}}}(x) \frac{x_{n}-P_{S_{i_{n}}}\left(x_{n}\right)}{d_{S_{i_{n}}}\left(x_{n}\right)} \\
& =x_{n}-\left(x_{n}-P_{S_{i_{n}}}\left(x_{n}\right)\right) \\
& =P_{S_{i_{n}}}\left(x_{n}\right)
\end{aligned}
$$

so

$$
x_{n+1}:=P_{S_{i_{n}}}\left(x_{n}\right)
$$

where $S_{i_{n}}$ is any set that is farthest away from x_{n}. And, by theorem L17-3,

$$
x_{n} \rightarrow \text { some point in } S
$$

5.4.1 The Case $k=2$

We obtain that method of alternating projections "MAP".
$x_{0} \in \mathbb{R}^{m}$. Update via

$$
x_{n+1}=P_{S_{2}} P_{S_{1}} x_{n}
$$

Example 38: L18-3

Find $x \in S$ where

$$
S:=\left\{x \in \mathbb{R}^{m} \mid A x=b, x \geqslant 0\right\}
$$

- A is $k \times m$ matrix
- $b \in \mathbb{R}^{k}$

We can use "MAP"' Set $S_{1}=\mathbb{R}_{+}^{m}$,

$$
\begin{aligned}
P_{S_{1}}(x) & =x^{+}=\left(\max \left\{\xi_{i}, 0\right\}\right)_{i=1}^{m}, x=\left(\xi_{1}, \ldots, \xi_{m}\right) \\
S_{2} & =\left\{x \in \mathbb{R}^{m} \mid A x=b\right\}=A^{-1}(b)(\text { the inverse image of } b) \\
P_{S_{2}}(x) & =x-A^{+}(A x-b)
\end{aligned}
$$

A^{+}is the Moore-Penrose pseudo inverse (pinv). Let $x_{0} \in \mathbb{R}^{m}$. Update via

$$
\begin{aligned}
x_{n+1} & =P_{S_{2}} P_{S_{1}}\left(x_{n}\right) \\
& =P_{S_{2}}\left(x_{n}^{+}\right) \\
& =x_{n}^{+}-A^{+}\left(A x_{n}^{+}-b\right) \\
& \Longrightarrow \bar{x} \in S
\end{aligned}
$$

Remark. L18-4 In practice, it is possible that $\mu=\min _{x \in C} f(x)$ is NOT known to us. In this case replace Polyak's stepsize by a sequence $\left(t_{n}\right)_{n \in \mathbb{N}}$ such that

$$
\frac{\sum_{k=0}^{n} t_{k}^{2}}{\sum_{k=0}^{n} t_{k}} \rightarrow 0 \text { as } n \rightarrow \infty
$$

for example,

$$
t_{k}=\frac{1}{k+1}
$$

One can show that

$$
\mu_{n}:=\min \left\{f\left(x_{0}\right), \ldots, f\left(x_{n}\right)\right\} \rightarrow \mu
$$

as $n \rightarrow \infty$

5.5 The Proximal Gradient Method(PGM)

Consider the problem

$$
(P) \min _{x \in \mathbb{R}^{m}} F(x):=f(x)+g(x)
$$

Assumptions:
(P) has solutions

$$
S:=\arg \min _{x \in \mathbb{R}^{m}} F(x) \neq \emptyset
$$

and

$$
\mu=\min _{x \in \mathbb{R}^{m}} F(x)
$$

- f is "nice": convex, lsc, proper and differentiable on $\operatorname{int}(\operatorname{dom}(f)) \neq \emptyset . \nabla f$ is L-Lipschitz on $\operatorname{int}(\operatorname{dom}(f))$
- g is convex, lsc and proper.

$$
\operatorname{dom}(g) \subseteq \operatorname{int}(\operatorname{dom}(f))
$$

implies that

$$
\emptyset \neq r i(\operatorname{dom}(g)) \subseteq \operatorname{dom}(g) \subseteq \operatorname{ri}(\operatorname{dom}(f))
$$

and implies

$$
\operatorname{ri}(\operatorname{dom}(g)) \cap \operatorname{ri}(\operatorname{dom}(f))=\operatorname{ri}(\operatorname{dom}(g)) \neq \emptyset
$$

Example 39: L18-5

$$
\min _{x \in C} f(x)
$$

where is $\emptyset \neq C \subseteq \mathbb{R}^{m}$ convex, closed is equivalent to

$$
\min _{x \in \mathbb{R}^{m}} f(x)+\underbrace{\delta_{C}(x)}_{:=g}
$$

PGM:

$$
x \in \operatorname{int}(\operatorname{dom}(f)) \supseteq \operatorname{dom}(g)
$$

Update via

$$
\begin{aligned}
x_{+} & =\operatorname{Prox}_{\frac{1}{L} g}\left(x-\frac{1}{L} \nabla f(x)\right) \\
& =\arg \min _{y \in \mathbb{R}^{m}}\left\{\frac{1}{L} g(y)+\frac{1}{2}\left\|y-\left(x-\frac{1}{L} \nabla f(x)\right)\right\|^{2}\right\} \\
& \in \operatorname{dom}(g) \subseteq \operatorname{int}(\operatorname{dom}(f))=\operatorname{dom}(f)
\end{aligned}
$$

Set

$$
T=\operatorname{Prox}_{\frac{1}{L} g}\left(I_{d}-\frac{1}{L} \nabla f\right)
$$

i.e., $\forall x \in \mathbb{R}^{m}$

$$
T x=\operatorname{Prox}_{\frac{1}{L} g}\left(x-\frac{1}{L} \nabla f(x)\right)
$$

Theorem 83: L18-6

Let $x \in \mathbb{R}^{m}$. Then

$$
\begin{gathered}
x \in S=\arg \min _{x \in \mathbb{R}^{m}} F=\arg \min _{x \in \mathbb{R}^{m}}(f+g) \\
\Longleftrightarrow \\
x=T x \text { (i.e., } x \in \operatorname{Fix}(T))
\end{gathered}
$$

Proof. Observe that by Fermat,

$$
\begin{aligned}
x \in S \Longleftrightarrow 0 & \in \partial(f+g)(x) \\
& =\partial f(x)+\partial g(x) \\
& =\nabla f(x)+\partial g(x)
\end{aligned}
$$

Let $x \in \mathbb{R}^{m}$. Then $x \in S$

$$
\begin{aligned}
& \Longleftrightarrow 0 \in \partial(f+g)(x) \\
& \Longleftrightarrow 0 \in \nabla f(x)+\partial g(x) \\
& \Longleftrightarrow-\nabla f(x) \in \partial g(x) \\
& \Longleftrightarrow-\frac{1}{L} \nabla f(x) \in \frac{1}{L} \partial g(x) \\
& \Longleftrightarrow x-\frac{1}{L} \nabla f(x) \in x+\partial\left(\frac{1}{L} g\right)(x)=\left(I_{d}+\partial\left(\frac{1}{L} g\right)\right)(x) \\
& \Longleftrightarrow x \in\left(I_{d}+\partial\left(\frac{1}{L} g\right)\right)^{-1}\left(x-\frac{1}{L} \nabla f(x)\right) \\
& \Longleftrightarrow x=\operatorname{Prox}_{\frac{1}{L} g}\left(I_{d}-\frac{1}{L} \nabla f\right)(x)=T x
\end{aligned}
$$

Fact L18-7
Let $f: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ be convex lsc and proper and let $\beta>0$. Then f is β-strongly convex $\Longleftrightarrow \forall x \in \operatorname{dom}(\partial f), \forall v \in \partial f(x)$,

$$
f(y) \geqslant f(x)+\langle v, y-x\rangle+\frac{\beta}{2}\|y-x\|^{2}
$$

5.6 The Prox-Grad Inequality

Proposition 84: L18-8

Let $x \in \mathbb{R}^{m}, y \in \operatorname{int}(\operatorname{dom}(f))$,

$$
y_{+}=T y=\operatorname{Prox}_{\frac{1}{L} g}(y-\nabla f(y))
$$

Then

$$
F(x)-F\left(y_{+}\right) \geqslant \frac{L}{2}\left\|x-y_{+}\right\|^{2}-\frac{L}{2}\|x-y\|^{2}+D_{f}(x, y)
$$

where

$$
D_{f}(x, y):=f(x)-f(y)-\langle\nabla f(y), x-y\rangle \geqslant 0
$$

which is the "Bregman distance" by convexity of f.

