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1 Convex Sets

1.1 Introduction
Let f : R®™ — R be differentiable. Consider the problem

(P): st.ze CCR"

In the special case, when C' = R", the minimizers of f (if any) will occur at the critical points of
f,namely, x € R" such that

Vfix)=0
This is known as “Fernat’s Rule”’, which we will learn about more later.
In this course, we will discuss and learn ConVexity of sets and functions and how we can approach
problem (P) in the more general settings of:

1. Absense of differentiability of the function f, f is convex (this is called the objective func-
tion) and/or

2. ) # C C R™, C convex (C is called the constraint set)



1.2 Affine sets and affine subspaces in R"

Let S C R"™. Then:

1. Sis an affine set if
Ve,ye SYAER M+ (1—-Nye S
Observe that, trivially, (), R" are affines sets.

2. S'is an affine subspace if

S#0

and
Ve,y e SYAER, Me+(1—-N)yeS

3. Let S C R”. The affine hull of S, denoted by af f(.S) is the intersection of all affine
sets containing S (i.e. the smallest affine set containing S)

Example: Affine Sets of R"

1. L, where L. C R" is a linear subsapce

2. a+ L, where a € R", L. C R" is a linear subsapce

3. 0,R"

Geometrically Speaking:
A nonempty subset S C R" is affine if the line connecting any two points in the set lies entirely in
the set.



1.3 Convex Sets in R"

A subset C' of R" is convex if

Ve,y € C,VA € (0,1), \e+ (1 - XNy eC

Convex subsets of R"

1. O, R
2. C, where C'is a ball
3. C, where C is an affine set
4. C, where C' is a half-space. i.e.
C:={r e R"|[(z,u) <n}

where u € R",n € R are fixed

Geometrically Speaking:
A subset C' C R™ is convex if given any two points z € C, y € C, the line segment joining = and
y, denoted by [z, y], lies entirely in C



Theorem 1: Txtbook THM2.1

The intersection of an arbitrary collection of convex sets is convex.

Proof. Let I be an indexed set (not necessarily finite). Let (C;);c; be a collecotion of convex
subsets of R”. Set
C = ﬂie [Ci

Let A € (0,1) and let (z,y) € C x C.
Since C; is convex (Vi € I), we learn that

Viel, e+ (1— Ny e C;
Hence,

Ax + (1 — )\)y S ﬂieIC} =C

Hence, C is convex. Ul

Let b, € R”, B; € R fort € I, where [ is an arbitrary index set.
Then the set:

1S convex.

Proof. SetVi e I,
Ci ={z e R"[{z,b;) < B}

We claim that Vi € I, C; is convex.
Indeed, let i € I, let (z,y) € C; x C;, and let A € (0, 1). Set

zi=Ax+ (1 =Ny

Then

= Mz,bi) + (1 = M) (y.bi)

<Bi <Bi

<A+ (1—=X)B(Using1 > A > 0,x,y € Cy)

= ﬁz
Hence, z € C;
Consequently, C; is convex, as claimed.
Now, combine with theorem 2.1 O



1.4 Convex Combinations of Vectors:

Definition 3

A vector sum
)\11‘1 + ...+ >\m$m

is called a convex combination of vectors z1,...,z, if Vi € {1,...,m},\; > 0, and
m

Yoo =1
i=1""

Theorem 2: Txtbook THM2.2

A subset C' of R™ is convex iff it contains all the convex combination of its elements

Proof. (<) Suppose C contains all the convex combinations of its elemtns.
Let A € (0,1)andletz € C,y € C.
By assumption, the convex combination

Az + (1= ANy

lies in C.

Therefore, C' is convex.

(=) Suppose C'is convex.

We proceed by induction on m, where m is the number of elements in the convex combination.
Base case: when m = 2, the conclusion is clear by the convexity of C'.

Now, suppose that for some m > 2 it holds that any convex combination of m vectors lies in C'.
Let {x1,...,xn} C C,let A, ..., A\, A1 = 0, such that

our goal is to show that
m+1

z = Z )\le € C
i=1
Observe that, there must exist at least one \; € [0, 1) or else if all

m-+1
)\i:1:>1:2)\7;:m+1>3

i=1

which is a contradiction.



Without loss of generality, we can and do assume that A, € [0, 1). Now:

m
= g AiTi + A 1Tm 1
i=1

m

s
=(1—=Xni1) T + A 1T
WY dwrtn

=(1—Ant1) Z Ny + A1 T

i=1

Observe that, \] := — ;:n“ > 0, and that
2’"‘:)\,: M+ 4\,
= L= A
_ 1— >‘m+1
B 1- >\m+1
=1

Using the inductive hypothesis, we learn that

i=1 Amt1
Hence,
m
\
2= (1= Apg1) Z #% A1 Ty | €C
i=1 m+1 —~
eC
so C'is convex. O

Definition 4: Convex Hull

Let S C R"™. The intersection of all convex sets containing S is called the convex hull of S
and is denoted by conv(S).
By theorem 2.1, conv(S) is convex. In fact, it is the smallest convex set containing S.

Theorem 3: Txtbook THM2.3

Let S C R™. Then conv(S) consists of all the convex combinations of the elements of S,
i.e.,

conv(S) = {Z \iz;|I is a finite index set, Vi € I, z; € S, \; > 0, Z/\,- = 1}

el 1€l




Proof. Set
D= {Z | is a finite index set, Vi € I, a; € S, 0 >0, \; = 1}
i€l el

First, clearly, S C D. Moreover, we want to show that D is convex. Indeed, let dy,dy € D, and let
Ae(0,1)
Then, there exist

M A2 0> Ni=1
:ulw"a:u?“}an/'Lj:l
k
dIZZAiIia{xh"')xk}gS
=1

dy = pyi{vn, -y} €8
j=1

Therefore,
Ay + (1 — N)dy
:)\)\11'1 + ...+ )\)\kxk
(@ =Nmy + .+ (1= Ny,
Observe that
)\)\27(1 _Az)ﬂz 2 0, 1€ {1,,]€},] S {1,...,7“}
and that

Ao AN =N+ (= Ay

:/\Zx\iﬂL(l—)\)iuj
A (- AL = AL A=1

Although, we conclude that D is convex set C S. Hence, conv(S) C D

Secondly, observe that S C conv(S5).