Proof. Define

$$
h(z):=f(y)+\langle\nabla f(y), z-y\rangle+g(z)+\frac{L}{2}\|z-y\|^{2}
$$

Then h is L-strongly convex.
Let $z \in \mathbb{R}^{m}$. Then

$$
\begin{aligned}
& z \text { minimizes } h \\
& \Longleftrightarrow 0 \in \partial\left(f(y)+\langle\nabla f(y), z-y\rangle+g(z)+\frac{L}{2}\|z-y\|^{2}\right) \\
&=\partial\left(\langle\nabla f(y), z-y\rangle+g(z)+\frac{L}{2}\|z-y\|^{2}\right) \\
&=\nabla f(y)+\partial g(z)+L(z-y) \\
& \Longleftrightarrow 0 \in \frac{1}{L} \nabla f(y)+\partial\left(\frac{1}{L} g\right)(z)+(z-y) \\
& \Longleftrightarrow y-\frac{1}{L} \nabla f(y) \in z+\partial\left(\frac{1}{L} g\right)(z) \\
&=\left(I_{d}+\partial\left(\frac{1}{L} g\right)\right)(z) \\
& \Longleftrightarrow z=\left(I_{d}+\partial\left(\frac{1}{L} g\right)\right)^{-1}\left(y-\frac{1}{L} \nabla f(y)\right) \\
&=\operatorname{Prox}_{\frac{1}{L} g}\left(y-\frac{1}{L} \nabla f(y)\right) \\
&=\operatorname{Ty}^{2}=: y_{+}
\end{aligned}
$$

which implies

$$
\arg \min h=:\left\{y_{+}\right\}
$$

Recalling L18-7, $f \rightarrow h, \beta \rightarrow L, y \rightarrow x, x \rightarrow y_{+}$, then

$$
\begin{equation*}
h(x)-h\left(y_{+}\right) \geqslant \frac{L}{2}\left\|x-y_{+}\right\|^{2} . . \tag{1}
\end{equation*}
$$

Moreover, by the descent lemma, we have

$$
f\left(y_{+}\right) \leqslant f(y)+\left\langle\nabla f(y), y_{+}-y\right\rangle+\frac{L}{2}\left\|y_{+}-y\right\|^{2}
$$

Therefore,

$$
\begin{aligned}
h\left(y_{+}\right) & =f(y)+\left\langle\nabla f(y), y_{+}-y\right\rangle+g\left(y_{+}\right)+\frac{L}{2}\left\|y_{+}-y\right\|^{2} \\
& \geqslant f\left(y_{+}\right)+g\left(y_{+}\right) \\
& =F\left(y_{+}\right)
\end{aligned}
$$

Combining with (1),

$$
h(x)-F\left(y_{+}\right) \geqslant h(x)-h\left(y_{+}\right) \geqslant \frac{L}{2}\left\|x-y_{+}\right\|^{2}
$$

Using the definition of h, the inequality above becomes

$$
f(y)+\langle\nabla f(y), x-y\rangle+g(x)+\frac{L}{2}\|x-y\|^{2}-F\left(y_{+}\right) \geqslant \frac{L}{2}\left\|x-y_{+}\right\|^{2}
$$

Adding $f(x)$ to both sides and rearranging yields:

$$
f(x)+g(x)-F\left(y_{+}\right) \geqslant \frac{L}{2}\left\|x-y_{+}\right\|^{2}-\frac{L}{2}\|x-y\|^{2}+\underbrace{f(x)-f(y)+\langle\nabla f(y), x-y\rangle}_{D_{f}(x, y)}
$$

The Proximal Gradient Method:

The problem is here:

$$
(P) \min _{x \in \mathbb{R}^{m}} F(x):=f(x)+g(x)
$$

Assumptions:
$\overline{(P) \text { has solutions }}$

$$
S:=\arg \min _{x \in \mathbb{R}^{m}} F(x) \neq \emptyset
$$

and

$$
\mu=\min _{x \in \mathbb{R}^{m}} F(x)
$$

- f is "nice": convex, lsc, proper and differentiable on $\operatorname{int}(\operatorname{dom}(f)) \neq \emptyset . \nabla f$ is L-Lipschitz on $\operatorname{int}(\operatorname{dom}(f))$
- g is convex, lsc and proper.

$$
\operatorname{dom}(g) \subseteq \operatorname{int}(\operatorname{dom}(f))
$$

implies that

$$
\emptyset \neq r i(\operatorname{dom}(g)) \subseteq \operatorname{dom}(g) \subseteq \operatorname{ri}(\operatorname{dom}(f))
$$

and implies

$$
\operatorname{ri}(\operatorname{dom}(g)) \cap \operatorname{ri}(\operatorname{dom}(f))=\operatorname{ri}(\operatorname{dom}(g)) \neq \emptyset
$$

Lemma 85: L19-1 (Sufficient Decrease Lemma

$$
F\left(y_{+}\right) \leqslant F(y)-\frac{L}{2}\left\|y-y_{+}\right\|^{2}
$$

Proof. Use L18-8 with x replaced by y and recall that, because f is convex,

$$
D_{f}(x, y)=f(x)-f(y)-\langle\nabla f(y), x-y\rangle \geqslant 0
$$

The Proximal Gradient Method:
Given $y \in \operatorname{int}(\operatorname{dom}(f))$, update via

$$
\begin{aligned}
y_{+} & :=\operatorname{Prox}_{\frac{1}{L} g}\left(y-\frac{1}{L} \nabla f(y)\right) \\
& =: \operatorname{Ty} \in \operatorname{dom}(g) \subseteq \operatorname{int}(\operatorname{dom}(f))=\operatorname{dom}(\nabla f)
\end{aligned}
$$

The Algorithm:
$\overline{\text { Given } x_{0} \in \operatorname{int}(\operatorname{dom}(f)) .} \forall n \in \mathbb{N}$, update via

$$
x_{n+1}:=T x_{n}=\operatorname{Prox}_{\frac{1}{L} g}\left(x_{n}-\frac{1}{L} \nabla f\left(x_{n}\right)\right)
$$

Theorem 86: L19-2 $O(1 / n)$ rate of convergence of function values

The following hold:

1. $\forall s \in S, n \in \mathbb{N},\left\|x_{n+1}-s\right\| \leqslant\left\|x_{n}-s\right\|$, i.e., $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Fejér monotone w.r.t S.
2. $\left(F\left(x_{n}\right)\right)_{n \in \mathbb{N}}$ decreases to μ. more precisely,

$$
0 \leqslant F\left(x_{n}\right)-\mu \leqslant \frac{L \cdot d_{S}^{2}\left(x_{0}\right)}{2 n}=O\left(\frac{1}{n}\right)
$$

Proof. Applying L19-1 with y replaced by $x_{n}\left(y_{+}=x_{n+1}\right)$ yields

$$
F\left(x_{n+1}\right) \leqslant F\left(x_{n}\right)-\frac{L}{2}\left\|x_{n+1}-x_{n}\right\|^{2} \leqslant F\left(x_{n}\right)
$$

1. Recalling: Let $s \in S$, let $k \in \mathbb{N}$.

Applying L18-8 with (x, y) replaced by $\left(s, x_{k}\right)$ yields

$$
\begin{equation*}
0 \geqslant \underbrace{F(s)}_{\mu}-F\left(x_{k+1}\right) \geqslant \frac{L}{2}\left\|s-x_{k+1}\right\|^{2}-\frac{L}{2}\left\|s-x_{k}\right\|^{2} \ldots \tag{*}
\end{equation*}
$$

implies that

$$
\left(x_{n}\right)_{n \in \mathbb{N}} \text { is Fejér monotone w.r.t. } S
$$

2. Multiplying $(*)$ by $\frac{2}{L}$ and adding the resulting inequalities from $k=0$ to $k=n-1$ and telescoping yields:

$$
\frac{2}{L}\left(\sum_{k=0}^{n-1}\left(\mu-F\left(x_{k+1}\right)\right)\right) \geqslant\left\|s-x_{n}\right\|^{2}-\left\|s-x_{0}\right\|^{2} \geqslant-\left\|s-x_{0}\right\|^{2}
$$

In particular, setting $s=P_{S}\left(x_{0}\right) \in S$, we obtain

$$
\begin{aligned}
d_{S}^{2}\left(x_{0}\right) & =\left\|P_{S}\left(x_{0}\right)-x_{0}\right\|^{2} \\
& \geqslant \frac{2}{L}\left(\sum_{k=0}^{n-1}\left(F\left(x_{k+1}\right)-\mu\right)\right) \\
& \geqslant \frac{2}{L}\left(\sum_{k=0}^{n-1}\left(F\left(x_{n}\right)-\mu\right)\right) \text { by } F\left(x_{n+1}\right) \leqslant F\left(x_{n}\right) \\
& =\frac{2}{L} n\left(F\left(x_{n}\right)-\mu\right)
\end{aligned}
$$

Equivalently,

$$
0 \leqslant F\left(x_{n}\right)-\mu \leqslant \frac{L \cdot d_{S}^{2}\left(x_{0}\right)}{2 n}
$$

and

$$
F\left(x_{n}\right) \rightarrow \mu
$$

Theorem 87: L19-3 Convergence of PGM

x_{n} converges to some solution in $S=\arg \min _{x \in \mathbb{R}^{m}} F(x)$

Proof. By the previous theorem we have $\left(x_{n}\right)_{n \in \mathbb{N}}$ is Fejér monotone w.r.t S. Done if we can show that every cluster point of $\left(x_{n}\right)_{n \in \mathbb{N}}$ lies in S.
Suppose that \bar{x} is a cluster point of $\left(x_{n}\right)_{n \in \mathbb{N}}$, say $x_{k_{n}} \rightarrow \bar{x}$.
Indeed,

$$
\begin{aligned}
& \mu \leqslant F(\bar{x}) \leqslant \liminf _{n \rightarrow \infty} F\left(x_{k_{n}}\right)=\mu \\
\Longrightarrow & F(\bar{x})=\mu \\
\Longleftrightarrow & \bar{x} \in S
\end{aligned}
$$

Proposition 88: L19-4

The following hold:

1. $\frac{1}{L} \nabla f$ is f.n.e.
2. $I_{d}-\frac{1}{L} \nabla f$ is f.n.e
3. $T=\operatorname{Prox}_{\frac{1}{L} g}\left(I_{d}-\nabla f\right)$ is $2 / 3$-averaged

Proof.

1. Recall L9-8 4). Dividing both sides by $\frac{1}{L}$ yields

$$
\langle\underbrace{\frac{1}{L} \nabla f(x)}_{T}-\underbrace{\frac{1}{L} \nabla f(y)}_{T}, x-y\rangle \geqslant\|\underbrace{\frac{1}{L} \nabla f(x)}_{T}-\underbrace{\frac{1}{L} \nabla f(y)}_{T}\|^{2}
$$

There fore 1) and 2) follows from A3 Problem 3 a),b),d)

Problem 3.

Let $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$.

(i) Prove that the following are equivalent:

(a) T is firmly nonexpansive.
(b) Id $-T$ is firmly nonexpansive.
(c) $2 T$ - Id is nonexpansive.
(d) $\left(\forall x \in \mathbb{R}^{m}\right)\left(\forall y \in \mathbb{R}^{m}\right)\|T(x)-T(y)\|^{2} \leq\langle x-y, T(x)-T(y)\rangle$.
(e) $\left(\forall x \in \mathbb{R}^{m}\right)\left(\forall y \in \mathbb{R}^{m}\right)\langle(\operatorname{Id}-T)(x)-(\operatorname{Id}-T)(y), T(x)-T(y)\rangle \geq 0$.
2. as above
3. Recall that $\operatorname{Prox}_{\frac{1}{L} g}$ is f.n.e. Hence, $\operatorname{Prox}_{\frac{1}{L} g}$ and $I_{d}-\frac{1}{L} \nabla f$ are both $\frac{1}{2}$-average. Consequently, the composition $\operatorname{Prox}_{\frac{1}{L} g}\left(I_{d}-\frac{1}{L} \nabla f\right)$ is averaged with constant $2 / 3$

Remark. L19-5 Recall L14-4 1), 3). One can show that for $T=\operatorname{Prox}_{\frac{1}{L} g}\left(I_{d}-\frac{1}{L} g\right)$ we have $\forall x, y$,

$$
\frac{1}{2}\left\|\left(I_{d}-t\right) x-\left(I_{d}-T\right) y\right\|^{2} \leqslant\|x-y\|^{2}-\|T x-T y\|^{2}
$$

Theorem 89: L19-6

Recalling the PGM iteration we have.

$$
\left\|x_{n+1}-x_{n}\right\| \leqslant \frac{\sqrt{2} d_{S}\left(x_{0}\right)}{\sqrt{n}}=O\left(\frac{1}{\sqrt{n}}\right)
$$

Proof. Using the previous remark we have, $\forall x, y$

$$
\frac{1}{2}\left\|\left(I_{d}-T\right) x-\left(I_{d}-T\right) y\right\|^{2}<\|x-y\|^{2}-\|T x-T y\|^{2} \ldots(*)
$$

Let $s \in S$ and observe that $s=T s$ by L18-6.
Applying $(*)$ with $x=x_{k}, y=s \in S$, we get

$$
\frac{1}{2}\|\left(I_{d}-T\right) x_{k}-\underbrace{\left(I_{d}-T\right) s}_{0}\|^{2}<\left\|x_{k}-s\right\|^{2}-\|\underbrace{T x_{k}}_{x_{k+1}}-\underbrace{T s}_{s}\|^{2}
$$

That is

$$
\frac{1}{2}\left\|x_{k}-x_{k+1}\right\|^{2} \leqslant\left\|x_{k}-s\right\|^{2}-\left\|x_{k+1}-s\right\|^{2} \ldots(\#)
$$

Using the previous proposition T is $2 / 3$-averaged, hence T is nonexpansive. Therefore

$$
\begin{aligned}
\|\underbrace{x_{k}}_{T_{x_{k-1}}}-\underbrace{x_{k+1}}_{T_{x_{k}}}\| & \leqslant\left\|x_{k-1}-x_{k}\right\| \\
& \leqslant \ldots \\
& \leqslant\left\|x_{0}-x_{1}\right\|
\end{aligned}
$$

Summing (\#) oVer $k=0 \rightarrow n-1$,

$$
\left\|x_{0}-s\right\|^{2}-\left\|x_{n}-s\right\|^{2} \geqslant \frac{1}{2} \sum_{k=0}^{n-1}\left\|x_{k}-x_{k+1}\right\|^{2} \geqslant \frac{1}{2} n\left\|x_{n-1}-x_{n}\right\|^{2}
$$