Now, combine with theorem 2.2 to learn that the convex combinations of elements of S lie in
conv(S) O

Convex Hull: Examples



1.5 Convex Sets: Best Approximation

Definition: Distance Function

Let S C R"™. The distance to S is the function

dg :R" — [0, OO]

r — inf||z — s||
ses

Definition: Projection onto a set

Let() £ C CR", letz € R", and let p € C. Then p is a projection of z onto C, if

de(z) = ||lz —pl|

If every point in R™ has exactly one projection onto C', the projection operator onto C', denoted by
P, is the opearator that maps every point in R™ to its unique projection in C'.

Recall:
Let (x,)nen be a sequence in R™. Then (x,),en is a Cauchy sequence if ||x,, — z,||— 0 as
min{m,n} — oo

Fact:
In R", every Cauchy sequence converges.

Recall:
Let f : R® — R and let 7 € R™. Then f is continuous at 7 if and only if for every sequence
(2 )nen such that z,, — T we have

fzn) = [(T)

Fact:
Let y € R™, and let ||-|| be the Euclidean norm on R™. Then the function

R =>R: x— |z -1y
18 continuous.

Proof. Only for illustration, you don’t need to know the proof.
Let (x,,)nen be a sequence in R™ such that z,, — 7. Now:

fan) = F(7) = llzn = yll=[I7 = yll
= llzn —Z+ T —yl—[7 -yl
< lzn = Zl+17 =yl =7 -yl

= [lzn — 7|



Similarly,

Altogether, we have
0 < [f(zn) = fF@)IL J2n — 7
Now, take the limit as n — oo to learn that

|f(2n) = f(T)|= 0

equivalently,
f(zn) = f(7)
Explicitly, this means (Vy € R") if z,,, — T, then

[2m = yll= (|7 = yll

11



Let x,y, z be vectors in R™. Then

r+y
|z — ylP= 2]z — z[+2||z — y|*—4]z — |2
Proof.
2|z — |® = 2||2]°—4 (z, &) + 2|« (1.1)
2|z — yl|2 = 2||2I2—4 (z, ) + 2|y (1.2)
allz — TV g2z + )P4 ez — 4 (2 y) (13
I = yIP~4(z2) —4(zy 3)

R.H.S=(11)+(1.2) — (1.3)
= 2||z[*+2]lylI*~[|= + y|I?
= 2|lz|P+2[ly 1P ==~ ly]I*~2 (z, )
= |lz*+|lylI*—2 (z, y)
= ||z —y|*= L.H.S

Let z € R", y € R™. Then

(r,y) <O = (VA € [0,1]), [l=[|< [l = Ay

Proof. Observe that
lz = Ayl =llz]|* = |zl =2A (@, y) + X*[y[|*~ |||
= XAyl =2 (z.y)) .. (+)
(=) Suppose (z,y) < 0. Then
Iz = Ayl =z [I*= MAllyl[* =2 (2, y)) > 0

(<) Suppose that for every A € (0,1], ||z — Ay||> ||z||. Then (x) implies (x, y) < 3||y||*. Taking
the limit as A | O yields the desired result. 0]

Theorem 6: The projection theorem
Let C be a nonempty, closed, convex subset of R™. Then the following hold:
1. (Vz € R") the projection of  onto C' exists and is unique.

2. Forevery z € R" and every p € R™:

p=Pox e [peCand (Vy e C)(y—p,x—p) <0

12



Proof. Letx € R".

1. Our goal is to show that = has a unique projection onto C.
Existence:
Recall that (V2 € R")

de(x) = nfflz —c|
Therefore, there exists a sequence (¢, )nen in C such that
de(z) = lim ||¢, — z||... (1)
n—oo
Now, let m and n be in N. By convexity of C' ,we know that

1
§<Cm + Cn> c C

Hence,

1
=i —cll _ =
do(@) = inflls = cl|< [lz = 5(en + o)

Applying the auxuliary Lemma 1 with (z, y, 2) replaced by (¢, ¢, ) we learn that :

Cnt Cmo

len — emll* = 2llen — 2l +2llem — 2|*—4]|z — 5

< 2llen — 2P 42| — @]]*—4dE ()
Letting m — oo, n — oo, we learn that
0 < |len — eml*< 2d%(2) + 2dZ(2) — 4d%(z) = 0

That is ||c, — ¢ |[*— 0, hence (¢, )nen is @ Cauchy sequence in C, hence (c,,),en converges
to some point say p € C' (by the closedness of ().
We will now show that

do(x) = ||lz = pl|
Observe that, ||z — -|| is continuous. Combining with ¢,, — p and (1), we learn that d¢(x) <
| = ¢nl|= llz — pl|, hence

do(z) = ||lz = pl|

This proves the existence.
Uniqueness:
Suppose that ¢ € C satisfies that do(z) = ||¢ — x||. By convexity of C,

%(p +q eC
Now, using the auxiliary lemma 1 with (z, y, z) replaced by (p, g, %(p + ¢)) we learn that:
0< [lp—qll?
= 2llp — al*+2lq — alP-4)lz - LTI

< 2d%(z) + 2d%(x) — 4d%(z)
=0

Hence, ||p — ¢||= 0; equivalently p = ¢. This proves uniqueness.

13



2. We want to show that, for every x € R" and every p € R",
p="Foe(z) < [peCand(Vy € C)(y —p,x—p) <O

Indeed, p = Po(z) < [p € C and ||z — p||*= d&(z)].
Observe that, for every y € C, a € [0, 1],
Yo =y + (1 —a)peC
Therefore,
| — plI*= d&(x)
& Vy e CVa e [0,1][|z — pl>< ||z — yal?
& Vy € O Va € [0,1]|lz — plI’< [z — p— aly — p)
<Yy e C,(r—p,y—p) <0 (by the lemma 2)

I

0

Let e > 0, and let C' = ball(0, €) = {c € R"|||z||>< €%}, i.e., the closed ball in R™ centered
at 0 with radius e. Show that
€

Vo €R", Po(z) = ————
TR Pel@) = el "

Proof. Letx € R" and set p = mx Using the projection theorem, it suffices to show that:
l.peC
2.VyeC.(z —p,y—p) <0
We examine two cases, show p € C'
l. |z|<e Thenz € Candp =z =a€C
2. |[]|> ¢ and [|p||= e} = €, hence p € C

Then, we show Vy € C,
(x—py—p) <0
Indeed, let y € C.

1. [|[z|< e = p=wrand
0=(x—py—p) <0

14



2. ||z]|> e == LH:E

82

Moreover,
‘= =Py —p) = < Nk H;H:”>
_ (1 - ﬁ) <x,y— ﬁx>
= (15 (@ = 5t
_ (1 - m) (z.9) — ellzl)
< (1= 157 ) Gellyl—elial
< (1 - W) bl . el

15



Definition: Minkowski sum of two sets

Let C' and D be two subsets of R"™. The Minkowski sum of C' and D, denoted by C' + D is

C+D:={c+dlceC,de D}

Theorem 7: Minkowski sum of Convex sets, Txtbook THM3.1

Let C, C5 be convex subsets of R™. Then C + Cs is convex.