In particular, for $s=P_{S}\left(x_{0}\right)$, we get

$$
\begin{aligned}
& \frac{1}{2} n\left\|x_{n-1}-x_{n}\right\|^{2} \leqslant d_{S}^{2}\left(x_{0}\right) \\
& \Longrightarrow\left\|x_{n-1}-x_{n}\right\| \leqslant \frac{\sqrt{2}}{\sqrt{n}} d_{S}\left(x_{0}\right)=O\left(\frac{1}{\sqrt{n}}\right)
\end{aligned}
$$

Corollary 90: L19-7 The Classical Proximal Point Algorithm 1970's Rockafeller

$g: \mathbb{R}^{m} \rightarrow(-\infty, \infty]$ convex lsc and proper, $c>0$.

$$
(P) \min _{x \in \mathbb{R}^{m}} g(x)
$$

Assume that $S:=\arg \min _{x \in \mathbb{R}^{m}} g(x) \neq \emptyset$.
Let $x_{0} \in \mathbb{R}^{m}$. Update via

$$
x_{n+1}=\operatorname{Prox}_{c g} x_{n}
$$

Then

$$
\begin{aligned}
g\left(x_{n}\right) \searrow \mu & =\min g\left(\mathbb{R}^{m}\right) \\
0 \leqslant g\left(x_{n}\right)-\mu & \leqslant \frac{d_{S}^{2}\left(x_{0}\right)}{2 c n} \\
x_{n} & \rightarrow \text { some point in } S \\
\left\|x_{n-1}-x_{n}\right\| & \leqslant \frac{\sqrt{2} d_{S}\left(x_{0}\right)}{\sqrt{n}}
\end{aligned}
$$

Proof. Set $\forall x \in \mathbb{R}^{m}, f(x)=0$. Then $\forall x \in \mathbb{R}^{m}, \nabla f(x)=0$

$$
\Longrightarrow \nabla f \equiv 0 \text { is L-Lipschitz }
$$

for any $L>0$. In particular, for $L=\frac{1}{c}>0$. Observe that (P) can be written as

$$
\begin{gathered}
\min _{x \in \mathbb{R}^{m}} \underbrace{f(x)+g(x)}_{F(x)=g(x)} \\
\Longrightarrow S=\arg \min _{x \in \mathbb{R}^{m}} F(x) \\
=\arg \min _{x \in \mathbb{R}^{m}} g(x) \\
\nabla f \equiv 0 \Longrightarrow I_{d}-\frac{1}{L} \nabla f=I_{d} \\
\Longrightarrow T
\end{gathered} \begin{aligned}
& \Longrightarrow \operatorname{Prox}_{\frac{1}{L} g}\left(I_{d}-\frac{1}{L} \nabla f\right) \\
&=\operatorname{Prox}_{c g} \circ\left(I_{d}\right) \\
&=\operatorname{Prox}_{c g}
\end{aligned}
$$

Done by the previous results.

5.7 Fast Iterative Shrinkage Thresholding Algorithm(FISTA)

$$
(P) \min _{x \in \mathbb{R}^{m}} F(x):=f(x)+g(x)
$$

Assumptions:
$\overline{(P)}$ has solutions

$$
S:=\arg \min _{x \in \mathbb{R}^{m}} F(x) \neq \emptyset
$$

and

$$
\mu=\min _{x \in \mathbb{R}^{m}} F(x)
$$

- f is "nice": convex, lsc, proper and differentiable on $\mathbb{R}^{m} . \nabla f$ is L-Lipschitz on \mathbb{R}^{m}
- g is convex, lsc and proper.

FISTA:

$x_{0} \in \mathbb{R}^{m}, t_{0}=1, y_{0}=x_{0}$. Update via

$$
\begin{aligned}
t_{n+1} & =\frac{1+\sqrt{1+4 t_{n}^{2}}}{2} \\
\Longrightarrow 2 t_{n+1}-1 & =\sqrt{1+4 t_{n}^{2}} \\
\Longrightarrow t_{n+1}^{2}-t_{n+1} & =t_{n}^{2} \\
x_{n+1} & =\operatorname{Prox}_{\frac{1}{\mathrm{~L}} \mathrm{~g}}\left(\left(\mathrm{I}_{\mathrm{d}}-\frac{1}{\mathrm{~L}} \nabla \mathrm{f}\right)\left(\mathrm{y}_{\mathrm{n}}\right)=\mathrm{Ty}_{\mathrm{n}}\right. \\
y_{n+1} & =x_{n+1}+\frac{t_{n}-1}{t_{n+1}}\left(x_{n+1}-x_{n}\right) \\
& =\left(1-\frac{1-t_{n}}{t_{n+1}}\right) x_{n+1}+\frac{1-t_{n}}{t_{n+1}} x_{n} \\
& \in \operatorname{aff}\left\{\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right\}
\end{aligned}
$$

Remark. L20-1
The sequence $\left(t_{n}\right)_{n \in \mathbb{N}}$ satisfies $\forall n \in \mathbb{N}, t_{n} \geqslant \frac{n+2}{2} \geqslant 1$. Verify using induction! Indeed, base case:

$$
t_{0}=1=\frac{0+2}{2}
$$

Now suppose for some $n \geqslant 0$,

$$
t_{n} \geqslant \frac{n+2}{2}
$$

Now

$$
\begin{aligned}
t_{n+1} & =\frac{1+\sqrt{1+4 t_{n}^{2}}}{2} \\
& \geqslant \frac{1+\sqrt{1+4 \frac{(n+2)^{2}}{4}}}{2} \\
& =\frac{1+\sqrt{1+(n+2)^{2}}}{2} \\
& \geqslant \frac{1+\sqrt{(n+2)^{2}}}{2} \\
& =\frac{1+n+2}{2} \\
& =\frac{(n+1)+2}{2}
\end{aligned}
$$

and the conclusion follows.

Theorem 91: L20-2 $\left(O\left(1 / n^{2}\right)\right.$ convergence for FISTA

$$
0 \leqslant F\left(x_{n}\right)-\mu \leqslant \frac{2 L d_{S}^{2}\left(x_{0}\right)}{(n+1)^{2}}=O\left(1 / n^{2}\right)
$$

Proof. Set $s=P_{S}\left(x_{0}\right)$
By convexity of F (note $t_{n} \geqslant(n+2) / 2 \geqslant 1$), we have

$$
F\left(\frac{1}{t_{n}} S+\left(1-\frac{1}{t_{n}}\right) x_{n}\right) \leqslant \frac{1}{t_{n}} F(s)+\left(1-\frac{1}{t_{n}}\right) F\left(x_{n}\right)
$$

Set $\forall n \in \mathbb{N}$,

$$
\delta_{n}=F\left(x_{n}\right)-\mu \geqslant 0
$$

Observe that,

$$
\begin{align*}
\left(1-\frac{1}{t_{n}}\right) \delta_{n}-\delta_{n+1} & =\left(1-\frac{1}{t_{n}}\right)(F\left(x_{n}\right)-\underbrace{F(s)}_{\mu})-\left(F\left(x_{n+1}\right)-F(s)\right) \\
& =\left(1-\frac{1}{t_{n}}\right) F\left(x_{n}\right)-\left(1-\frac{1}{t_{n}}\right) F(s)-F\left(x_{n+1}\right)+F(s) \\
& =\left(1-\frac{1}{t_{n}}\right) F\left(x_{n}\right)+\frac{1}{t_{n}} F(s)-F\left(x_{n+1}\right) \\
& \geqslant F\left(\frac{1}{t_{n}} s+\left(1-\frac{1}{t_{n}}\right) x_{n}\right)-F\left(x_{n+1}\right) \ldots(1) \tag{1}
\end{align*}
$$

Recall the FISTA updates, applying L18-8 with $x=\frac{1}{t_{n}} s+\left(1-1 / t_{n}\right) x_{n}, y=y_{n}$, implies

$$
y_{+}=T_{y_{n}}=x_{n+1}
$$

yields

$$
\begin{align*}
F & \left(\frac{1}{t_{n}} s+\left(1-1 / t_{n}\right) x_{n}\right)-F\left(x_{n+1}\right) \\
& \geqslant \frac{L}{2}\left\|\frac{1}{t_{n}} s+\left(1-1 / t_{n}\right) x_{n}-x_{n+1}\right\|^{2}-\frac{L}{2}\left\|\frac{1}{t_{n}} s+\left(1-1 / t_{n}\right) x_{n}-y_{n}\right\|^{2} \\
& \geqslant \frac{L}{2}\left\|\frac{1}{t_{n}}\left(s+\left(t_{n}-1\right) x_{n}-t_{n} x_{n+1}\right)\right\|^{2}-\frac{L}{2}\left\|\frac{1}{t_{n}}\left(s+\left(t_{n}-1\right) x_{n}-t_{n} y_{n}\right)\right\|^{2} \\
& =\frac{L}{2 t_{n}^{2}}\left\|t_{n} x_{n+1}-\left(s+\left(t_{n}-1\right) x_{n}\right)\right\|^{2}-\frac{L}{2 t_{n}^{2}}\left\|t_{n} y_{n}-\left(s+\left(t_{n}-1\right) x_{n}\right)\right\|^{2} \ldots \tag{2}
\end{align*}
$$

and

$$
\begin{align*}
& \left\|t_{n} y_{n}-\left(s+\left(t_{n}-1\right) x_{n}\right)\right\|^{2} \\
= & \left\|t_{n}\left(x_{n}+\frac{t_{n-1}-1}{t_{n}}\left(x_{n}-x_{n-1}\right)\right)-\left(s+\left(t_{n}-1\right) x_{n}\right)\right\|^{2} \\
= & \left\|t_{n} x_{n}+\left(t_{n-1}-1\right)\left(x_{n}-x_{n-1}\right)-s-t_{n} x_{n}+x_{n}\right\|^{2} \\
= & \left\|t_{n-1} x_{n}-t_{n-1} x_{n-1}+x_{n-1}-s\right\|^{2} \\
= & \left\|t_{n-1} x_{n}-\left(s+\left(t_{n-1}-1\right) x_{n-1}\right)\right\|^{2} \ldots(3) \tag{3}
\end{align*}
$$

Then using $t_{n+1}^{2}-t_{n+1}=t_{n}^{2}$, we have

$$
\begin{aligned}
& t_{n-1}^{2} \delta_{n}-t_{n}^{2} \delta_{n+1}=\left(t_{n}^{2}-t_{n}\right) \delta_{n}-t_{n}^{2} \delta_{n+1} \\
&=t_{n}^{2}\left(\left(1-\frac{1}{t_{n}}\right) \delta_{n}-\delta_{n+1}\right) \\
& \underbrace{\geqslant}_{(1)} t_{n}^{2}\left(F\left(\frac{1}{t_{n}} s+\left(1-\frac{1}{t_{n}}\right) x_{n}\right)-F\left(x_{n+1}\right)\right) \\
& \underbrace{\geqslant}_{(2)} \frac{L}{2}\left\|t_{n} x_{n+1}-\left(s+\left(t_{n}-1\right) x_{n}\right)\right\|^{2}-\frac{L}{2}\left\|t_{n} y_{n}-\left(s+\left(t_{n}-1\right) x_{n}\right)\right\|^{2} \\
& \underbrace{=}_{(3)} \frac{L}{2}\|\underbrace{\| t_{n} x_{n+1}-\left(s+\left(t_{n}-1\right) x_{n}\right)}_{u_{n+1}}\|^{2}-\frac{L}{2} \| \underbrace{}_{u_{n}} \underbrace{}_{n-1} x_{n}-\left(s+\left(t_{n-1}-1\right) x_{n-1}\right)
\end{aligned} \|^{2}
$$

Multiplying by $\frac{2}{L}$ and rearranging yield

$$
\left\|u_{n+1}\right\|^{2}+\frac{2}{L} t_{n}^{2} \delta_{n+1} \leqslant\left\|u_{n}\right\|^{2}+\frac{2}{L} t_{n-1}^{2} \delta_{n}
$$

Therefore,

$$
\begin{aligned}
\frac{2}{L} t_{n-1}^{2} \delta_{n} & \leqslant\left\|u_{n}\right\|^{2}+\frac{2}{L} t_{n-1}^{2} \delta_{n} \\
& \leqslant \cdots \\
& \leqslant\left\|u_{1}\right\|^{2}+\frac{2}{L} t_{0}^{2} \delta_{1} \\
& =\|\underbrace{t_{0}}_{=1} x_{1}-\left(s+\left(t_{0}-1\right) x_{0}\right)\|^{2}+\frac{2}{L}(1)\left(F\left(x_{1}\right)-\mu\right) \\
& =\left\|x_{1}-s\right\|^{2}+\frac{2}{L}\left(F\left(x_{1}\right)-\mu\right) \\
& \leqslant\left\|x_{0}-s\right\|^{2}
\end{aligned}
$$

where the last inequality follows from applying L18-8 with $x=s, y=y_{0}, y_{+}=T y_{0}=x_{1}$ to obtain

$$
\underbrace{F(s)}_{\mu}-F\left(x_{1}\right) \geqslant \frac{L}{2}\left\|s-x_{1}\right\|^{2}-\frac{L}{2}\left\|x_{0}-s\right\|^{2}
$$

That is,

$$
\begin{aligned}
F\left(x_{n}\right)-\mu & =\delta_{n} \\
& \leqslant \frac{L}{2}\left\|x_{0}-s\right\|^{2} \frac{1}{t_{n-1}^{2}} \\
& \leqslant \frac{L}{2}\left\|x_{0}-s\right\|^{2} \frac{4}{(n+1)^{2}} \text { by } t_{n} \geqslant \frac{n+2}{2} \\
& =\frac{2 L d_{S}^{2}\left(x_{0}\right)}{(n+1)^{2}} \text { recall } s=P_{S}\left(x_{0}\right)
\end{aligned}
$$

5.7.1 The Iterative Shrinkage Thresholding Algorithm (ISTA)

Special case of the PGM with

$$
\begin{gathered}
g(x)=\lambda\|x\|, \lambda>0 \\
\Longrightarrow \frac{1}{L} g(x)=\frac{\lambda}{L}\|x\|_{1} \\
\operatorname{Prox}_{\frac{1}{L} g}(x)=\left(\operatorname{Prox}_{\frac{\lambda}{L}\|\cdot\|}(x)\right)_{i=1}^{n} \\
=\left(\operatorname{sign}\left(x_{i}\right) \max \left\{0,\left|x_{i}\right|-\frac{\lambda}{L}\right\}\right)_{i=1}^{n}
\end{gathered}
$$

5.8 The Fast Iterative Thresholding Algorithm (FISTA)

Is the accelerated version of ISTA?
$\|\cdot\|$ VS $\|\cdot\|_{2}$ Consider the two problems

$$
\left(P_{1}\right) \min \|x\|_{2} \text { s.t. } A x=b
$$

and

$$
\left(P_{2}\right) \min \|x\|_{1} \text { s.t. } A x=b
$$

$A x=b$ is underdetermined system of equations.

Example 40: L20-3

l_{1} regularized least squares. Consider the problem

$$
(P) \min _{x \in \mathbb{R}^{m}} \frac{1}{2}\|A x-n\|_{2}^{2}+\lambda\|x\|_{1}
$$

$\lambda>0, A$ is $n \times m$ matrix.