Proof. If Cy = () or Cy = (), then C; + C, = () and the conclusion follows.
Now suppose that Cy # 0,Cy # 0 = C1 + Cy # 0

Letz,y bein C; + Cy and let A € (0,1).

Since x € C; + Cs, there exist 1 € C1, x9 € Cy such that

T =X+ Xo

Similarly, there exists y; € C,ys € Cs such that y = y; + ys.

Now,
A+ (1= Ny = Az +x2) + (1= X)) (1 + v2)
e Ci+ Cy
The proof is complete. O

Proposition 8

Let C' and D be nonempty, closed convex subsets of R" such that D is bounded. Then

C + D is nonempty, closed, convex

Proof.
C#0,D#0 = C+ D #1
C convex, D convex = C' + D is convex by theorem 3.1
It remains to show taht C' 4+ D is closed.
Take a convergent sequence (&, + Yn)nen in C' + D such that (x,,),en lies in C, (yy, )nen lies in D
and z,, + y, — z (say). Our goal is to show that z € C' + D.
By assumption, D is bounded, hence (¥, )nen is bounded.
Using Bolzano-Weierstrass, we know that there exists a subsequence

(Ykn JneN, Yk, =y € D

Therefore, z —y <z, > T € C
Thatis,z e C+yCC+ D ]

Quesion: What happens if we drop the assumption that D is bounded?

16



Example 1

Let

Cl =R x {0}
Cy = {(z,y) € Re, |ay > 1}

Then C, C5 are closed and convex. However,
C]_ + 02 - R X R++

which is convex but open.

Proof. We have:

Preef - | ==

N
4

-

¥

B +CJI///////#/J N

ﬂf_} = 307*@ E

e (©),C1+C; CRxRyy
Indeed, let (21, z5) € C1 + Cs. Then, there exists (x1,23) € C1, (y1,0) € Cs, such
that
21 = T1+ Y1, 22 = T2

Clearly, z; = 1 +y; € R. And 2, = x5 > 0. Hence,

Cl+CZ§RXR++

¢ (2),Ci+C; DRxR
Let (z,y) € R x Ry, set

C = 1'——,0 , G i = | Y
Yy Y

Then we have ¢; € C1, ¢; € Cs and

($,y)201+02601+02

17




Theorem 9: Txtbook THM3.2

Let C to be a convex set, let A; > 0 and let A\, > 0. Then

()\1 + )\2)0 - )\10 + )\QC

Proof. We prove two directions:

e (C): Obvious. Indeed, let z € (A; + A2)C. Then 3¢ € C, such that
Tr = ()\1 + )\2)0 = )\10“‘ )\2 € )\10 + )\20

This direction is always true even in the absence of convexity.

e (D): Without loss of generality, we can and do assume that \; + Ay > 0 (o/w, the condition
is trivial)
Now, by convexity we have
A1 A2

C+ ccc
)\14‘)\2 )\1+>\2 -

Equivalently, \;C + A\C' C (A + A\2)C

18



1.6 Convex Sets: Topological properties

Throughout this course we use:
B(z,e) ={y € R"| [ly — z|’< e}

and
B:=DB(0,1)={y € R"| [y|< 1}

1.e., the closed unit ball.
Let C C R™,
the interior of C is
int(C) ={z|3e > 0, s.t. x + B C C}

the closure of C'is C (textbook uses cl(C'),
C =cl(C) =n{C +eBle > 0}
The relative interior of a convex set C' is

ri(C) ={x € af f(C)|Fe >0, s.t. (x +eB)Naff(C)C C}

19



Example 2

e On the real line:

1.
mt(C’l) == @,61 == {O}
ri(Cy) = {0}
2.
02 = [(l, b)
int(Cy) = (a,b),Cy = [a, b]
ri(Cy) = (a,b)
e in R%:

1. Cy = {(0,0)}, int(Cy) = 0, Ty = {(0,0)}, and ri(C1) = {(0,0)}

2. even for v € R", say C' = {z}, int(C) =0, C = ri(C) = {z}
3. Cy = [a,b] x {0}

62 = 02
= [a, 0] x {0}

ri(Cy) = (a,b) x {0}
4. Cy = [—1.1] x [~1.1], then

int(Cy) = (—1,1) x (=1,1)

63 = Cg
7“2(03) = Znt(O?,)
=(-1,1) x (—=1,1)

Remark. 1. Let C' C R™. Suppose that int(C) # 0. Then int(C') = ri(C)

Proof. Let x € int(C'). Then Je > 0 such that
B(z;e) CC

Hence,

R"=aff(B;e)) C aff(C) CR"

20



Therefore, af f(C') = R", and the conclusion follows by recalling that

ri(C) ={x € aff(C)|Fe >0, st. (x+eB)N af f(C) C C}
={r eR"Fe >0, st.(x+eB)N R*" C C}
={z|3e > 0, s.t. x +eB C ('}
= int(C)

0

2. Let C' # () be convex. The dimension of C, denoted dim(c), is the dimension of the affine
hull of C' ”af f(C)”. Observe that

L:=aff(C) =aff(C)

is a linear subspace
dim(aff(C)) =dim L

Proposition 10: *

Let C be a convex set in R”. Then Vz € int(C),Vy € C

[z,y) C int(C)

Proof. The above statement is equivalent to Va € int(C),Vy € C,VA € [0, 1),
(1 =Xz + Ay € int(C)

Letz € int(C),y € C,\ € [0,1). We need to show that
(I1-=Nz+ A y+eBCC

for some ¢ > 0. B
Observe that, because y € C,
Ve>0,ye C+eB

Hence, for every € > 0, we have

(1-=XNz+ A y+eB

C1-Nz+XC+eB)+¢B
=(1=Nz+AC+ XeB+¢eB
=1-XNz+AC+(1+NeB

14+ A
=(1-XN)]| =z +1—)\
eint(C)

C (1 = X)C + AC (for suff. small €)
C

eB| + \C

21



Theorem 11: Txtbook THM6.1

Let C be a convex set in R™. Then Vz € ri(C),Vy € C

[z,y) € ri(C)

Proof. We have just shown that if int(C) # 0, then Vz € int(C),Vy € C
[z, y) € int(C)

1. int(C) # 0.