- $g(x)=\lambda\|x\|_{1}$ convex, lsc, proper
- $f(x)=\frac{1}{2}\|A x-b\|_{2}^{2}$ smooth, $\forall x \in \mathbb{R}^{m}, \nabla f(x)=A^{T}(A x-b)$
- $\operatorname{dom}(f)=\operatorname{dom}(g)=\mathbb{R}^{m}$. Is ∇f Lipschitz? Recall L10-6,

$$
\begin{aligned}
& \nabla f \text { is L-Lipschitz continuous } \\
\Longleftrightarrow & \lambda_{\max }\left(\nabla^{2} f(x)\right) \leqslant L \\
\Longleftrightarrow & \lambda_{\max }\left(A^{T} A\right) \leqslant L
\end{aligned}
$$

Take $L:=\lambda_{\max }\left(A^{T} A\right)$

- $S \neq \emptyset$. Indeed, $F(x)=f(x)+g(x)=\frac{1}{2}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1}$ is continuous, convex, coercive, $\operatorname{dom}(F)=\mathbb{R}^{m}$, implies $S=\arg \min F \neq \emptyset$ (Here we used the fact that: F is convex lsc proper + coercive. C convex closed $\neq \emptyset, \operatorname{dom}(F) \cap C \neq \emptyset$ Then F has a minimizer over C)

Computational Tip Somtimes m is large and computing the eigenvalues of $A^{T} A$ ($m \times m$ matrix) is not so easy.
In this case, you could use an upper bound on eigenvalues, e.g., the Frobenius norm:

$$
\begin{aligned}
\|A\|_{F}^{2} & =\sum_{j=1}^{m} \sum_{i=1}^{n} a_{i j}^{2} \\
& =\operatorname{tr}\left(A^{T} A\right) \\
& =\sum_{i=1}^{m} \lambda_{i}\left(A^{T} A\right)
\end{aligned}
$$

Consider the problem

$$
(P) \operatorname{minimize}_{\mathrm{x} \in \mathbb{R}^{\mathrm{m}}} \mathrm{~F}(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x})
$$

- f is convex lsc and proper
- g is convex lsc and proper
- $S=\arg \min _{x \in \mathbb{R}^{m}} F(x) \neq \emptyset$

No further assumptions of smoothness or domain inclusions.
Suppose that $\exists s \in S$ such that $0 \in \partial f(s)+\partial g(s) \subseteq \partial(f+g)(s)$
One situation is when

$$
\operatorname{ri}(\operatorname{dom}(\mathrm{f})) \cap \operatorname{ri}(\operatorname{dom}(\mathrm{g})) \neq \emptyset
$$

then sum rules applies, i.e.

$$
\partial(f+g)=\partial f+\partial g
$$

Recall that in A4 you proved that

$$
\begin{aligned}
& \operatorname{Prox}_{\mathrm{f}}=\left(I_{d}+\partial f\right)^{-1} \\
& \operatorname{Prox}_{\mathrm{g}}=\left(I_{d}+\partial g\right)^{-1}
\end{aligned}
$$

Set

$$
\begin{aligned}
R_{f} & :=2 \operatorname{Prox}_{\mathrm{f}}-\mathrm{I}_{\mathrm{d}} \\
R g & :=2 \operatorname{Prox}_{\mathrm{g}}-\mathrm{I}_{\mathrm{d}}
\end{aligned}
$$

Define the Douglas-Rachford (DR) operator as follows:

$$
\begin{aligned}
T & =I_{d}-\operatorname{Prox}_{\mathrm{f}}+\operatorname{Prox}_{\mathrm{g}}\left(2 \operatorname{Prox}_{\mathrm{f}}-\mathrm{I}_{\mathrm{d}}\right) \\
& =I_{d}-\operatorname{Prox}_{\mathrm{f}}+\operatorname{Prox}_{\mathrm{g}} \mathrm{R}_{\mathrm{f}}
\end{aligned}
$$

Lemma 92: L22-1

The following hold:

1. R_{f} and R_{g} are nonexpansive
2. $T=\frac{1}{2}\left(I_{d}+R_{g} R_{f}\right)$
3. T is firmly nonexpansive

Proof.

1. Recall that Prox $_{f}$ is f.n.e by L14-2

Now combine with A3, T is f.n.e $\Longleftrightarrow 2 T-I_{d}$ is nonexpansive.
2. Indeed,

$$
\begin{aligned}
& \frac{1}{2}\left(I_{d}+R_{g} R_{f}\right) \\
= & \frac{1}{2}\left(I_{d}+\left(2 \operatorname{Prox}_{\mathrm{g}}-\mathrm{I}_{\mathrm{d}}\right) \mathrm{R}_{\mathrm{f}}\right) \\
= & \frac{1}{2}\left(I_{d}+2 \operatorname{Prox}_{\mathrm{g}} \mathrm{R}_{\mathrm{f}}-\mathrm{R}_{\mathrm{f}}\right) \\
= & \frac{1}{2}\left(I_{d}+2 \operatorname{Prox}_{\mathrm{g}} \mathrm{R}_{\mathrm{f}}-\left(2 \operatorname{Prox}_{\mathrm{f}}-\mathrm{I}_{\mathrm{d}}\right)\right) \\
= & \frac{1}{2}\left(I_{d}+2 \operatorname{Prox}_{\mathrm{g}} \mathrm{R}_{\mathrm{f}}-2 \operatorname{Prox}_{\mathrm{f}}+\mathrm{I}_{\mathrm{d}}\right) \\
= & \frac{1}{2}\left(2 I_{d}-2 \operatorname{Prox}_{\mathrm{f}}+2 \operatorname{Prox}_{\mathrm{g}} \mathrm{R}_{\mathrm{f}}\right) \\
= & I_{d}-\operatorname{Prox}_{\mathrm{f}}+\operatorname{Prox}_{\mathrm{g}} \mathrm{R}_{\mathrm{f}} \\
= & : T
\end{aligned}
$$

3. Observe that $R_{g} R_{f}\left(=R_{g} \circ R_{f}\right)$ is a composition of two nonexpansive mappings, hence $R_{g} R_{f}$ is nonexpansive.
Therefore,

$$
\begin{aligned}
T & =\frac{1}{2}\left(I_{d}+R_{g} R_{f}\right) \\
& =\frac{1}{2} I_{d}+\frac{1}{2} \underbrace{R_{g} R_{f}}_{=: N}
\end{aligned}
$$

That is T is $1 / 2$-averaged, equivalently, T is f.n.e by L12-7

Useful if we plan to iterate T. Shall we?

Remark. L22-2

$$
\operatorname{FixT}=\operatorname{FixR}_{\mathrm{g}} \mathrm{R}_{\mathrm{f}}
$$

Indeed, let $x \in \mathbb{R}^{m}$. Then

$$
\begin{aligned}
x \in \mathrm{FixT} & \Longleftrightarrow x=T x \\
& \Longleftrightarrow x=\frac{1}{2}\left(I_{d}+R_{g} R_{f}\right)(x)=\frac{1}{2}\left(x+R_{g} R_{f} x\right) \\
& \Longleftrightarrow 2 x=x+R_{g} R_{f} x \\
& \Longleftrightarrow x=R_{g} R_{f} x \\
& \Longleftrightarrow x \in \operatorname{FixR}_{\mathrm{g}} \mathrm{R}_{\mathrm{f}}
\end{aligned}
$$

Proposition 93: L22-3

$$
\operatorname{Prox}_{\mathrm{f}}(\operatorname{FixT}) \subseteq \mathrm{S}
$$

Proof. Let $x \in \mathbb{R}^{m}$, and set $s=\operatorname{Prox}_{\mathrm{f}} \mathrm{x}$. On the one hand.

$$
\begin{aligned}
& s=\operatorname{Prox}_{\mathrm{f}}(\mathrm{x})\left(\operatorname{Prox}_{\mathrm{f}}=\left(\mathrm{I}_{\mathrm{d}}+\partial \mathrm{f}\right)^{-1}\right. \\
\Longleftrightarrow & x \in\left(I_{d}+\partial f\right)(s)=s+\partial f(s) \\
\Longleftrightarrow & 2 \underbrace{\operatorname{Prox}_{\mathrm{fx}}}_{=s}-(2 \underbrace{\operatorname{Prox}_{\mathrm{f}} \mathrm{X}}_{R_{f} x}-x) \in s+\partial f(s) \\
\Longleftrightarrow & 2 s-R_{f}(x) \in s+\partial f(s) \\
\Longleftrightarrow & 2 s-R_{f}(x)-s \in \partial f(s) \\
\Longleftrightarrow & s-R_{f}(x) \in \partial f(s)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
x \in \operatorname{Fix}(\mathrm{~T}) & \Longleftrightarrow x=T x,\left(T=I_{d}-\operatorname{Prox}_{\mathrm{f}}+\operatorname{Prox}_{\mathrm{g}} \mathrm{R}_{\mathrm{f}}\right) \\
& \Longleftrightarrow x=x-\operatorname{Prox}_{\mathrm{f}}(\mathrm{x})+\operatorname{Prox}_{\mathrm{g}} \mathrm{R}_{\mathrm{f}}(\mathrm{x}) \\
& \Longleftrightarrow \operatorname{Prox}_{\mathrm{f}}(\mathrm{x})=\operatorname{Prox}_{\mathrm{g}} \mathrm{R}_{\mathrm{f}}(\mathrm{x}) \\
& \Longleftrightarrow s=\operatorname{Prox}_{\mathrm{g}} \mathrm{R}_{\mathrm{f}}(\mathrm{x}) \\
& \Longleftrightarrow R_{f}(x) \in s+\partial g(s),\left(\operatorname{Prox}_{\mathrm{g}}=\left(\mathrm{I}_{\mathrm{d}}+\partial \mathrm{g}\right)^{-1}\right) \\
& \Longleftrightarrow 0 \in s-R_{f}(x)+\partial g(s) \\
& \Longleftrightarrow R_{f}(x)-s \in \partial g(s)
\end{aligned}
$$

Altogether, the last inclusions imply that

$$
\begin{aligned}
& 0 \in \partial f(s)+\partial g(s) \\
& \subseteq \partial(f+g)(s) \\
\Longrightarrow & s \in S=\arg \min _{x \in \mathbb{R}^{m}} F(x)
\end{aligned}
$$

Theorem 94: L22-4

Let $x_{0} \in \mathbb{R}^{m}$. Update via

$$
x_{n+1}:=x_{n}-\operatorname{Prox}_{\mathrm{f}}\left(\mathrm{x}_{\mathrm{n}}\right)+\operatorname{Prox}_{\mathrm{g}}\left(2 \operatorname{Prox}_{\mathrm{f}}\left(\mathrm{x}_{\mathrm{n}}\right)-\mathrm{x}_{\mathrm{n}}\right)
$$

Then

$$
\operatorname{Prox}_{f}\left(\mathrm{x}_{\mathrm{n}}\right) \longrightarrow \text { a minimizer of } \mathrm{f}+\mathrm{g}
$$

Proof. Rewrite x_{n+1} as

$$
\begin{aligned}
x_{n+1} & =\left(I_{d}-\operatorname{Prox}_{\mathrm{f}}+\operatorname{Prox}_{\mathrm{g}}\left(2 \operatorname{Prox}_{\mathrm{f}}-\mathrm{I}_{\mathrm{d}}\right)\right) \mathrm{x}_{\mathrm{n}} \\
& =T x_{n} \\
& =T^{n+1} x_{0}
\end{aligned}
$$

Then by L14-1 $x_{n+1} \rightarrow \bar{x} \in$ FixT. Observe that Prox $_{f}$ is (firmly) nonexpansive by L14-2, hence continuous by L12-11. Consequently, $\operatorname{Prox}_{f} \mathrm{x}_{\mathrm{n}}$ will converge to $\operatorname{Prox}_{\mathrm{f}} \overline{\mathrm{X}}=: \mathrm{s}$
Finally, observe that

$$
s \in \operatorname{Prox}_{\mathrm{f}}(\operatorname{FixT}) \underbrace{\subseteq}_{\text {Prop L22-3 }} \mathrm{S}
$$

The proof is complete.

Consider the problem

$$
(P) \text { minimizer } \mathrm{f}(\mathrm{x}) \text { s.t } \mathrm{x} \in \mathrm{C}
$$

Assumptions:

- f is convex lsc and proper
- $\emptyset \neq C$ closed and convex $\subseteq \operatorname{int}(\operatorname{dom}(\mathrm{f}))$
- $S:=\arg \min _{x \in C} f(x) \neq \emptyset$

Set $\mu:=\min f(C)$.
Stochastic Projected subgradient Method:
Given $x_{0} \in C$, update via:

$$
x_{n+1}:=P_{C}\left(x_{n}-t_{n} g_{n}\right)
$$

Assumptions on t_{n} :
$\overline{\mathbf{A 0}:} t_{n}>0$,

$$
\sum_{n=0}^{\infty} t_{n} \rightarrow \infty, \frac{\sum_{k=0}^{n} t_{k}^{2}}{\sum_{k=0}^{n} t_{k}} \rightarrow 0 \text { as } k \rightarrow \infty
$$

e.g., $t_{n}=\frac{\alpha}{n+1}, \alpha>0$

What about g_{n} ?
Choose g_{n} to be a random vector, such that the following assumptions are satisfied.
A1: ("unbiased subgradient")
$\forall n \in \mathbb{N}$,

$$
E\left(g_{n} \mid x_{n}\right) \in \partial f\left(x_{n}\right)
$$

(means expectation of g_{n} given x_{n} is a subgradient), equivalently, $\forall y \in \mathbb{R}^{m}$,

$$
f\left(x_{n}\right)+\left\langle E\left(g_{n} \mid x_{n}\right), y-x_{n}\right\rangle \leqslant f(y)
$$

A2: ("boundedness")
$\exists L>0, \forall n \in \mathbb{N}$,

$$
E\left(\left\|g_{n}\right\|^{2} \mid x_{n}\right) \leqslant L^{2}
$$

Theorem 95: L23-1

Assuming the previous assumptions hold. Then

$$
E\left(\mu_{k}\right) \rightarrow \mu \text { as } k \rightarrow \infty
$$

where

$$
\mu_{k}:=\min \left\{f\left(x_{0}\right), \ldots, f\left(x_{k}\right)\right\} \geqslant \mu
$$

Proof. Let $s \in S$ and let $n \in \mathbb{N}$. Then

$$
\begin{aligned}
0 & \leqslant\left\|x_{n+1}-s\right\|^{2} \\
& =\left\|P_{C}\left(x_{n}-t_{n} g_{n}\right)-P_{C}(s)\right\|^{2} \\
& \leqslant\left\|\left(x_{n}-t_{n} g_{n}\right)-s\right\|^{2} \\
& =\left\|\left(x_{n}-s\right)-t_{n} g_{n}\right\|^{2} \\
& =\left\|x_{n}-s\right\|^{2}-2 t_{n}\left\langle g_{n}, x_{n}-s\right\rangle+t_{n}^{2}\left\|g_{n}\right\|^{2}
\end{aligned}
$$