Combine the previous proposition and remark 1, int(C) = ri(C')

2. int(C)=10
In this case we must have dimC' = m < n.
Let L = aff(C) — aff(C), then L is a linear subspace whose dimension = m. Hence, L
can be regarded as a copy of R™
After translating C' with —c¢ € C' (if necessary), we can and do assume that C' C R™, and
the interiors of C' — ¢ with respect to R™ is ri(C') (in R™). Now, apply case 1).

U

Theorem 12

Let C be a convex subset of R", then the following hold:
1. C is convex

2. int(C') is convex

3. Suppose that int(C) # (). Then int(C) = int(C) and C = int(C)

Proof. We prove each of the above:

1. Letz,y € C, and let A € (0,1). Then there exist sequences (2, )nex and (Y, )nen in C such
that
Ty = T, Yp =Y

Consequently,
C3 Az, + (1= Nyn — Az + (1= Ay

which implies B
A+ (1-NyeC

Hence, ¢ is convex.

22



2. If int(C) = (), the conclusion is clear. Otherwise, use the previous proposition with =,y €
int(C') C C. Observe that:

3. Clearly, C C C. Hence, B
int(C) Cint(C)

Conversely, let y € int(C).
Then 3¢ > 0, such that B(y,e) € C. Now, let x € int(C), X > 0 such that z # y, and
y+ My —z) € B(y;e) C C. By the proposition * applied with y replace by y + A\(y — z),
we learn that

y € [r,y+ Ay —z)) Cint(C)
Toseey € [,y + Ay — x)): seta == 15 € (0,1)
Observe that

y=(1-a)z+aly+ Ay —=z))
#y+ ANy —2)

Indeed,

(1 —a)z+aly+ Ay —x))

=(1—a(l+A)z+a(l+ Ny

=Y
Therefore, int(C) C int(C) B
Altogether, int(C') = int(C' We now turn to the second identity. Clearly int(C) C C.
Conversely, let y € C' and let x € int(C).
Define, VA € [0, 1)

= (1= Nz + Ay

Again, proposition  tells us that the (yx)xco,1) liesin [z, y) C int(C) Hence, y = limy o yx €
int(C'). That is,

C Cint(C)
Altogether, we learn that

Fact(textbook THM®6.2): B
Let C' be a convex subset of R™. Then ri(C') and C' are convex subsets of R". Moreover,

C 40 ri(C) 40

23



2 Separation Theorems
Let (', C; be subsets of R”. Then C; and C; are separated if 3b € R™ \ {0} such that

sup (c1,b) < inf (co,b)
el c2€C

C and C, are strongly separated if 3b € R™ \ {0} such that

sup (cp,b) < inf (c9,b)
c1eCy co€Cy

We say that z € R™ is (strongly) separated from C' C R" if the set {2} is (strongly) separated
from C.

Theorem 13

Let C' be a nonempty, closed, convex subset of R™ and suppose that x ¢ C. Then z is
strongly separated from C'.

Proof. We need to guarantee the existence of R™ 5 b ## 0 such that
sup (¢, by < inf (z,b) = (x,b)

Set
b=x—Pox#0& Peo=c—b#x(x ¢ C)

Let y € C. By the projection theorem we have

p=Pex<[peCandVy e C, (y —p,z—p) <0
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(y—(x—b),x— (x—1b)) <0
S (y—x+bb) <0
<:><y_$7b> < _<b7b> = _”bH2

Consequently,
sup <y7b> - <Il7,b> < _||b||2< 0
yelC

Hence,

sup (y,b) < (z,b)
yeC

Corollary 14

Let C, Cy be nonempty subsets of R™ such that C; N Cy = () and C; — Cy is closed and
convex. Then 'y and C5 are strongly separated.

Proof. Observe that by definition C', Cy are strongly separated if and only if C; — C5 and 0 are
strongly separated.
Indeed, C; — C5 and 0 are strongly separated < 3b # 0 such that

sup (¢ — ¢2,b) <inf(0,6) =0
01601
c2€C2

<~ sup {(Clvb> + <_627b>} <0
c1e€Cy
c2eCy

< sup (c1,b) + sup (—eg,b) <0

c1eCh c2€Cs
< sup (cp,b) < — sup (—cg,b) = inf (c,b)
c1€Cy c2€Cs c2€C2

The conclusion follows by noting that C; N Cy = () = 0 ¢ C; — C5, and combining with the
previous theorem(12). O

Let Cy, Co be nonempty closed convex subsets of R™ such that C; N Cy = 0 and Cj is
bounded. Then 'y and C5 are strongly separated.

Proof. Observe that —C5 is nonempty closed and convex. Therefore, by proposition *, C; —
C5 is nonempty, closed and convex. Now we combine with the last corollary and get what’s
required. 0
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Theorem 16

Suppose that C; and C, are nonempty closed convex subsets of R™ such that C; N Cy = ().
Then C and C5 are separated.

Proof. Set (¥n € N)
D, =CynN B(0;n)

Observe that (Vn € N),
Cl N Dn - @

Indeed, D,, C Cy. Hence, C; N D,, CC;NCy =10

D,, is bounded, because D,, C B(0;n)

Apply the corollary(15) from the previous lecture with Cs replaced by D,, we learn that (Vn € N,
there exists a hyperplane that strongly separates C'; and D,,. Equivalently.

Vn € N, Ju, € R"\ {0}, [Jun|[=1

and
sup <Cla un) < inf <Dn> un>

Because (uy, )nen is bounded, there exists a convergent subsequence (u,, Jnen Of (Uy, )nen such that
ug, — u (say), and |ju||= 1.

Now let x € Cy,y € Cs. Then, eventually y € B(0; K,,), hence eventually y € D, and by
sup (C1, up) < inf (D, u,), we have

<“I‘ ,7uKn><< y JU’Kn>
eCy €Dk,

Taking the limit as n — oo, we learn that (z, u) < (y, u). The proof is complete. O
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2.1 More Convex Sets: Cones

Definition 6

Let C be a subset of R", then

1. C'is aconeif
O — R++O

2. The conical hull of C, denoted by cone(C'), is the intersection of all the cones of R”
containing C'. It is the smallest cone in R" containing C'.

3. The closed conical hull of C, denoted by cone(C) is the smallest closed cone in R”
containing C'.

The definition of cone above means that

Vee CVaeR,,,ar e C = ('isacone
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Example 3

1.
Ky ={(x1,...,2,) € R"|2; 20,1 <i<n}

It’s a closed convex cone.

. Ky ={(x1,...,2,) €R"2; > 0,1 <i < n}
It’s a convex cone.
3.
Ky = ({0} x Ry) U (R4 x {0}) C R?
It’s a closed cone but not convex
4.

Ky = ({0} x Ry1) U (R_— x {0})

It’s a closed cone but it’s not closed nor convex.

NS
SEg
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Proposition 17

Let C be a subset of R™. Then the following hold:
1. cone(C) =R, C

2. cone(C) = cone(C')

(
3. cone(conv(C')) = conv(cone(C'))
(

C
4. cone(conv(C')) = conv(cone(C))

Proof. If C' = ), then the conclusion is obvious. Now, suppose that C' # ().

1. Set D =R, (), and observe that C' C D, and D is a cone.
= cone(C) C cone(D) =D =R, C
Conversely, let y € D. Then 3\ > 0, ¢ € C such that
Y= Ac

Then y € cone(C). Hence,
R;+C =D C cone(C)
Altogether,
cone(C) =R, C

2. Observe that cone(C') is closed cone. Clearly, C' C cone(C'). Hence,

cone(C) C cone(cone(C)) = cone(C)

Conversely, since cone(c) is a cone ,

cone(C') C cone(C)

Altogether,

cone(C) = cone(C)

3. We want to show that
cone(conv(C')) = conv(cone(C))

e (C)letx € cone(conv(C)). Then by 1), IX > 0 and y € conv(C') such that
rT=\y

Since y € conv(C), there exist Ay,..., Ay, € Roy, 7" N =1, 21,...,2, € C,
such that .
Yy = Z i
i=1
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Hence

i=1
= ; i

i=1

€cone(C)
€ conv(cone(C))

e (D), conversely, let x € conv(cone(C)). In view of 1) cone(C) = R;1C, we
learn that there exist A\y,...,\,, > 0, there exist py,..., t,, > 0 with ZZ’;I Wi =
1,{x1,..., 2y} C C such that

Thena > 0, 3; > 0,Vi € {1,...,m}and > " B; = 1. Hence

m

r=a Z Bix; € cone(conv(C))
i=1
€conv(C)

4. This is a direct consequence of 3) and 2),

cone(conv(C)) = conv(cone(C))

O

Let C be a convex subset of R™ such that int(C') # () and 0 € C. Then the following are
equivalent.

1. 0 € int(C)
2. cone(C) =R"
3. cone(C) = R"
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Proof. e 1) = 2):Indeed, 0 € int(c) < Je > 0 such that B(0;¢) C C. Hence,
R"™ = cone(B(0;¢))
C cone(C) C R"
= cone(c) =R"
e 2) = 3) By an earlier Proposition

cone(C') = cone(C')

Nowe,

R" 2 cone(c) C cone(C') = coneC

e 3) = 1):cone(C) =R" Zoe int(C)
By an earlier result, we proved that for any set C' we have

cone(conv(C')) = conv(cone(C))

Since C is convex, we have
C' = conv(C)

Hence,
cone(C') = conv(cone(C))

implies that cone(C') is convex. By assumption
0 # int(C) C int(cone(C))
Hence, cone(C) is a convex set,
int(cone(C)) # 0
By an earlier result

int(cone(C)) = int(cone(C)) = int(cone(C))

Hence,
R" = int(]R")
nt(cone(C))
mt(cone(C’))
= cone(int(C))
= 0 € cone(int(C))

= 0 € \int(C), for some A > 0
= 0 € int(C)

Fact: Let C be a convex subset of R” such that int(C') # () and 0 € C, then
int(cone(C)) = cone(int(C'))
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Definition 7: Tangent and Normal Cones

Let C' be a nonempty convex subset of R" and let x € R".
The tangent cone to C' at z is

TC(I) _ {T(C — l‘) = U)\GR++/\<C — x)) z Z g;

and the normal cone of C at x is

u € R"|sup.cq (¢ —x,u) <0}, x €
w):{é [Sup,cc e — ,u) }MC

Example 4

Let C = B = B(0;1) C R".,

{ly e R*(z,y) <0}, |zf|=1;
To(r) = § R, z]|< 1;

(), otherwise

Theorem 19

Let C be a nonempty closed convex subset of R™ and let x € R". Prove that No(z), Te(x)
are closed convex cones.

O

Proof. See A2.



-E (‘3) = Lé(xj):"k
e
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Let C' be a nonempty closed convex subset of R™ and let x € C'. Then

n € Ne(x) &Vt € To(z), (n,t) <0

Proof. o (—)Letn € No(z), and lett € Tix(x). Recall that
To(x) =cone(C — x)
Therefore, there exists A > 0, (tx )xen in R” such that
VE e Nyx+ Mt €C, t, — t
Since n € N¢(x), and x + Aty € C, we learn that

VEk e N, (n, Aty)
= (n,z + Mty — )

<0
A >0
= Vk eN, <7’L,tk> <0

Letting k — oo,
= (n,t) <0

e (<) Suppose that V¢ € T-(x), we have (n,t) < 0.
Let y € C and observe that
y—x € Te(x)
(y—x€C—xCcone(C —x)Ccone(C —x))
Therefore,
(n,y—z) <0 = n € Ng(z)

Let C' be a convex subset of R™ such that int(C') # (), and let z € C'. Then,

z € int(C) L To(z) = R" & Ne(z) = {0}

Proof. e (1) Observe that
z €int(C) < 0 € int(C —x)

Applying the earlier result (lemma 18) with C' replaced by C' — .

0 €int(C —x) < cone(C —x) =R" < To(z) =R"
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e (2) Recalling the earlier Lemma 20
Let T(j(ﬁ) = R".

n € No(x) &Vt € To(x) =R, (n,t) <0

Hence, N¢(z) C {0}. Clearly, {0} C N¢o(x).
Hence, N¢(z) = {0} as claimed.
Conversely, if No(z) = {0}, for simplicity, set X = T¢(x). Recall that K is a closed convex
cone, 0 € K.
Let € R™ and set p = Pk(x).
By the projection theorem
Vy € K, (v —p,y—p) <0

In particular,

(x —p,—p) < 0By settingy =0
(x — p,p) < 0By settingy = 2p € K as K is a cone
= (r—p,p) =0

Hence the projection theorem gives
Vye K, (x—py) <0

It follows from the lemma 20 that z — p € N¢(z) = {0}.
Hence, x — p = 0; equivalently

r=p=Pg(r) e K

sOoOR"C K = R"=K =T¢(z)
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3 Convex Function

Definition 8: Epigraph

Let f : R" — [—o00, 00]. The epigraph of f is

epi(f) = {(z,0)[f(x) <o} CR" xR

Example 5
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Definition 9

Let f : R" — [~00, c]. Then
dom(f) = {z € R"|f(x) < oo}
f is proper if dom/(f) # 0 and
Ve € R, f(z) > —o0

Example 6

e Let f: R™ — (—00,00) be continuous. Then f is proper.
e Let (' be a subset of R™. The indicator function of C' at x € R™ (see txtbook p
28) is
0, xzeC
dc(x) = {
00, ojw

Clearly, d¢ is proper whenever C' # ().

f is lower semicontinuous (l.s.c) if epi( f) is closed.

v

continuous lower semicontinuous NOT lower semicontinuous

?
I
:
:

f is convex if epi( f) is convex




Proposition 22: L5-1

Let f : R™ — [—o00, 00] be convex. Then dom(f) = {x € R"|f(x) < oo} is convex.