Now taking the conditional expectation, given x_{n}, yields,

$$
\begin{aligned}
& E\left(\left\|x_{n+1}-s\right\|^{2} \mid x_{n}\right) \leqslant\left\|x_{n}-s\right\|^{2}+2 t_{n}\left\langle E\left(g_{n} \mid x_{n}\right), s-x_{n}\right\rangle \\
&+t_{n}^{2} E\left(\left\|g_{n}\right\|^{2} \mid x_{n}\right) \\
& \underbrace{\leqslant}_{A 1, A 2}\left\|x_{n}-s\right\|^{2}+2 t_{n}\left(f(s)-f\left(x_{n}\right)\right)+t_{n}^{2} L^{2} \\
&=\left\|x_{n}-s\right\|^{2}+2 t_{n}\left(\mu-f\left(x_{n}\right)\right)+t_{n}^{2} L^{2}
\end{aligned}
$$

Now taking the expectation w.r.t. x_{n} yields

$$
E\left(\left\|x_{n+1}-s\right\|^{2}\right) \leqslant E\left(\left\|x_{n}-s\right\|^{2}\right)+2 t_{n}\left(\mu-E\left(f\left(x_{n}\right)\right)\right)+t_{n}^{2} L^{2} \ldots(*)
$$

Let $k \in \mathbb{N}$.
Summing $\sum_{n=0}^{k}$ over $(*)$ and cancelling duplicate terms yields

$$
0 \leqslant E\left(\left\|x_{k+1}-s\right\|^{2}\right) \leqslant\left\|x_{0}-s\right\|^{2}-2 \sum_{n=0}^{k} t_{n}\left(E\left(f\left(x_{n}\right)\right)-\mu\right)+L^{2} \sum_{n=0}^{k} t_{n}^{2}
$$

Hence,

$$
\begin{aligned}
\frac{1}{2}\left(\left\|x_{0}-s\right\|^{2}+L^{2} \sum_{n=0}^{k} t_{n}^{2}\right) & \geqslant \sum_{n=0}^{k} t_{n}\left(E\left(f\left(x_{n}\right)\right)-\mu\right) \\
& \geqslant \sum_{n=0}^{k} t_{n}\left(E\left(\mu_{k}\right)-\mu\right) \\
& \geqslant 0, \operatorname{by} f\left(x_{n}\right) \geqslant \mu_{k} \geqslant \mu
\end{aligned}
$$

Therefore,

$$
0 \leqslant E\left(\mu_{k}\right)-\mu \leqslant \frac{\left\|x_{0}-s\right\|^{2}+L^{2} \sum_{n=0}^{k} t_{n}^{2}}{2 \sum_{n=0}^{k} t_{n}} \rightarrow 0, \text { as } k \rightarrow \infty \text { by } A 0
$$

The proof is complete.

5.8.1 Key Application:

Minimizing a sum of functions

$$
f_{1}, \ldots, f_{r}: \mathbb{R}^{m} \rightarrow(-\infty, \infty]
$$

are convex, lsc proper
Set $I=\{1, \ldots, r\}$ and assume

$$
\forall i \in I, \operatorname{int}\left(\operatorname{dom}\left(\mathrm{f}_{\mathrm{i}}\right)\right) \supseteq \mathrm{C} \text { is convex closed, } \neq \emptyset
$$

Also assume that

$$
\forall i \in I, \exists L_{i} \geqslant 0, \sup \left\|\partial f_{i}(C)\right\| \leqslant L_{i}
$$

Fact: $\sup \left\|\partial f_{i}(C)\right\| \leqslant\left. L_{i} \Longleftrightarrow f_{i}\right|_{C}$ is L_{i}-Lipschitz. True if, e.g., C is bounded.
Set

$$
f=\sum_{i \in I} f_{i}
$$

Goal

$$
(P) \operatorname{minimizer}_{\mathrm{x} \in \mathrm{C}} \mathrm{f}
$$

We will apply SPGM to (P).
To do that, we verify

- f is convex lsc and proper
- $\emptyset \neq C$ closed and convex $\subseteq \operatorname{int}(\operatorname{dom}(\mathrm{f}))$
- $S:=\arg \min _{x \in C} f(x) \neq \emptyset$
and we have
- $f=\sum_{i \in I} f_{i}$ is convex lsc. by f_{i} all convex and lsc proper.
- $\operatorname{dom}(\mathrm{f})=\cap_{\mathrm{i} \in \mathrm{I}} \operatorname{dom}\left(\mathrm{f}_{\mathrm{i}}\right) \supseteq \mathrm{C} \neq \emptyset \Longrightarrow \mathrm{f}$ is proper.

$$
\begin{aligned}
\operatorname{int}(\operatorname{dom}(\mathrm{f})) & =\operatorname{int} \cap_{\mathrm{i} \in \mathrm{I}} \operatorname{dom}\left(\mathrm{f}_{\mathrm{i}}\right) \\
& =\cap_{i \in I} \operatorname{int}\left(\operatorname{dom}\left(\mathrm{f}_{\mathrm{i}}\right)\right) \text { by } I \text { finite } \\
& \supseteq C \text { by the previous point }
\end{aligned}
$$

- Now assume $\mu:=\min f(C)$ is attained, i.e., P has a solution. We now will show that $A 1, A 2$ can be satisfied,
By the fact above, we have each $\left.f_{i}\right|_{C}$ is L_{i}-Lipschitz.
Therefore, using the triangle inequality

$$
\left.f\right|_{C}=\left.\sum_{i \in I} f_{i}\right|_{C} \text { is } \sum_{i \in I} L_{i} \text { Lipschitz }
$$

Therefore, once again, by the fact, we learn that

$$
\sup \|\partial f(C)\| \leqslant \sum_{i \in I} L_{i}
$$

Let $x_{0} \in C$. Given $x_{n} \in C, x_{n+1}=P_{C}\left(x_{n}-t_{n} g_{n}\right)$, we pick an index $i_{n} \in I=\{1, \ldots, r\}$ randomly using uniform distribution and we set

$$
\begin{aligned}
g_{n} & =r \cdot f_{i_{n}}^{\prime}\left(x_{n}\right) \\
& \in r \cdot \partial f_{i_{n}}\left(x_{n}\right)
\end{aligned}
$$

Now,

$$
\begin{aligned}
E\left(g_{n} \mid x_{n}\right) & =\sum_{i=1}^{r} \frac{1}{r} \cdot r f_{i}^{\prime}\left(x_{n}\right) \\
& =\sum_{i=1}^{r} \underbrace{f_{f}^{\prime}\left(x_{n}\right)}_{\in \partial f_{i}\left(x_{n}\right)} \\
& \in \partial f_{1}\left(x_{n}\right)+\ldots+\partial f_{r}\left(x_{n}\right) \\
& =\partial\left(f_{1}+\ldots+f_{r}\right)\left(x_{n}\right) \text { sum rule } \\
& =\partial f\left(x_{n}\right)
\end{aligned}
$$

so A 1 holds.

Next:

$$
\begin{aligned}
E\left(\left\|g_{n}\right\|^{2} \mid x_{n}\right) & =\sum_{i=1}^{r} \frac{1}{r}\left\|r f_{i}^{\prime}\left(x_{n}\right)\right\|^{2} \\
& =\sum_{i=1}^{r} r\left\|f_{i}^{\prime}\left(x_{n}\right)\right\|^{2} \\
& \leqslant r \sum^{2} L_{i}^{2} \\
& =: L^{2}
\end{aligned}
$$

Therefore, A2 holds with $L:=\sqrt{r \sum_{i=1}^{r} L_{i}^{2}}$.
Consequently,

$$
x_{n+1}:=P_{C}\left(x_{n}-t_{n} g_{n}\right)
$$

generates a sequence such that

$$
E\left(\mu_{n}\right) \rightarrow \mu
$$

$\mu_{n}=\min _{i \in\{1, \ldots, n\}}\left\{f\left(x_{0}\right), \ldots, f\left(x_{n}\right)\right\}$