Proof. Fact: Let C be subset of R™ and let A : R — R be a linear transformation. If C'is a
convex subset of R” then A(C') is a convex subset of R™
Recall that

epi(f) = {(z, @)|f(z) < a} CR™

Consider the linear map (transformation)
L:R"™ 5 R": (z,0) >z

Then dom(f) = L(epi(f)), and the conclusion follows in view of the above Fact. O

Theorem 23: 1.5-2

Let f : R™ — [—00, 00]. Then f is convex if and only if

v,y € dom(f),VA € (0, 1), f(Az + (1 = N)y) < Af(z) + (1 = A)f(y)

Proof. Observe that f = 0o < epi(f) =0 < dom(f) = 0 and the conclusion follows.
Now, suppose dom(f) # 0,

o (= ) Let (z,y) € dom(f) x dom(f) and let A € (0,1). Observe that (x, f(x)) €
epi(f), (y, f(y)) € epi(f). By convexity of epi(f) we have

M, f(z) + (1= Ny, f(y) = Az + (1 = Ny, Af(z) + (1 = N f(y)) € epi(f)
= fOz+ (1 =Ny) <Af(z)+ (1 =Nf(y)

o (). Let(z,0) €epi(f),(y,B) € epi(f), A € (0, 1)
Observe that this implies that

Now,

Hence,
Az + (1 = Ny, \a+ (1 = X)) € epi(f)
which implies
Az, a) + (1= N)(y, B) € epi(f)

That is, epi(f) is convex. Equivalent, f is convex.
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3.1 Lower Semicontinuity

Definition 10: Lower semicontinuity(Alter. Defn)

Let f : R™ — [—00, 0], and let x € R™. Then f is lower semicontinuous (l.s.c.) at x if ,
for every sequence (x,,)nen in R™,

T, > = f(x) <liminf f(x,)

Moreover, f is l.s.c. if f is L.s.c. at every point in R™.

Remark. 1. If f is continuous then f is l.s.c.

2. One can show the equivalence of the definition(s) of l.s.c. However, we will omit the proof.

Example 7: The indicator function

Let C' C R™. Then indicator function dc : R™ — (—o0, 00| of C'is defined by

0, xzeC
50(1'):{00 x¢C

Theorem 24: 1.5-3
Let C' C R™. Then the following hold

1. C #( <= {¢ is proper
2. C'is convex <= {¢ is convex

3. C'isclosed < dcisls.c

Proof. 1. See A2
2. See A2
3. Observe that C' = ) <= epi(dc) = 0 which is closed. Now suppose C' # ()

e (= ) Suppose C'is closed.
We want to show that epi(d¢) is closed. Let ((x,, a,))nen be a sequence in epi(d¢),
such that (x,,, o) — (2, @).
Observe that:
(n)nen is a sequence in C, x,, — x

Hence, z € C (C closed). And («,)nen is a sequence in [0, 00), o, — «. Hence
« > 0. Indeed,
Vn € N,0 = dc(z,) <
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Consequently,

e ( <) Conversely, suppose that i is l.s.c. Let (x,,),en be a sequence in C, x,, — .
We want to show that = € C. By definition of d¢, it is sufficient to show that §c(x) = 0.
Observe that

0 < d¢(z) < liminf e (z,) =0

Hence, 0¢(z) =0 = z € C
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Why optimizers like indicator functions? Consider the problem
(P)min f(x), st.x € C CR™
f convex, 1.s.c proper, C' convex closed # ()

Then (P) is equivalent to
min h(z) := f(x) + dc(x)

zeR™

flx), zeC
00, r¢C
The problem is now “unconstrained” minimization of ”a sum of two” functions.

where h(z) =

e f is not necessarily smooth

e )¢ is Not smooth (whenever C' # R™)
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Proposition 25: L.5-4

let I be an indexed set and let (f;);c; be a family of Ls.c convex functions on R". Then
sup;c; fi is convex and l.s.c

Proof. Set F' = sup,¢; fi
We claim that

epi(F) = Nicrepi(fi) - .. (%)
Indeed, let (x, ) € R™ x R. Then
(z,a) € epi(F) <= sup fi(z) < «
icl
— Viel, filz) L
— Viel, (z,a) € epi(fi)
— (z,0) € Nierepi(fi)

This proves ()

e [isls.c.

Since Vi € I, f; is Ls.c., we conclude that Vi € I, epi(f;) is closed. Now combine with ()
to learn that

epi(F) = Nierepi(f;) isclosed = Fisls.c

e ['is convex

Since Vi € I, f; is convex, we conclude that Vi € I, epi( f;) is convex. Now combine with
(x) and an earlier result to learn that

epi(F') = Nierepi( fi) is convex
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3.2 The Support Function (txtbook p-28)

Definition 11

Let C be a subset of R™. The support function of C'is
o:R™— [—00, ]

u > sup (¢, u)
ceC

Proposition 26: L5-5

Let C' be a nonempty subset of R” Then o is convex, l.s.c and proper

Proof. Let ¢ € C and set
fo:R" =R 2+ (x,c)

Then f¢ is proper, L.s.c and convex (In fact, f¢ is linear). Moreover,

Oc = sup fc
ceC

Now combine with the earlier result (L5-4) to learn that o is convex and L.s.c.
Finally, observe that, since C' # (),

oc(0) =sup (0,¢) =0 < 0
ceC

Hence, 0 € dom(o¢) # 0. Moreover, let ¢ € C. Then Vu € R™,
oc(u) = sup (u, c)
ceC
2 (u,0)
> —00

[

Hence, o is proper.
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Example 8: L5-6

Let C' = [a,b] C R,. Then Vx € R

oc(z) = sup cx =
c€la,b]

Let C' = [0,00) C R. We examine two cases:

{bx, x>0

ar, x<0

1. x <0, then
oc(z)= sup cx=0
c€[0,00)

2. x > 0, then
SUPce[0,00)CL = 0O

Hence dom(o¢) = (—o0, 0]. Moreover,

Vo € (—00,0],0c(x) =0

Definition 12

Let f : R™ — (—o00, 00| be proper. Then f is

1. Strictly convex if

Ve,y € dom(f),x #y, A€ (0,1) = fAx+ (1 —=Ny) < Af(z)+ (1 —=N)f(y)

2. strongly convex with constant 3, if for some 5 > 0 we have:

Va,y € dom(f),x #y,\ € (0,1)
s

— fQz+ (1= Ny) <A (2) + (1 =N/ (y) = A0 =Nl =y’

Clearly,
Strong Convexity = Strict Convexity = Convexity

and example for f being strictly convex but not strongly convex is f(z) = e®.




3.3 Operations That Preserves Convexity

Proposition 27: L6-1

Let [ be a finite indexed set, let (f;);c; be a family of Convex functions from R™ to
[—00, 0], then

E fi 1s convex

el

Proof. See A2 0

Proposition 28: L.6-2

Let f be convex and l.s.c and let A > 0. Then \f is convex and l.s.c

Proof. See A2 ]

Definition 13: Minimizers of Functions

Let f : R" — (—o00, 0] be proper and let x € R™. Then x is a (global) minimizer of f if
f(z) = min f(R™) € R

Throughout this course we will use arg min f to denote the set of minimizers of f.

Definition 14: Local and Global Minimizers/Maximizers

Let f : R™ — (—00, 00| be proper and let T € R™. Then:
e T is a local minimum of f if 30 > 0 such that

le —7l|<d = f(T) < f(x)

e T is a global minimum of f if
Vz € dom(f), f(Z) < f(x)

Analogously, we define local/global max.
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Example 9: L6-3

\
f(x)
/ = X3., \lz— LY

/ X(x-l)(ﬂ-tz>

(

Pix)= + x* . _.‘3_‘3_ X —|

Local minimams ot =l , x=-2
Globad maimam oh— x = -2

bed  max at- x=o0

No jlohl MaXimUA

Why do we "love” convex functions?
Proposition 29: 1.6-4

Let f : R™ — (—00, 00| be proper and convex. Then every local minimizer of f is a global
minimizer.

Proof. Let x be a local minimizer of f. Then dp > 0 such that

f(x) = min f(B(z; p))
Let y € dom(f) and observe thatif y € B(z;p) (i.e. ||z — y||< p) then f(z) < f(y).
Now, suppose that y € dom(f) \ B(x;p). Observe that A := 1 L€ (0,1), set

lz—yll

z=Ax+ (1 =Ny € dom(f)
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note dom( f) is convex by L5-1. Moreover:

z—x=Xx+(1-Ny—=x
=1 =Ay—(1=XNz

=1 -N(y—=z)
Hence,
[z =zl = [[(1 = A)(y — 2)
=1 =Ny — =
_ P _
=———lly—zl=p
|y — |
Hence,
z € B(z;p)

Moreover, because f is convex, it follows from Jensen’s Inequality that

f(x) < f(2)
= f(Az+ (1= Ny)
SAf(2) + (1 =A)f(y)
Hence,
(I=Nfl2) <A-=Nfly) = [flz) < [fy)
L]

Proposition 30: L6-5

let f : R™ +— (—o00, 00| be proper and convex and let C' be a subset of R™. Suppose that x
is a minimizer of f over C such that z € int(C). Then x is a minimizer of f

Proof. Since z € int(C'), 3¢ > 0 such that B(x;¢) C C.
Since x is a minimizer of f over C' O B(zle) we learn that

f(z) = inf f(B(z;¢))

That is, x is a local minimizer of f. Now we combine with (LL6-4) to get the result. (]
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3.4 Conjugates of Convex Functions

Definition 15: Conjugates of Convex Functions

Let f : R™ — [—00, 00|. The Fenchel-Legendre/ConVex Conjugate of f is

T R™ = [—o0, 0]

cu v sup ((z,u) — f(x))

reR™

Geometrically Speaking:

fw)

(-/U>

Proposition 31: L6-6

Let f : R™ +— [—00, 00]. Then f* is convex and Ls.c.

Proof. Observe that if f = co <= dom(f) = (). Hence, Vu € R™,

fH(u) = sup ((z,u) — f())

zeR™

= sup ({z,u) = f(z))

zedom(f)

= —Q

i.e. f* = —oo which is L.s.c. and convex.
Now suppose that f # oo. we claim that Vu € R™,

ff= sup ({z,u) —a)...(x)

(z,a)€epi(f)
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f(z,a) := (x,-) — « is an affine function.
Indeed, let © € R™.
On the one hand, V(z, ) € epi(f), we have

(z,u) = f(x) = (z,u) —a

Hence,
sup ((z,u) — f(z)) =2  sup  ((z,u) — )
zcR™ (z,a)€epi(f)
On the other hand,
G ={(z, f(z))|lz € dom(f)} C epi(f)
Hence,

sup ((z,u) — f(z)) = sup ((z,u) — f(2))

rER™ zedom(f)

= sup  ((z,u) = f(z))

(z,f(x))ed

< sup ((zu) —a)
(z,0)€epi(f)

Altogether, we learn that () holds. This implies Vu € R™,

f* (u) = sSup (f(w,a) (u>>

(w,0)€epi(f)
CR™ xR
Now by L5-4, we get required result. U
Example 10: L6-7
letp > 1 and setq = ﬁ. Let
p
fR=R: 2z~ ﬁ
p
Then .
ffF"R>R: u— M
q

Proof. Observe that f(z) is differentiable on R, f(z) = { p

Now, let u € R

f*(u) = sup(zu — f(x))

z€R
||
=Ssup | Tu — —
z€R p
=g(x)
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SO

P! x>0
g () =u— ’
—(—z)P7t, <0

If u > 0, then setting ¢'(x) = 0 yields 27~! = u, and = > 0; equivalently
v = /=D
If u < 0, then setting ¢’(x) = 0 yields v = —(|z|)?~!, and = < 0; equivalently
jul = —u = faf /=
Altogether, |z|= |u|'/®~Y) and sign(x) = sign(u). Hence,

1 ’u‘pil
ffu) = |u|P—7 |u|————
(w) = lu[P= |ul ’
= (1= 1p)ul 0P

P fuf

O

Example 11: L6-8

Let f : R— R, f(z) = e". Then

fH(u) =10, u=0

Proof. Letu € R, then

*(u) = sup(zu — €°
7 = sl )
=g(x

Hence,
Ifu=0 = f*(u)= su]g(—e"’) =0
Ifu>0 = f*(u) = ueln(u) —u
Also, ¢'(x) = u — e*. Setting ¢'(x) =0
— ' =u <= z=In(u)
Ifu<0 = ¢(x) <0,Vz € R. Therefore, g(z) is decreasing on R. Hence

supg(xz) = lim g(z) = o0
z€R T——00
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Example 12: 1.6-9

Let C be a subset of R™. Then §} = o¢.

Proof. Indeed, recall that:

50(17)2{0’ rel

oo, xz¢C
oc(z) = sup (z,y)
yeC

Now,

oc(u) = sup ((z,9) — dc(y))

yeC

= sup (7,y)
yelC
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3.5 The Subdifferential Operator

Definition 16

Let f : R™ +— (—o00, o0] be proper. The subdifferential of f is the set-valued operator
of :R™ = R™
x> {u e R"|vy e R™, f(y) = f(z) + (u,y — )}

Let € R™. Then f is subdifferentiable at x if 9f(x) # (). The elements of Jf(x) are
called the subgradient of f at x.

Theorem 32: Fermat L6-10
Let f : R™ — (—o00, 00| be proper. Then

argmin f = {x € R™|0 € 0f(x)} := zero(0f)

Proof. Indeed, let x € R™. Then

r€argmin f <= Vy e R", f(z) < f(y)
= Yy e R"(0,y —z) + f(z) < f(y)
<~ 0€0f(x)

O

u is a au.bjm,c\iev\k d} ‘f-oﬂ'x N3
Por ald yeR™ we have
|2 (y) v/ Fox o u,y—xp =t h(ﬁ)
hty) is an afpine Punchion , with slope = W
hoo = P(x)
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Example 13: L6-11

Let f : R+— R : 2+ |z|, then
{-1}, <0
Of (@) = [=1,1], ==0
{1}, x>0
Proof. See A2 U]

Lemma 33: L6-12

f:R™— (—o00,00] proper = dom(9f) C dom(f)

Proof. Indeed, if f(z) = oo = Of(z) = 0.
”Contrapositive: = ¢ dom(f) = x ¢ dom(0f)” O

Example 14: L.6-13

Let C be a convex closed nonempty subset of R™. Let x € R™, then

8(50(1’) = Nc(l’)
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Proof. Indeed, let uw € R™ and let x € C (dom(9f) C dom(f)), then

u € Jdc(x)
<~ Vy € R™, éc(y
— Yy e Coely)
—VyeC, 0=
<= u € Ngo(2)

> oc(z) + (u,y — x)
do(z) + (u,y — x)

U,y — T

)
>
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Casually Speaking
Recall the problem
(P)min f(x), st.z € C CR™

f convex, L.s.c proper, C' convex closed # ()

Then (P) is equivalent to
min h(z) = f(z) + éc(x)

zeR™

flz), xzeC
00, r¢C

In view of Fermat’s Theorem:

where h(z) =

x is a minimizer of h(zx) <= 0 € Oh(x)
Goal: Find x such that 0 € Oh(x)

Oh(x) = O(f + dc)(x)
= (Of + 0¢)(x) requires more assumptions
= 0f(x) + 00c(x)
= df(x) + No(z)
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3.6 Calculus of Subdifferentials

Let f,g : R™ — (—o0, 00| be proper and let x € R™. Suppose that f, g are differentiable at x,
then

V(f+9)(x) =V[(x)+ Vg(x)

Question:
Let f.g : R™ — (—o00, 00| be proper, convex Ls.c let € R™. Suppose that f, g are subdifferen-
tiable at z, then

O(f + g)(x) = df (x) + dg(x)

Fact (L7-1):
Let f : R™ — (—o00, 00| be convex 1.s.c and proper, then

0 # ri(dom(f)) C dom(df)
In particular,

ri(dom(f)) = ri(dom(9f))
dom(f) = dom(0f)

Separation Theorem revisited:
Let C, C5 be nonempty subsets in R™. Then,

e (', Cy are separated if 3b # 0 such that

sup (b,c1) < inf (b, co)
€0 c2€Cy

e (', (Y are properly separated if 3b # 0 such that C; and C) are separated and

inf (b,c1) < sup (b, ca)
c1€Cy co€Cs
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Fact (L7-2): [txtbook Thm 11.3]
Let C', C; be nonempty convex subsets of R, then C} and C', are “properly” separated if and
only if
ri(Cy) Nri(Cy) =0
Fact (L7-3): [txtbook Cor 6.6.2]
Let C, (5 be convex subsets of R™, then

7“2'(01 + CQ) == TZ(Cl) + 7"@(02)

Let A € R, then 7i(AC) = Ari(C)
Fact (L7-4): [txtbook top of page 49]
Let C; C R™, Cy C RP be convex, then

m’(C’l ) CQ) == T‘Z(Cl) D TZ(CQ)

and
Cl D CQ ~ Cl X CQ = {(01,62)’01 € Cl,CQ € 02}

Theorem 34: L.7-2
et O, Cy be convex subsets of R™ such that ri(Cy) Nri(Cy) # (0. Let z € Cy N Cy, then

Neynes(x) = Ney (x) + Ney (2)

Proof. e’ D7 see A2

o " C7:Letx € CyNCyandletn € Neoyqe, (), then Vy € C) N Cy, we have
(n,y—x) <0
Ey = epi(dc,) = C1 x [0,00) CTR™ x R
Ey={(y,a)lye Cr,a < (n,y—z)} CR™ xR
Using Fact(L7-4), applied with Cy replaced by [0, 00) C R, we learn that
ri(Ey) = ri(Ch) x (0,00)
One can also show that
ri(By) = {(y, )|y € ri(Ca), 0 < (n,y — 1)}

We claim that
ri(Ey) Nri(Ey) =0...(x)

Indeed, suppose for eventual contradiction that
A(z, ) € ri(Ey) Nri(Esy)
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The 0 < a < (n,z —x) < 0, which is absend. Hence (*) holds. Applying Fact L7-2 with
C;’s replaced by E;’s yield.
3(b,v) € R™ x R\ {0} such that

V(z,a) € By Y(y, ) € s
((z,a),(b,7)) < ((y,8), (b,7))
(x,b) +ay < (y,b) + By ...(1)

Moreover, 3(Z, @) € E1,3(7, B) € E; such that

(Z,b) +ay < (7,b) + By...(2)
We claim that v < 0. Indeed, observe that:

(x,1) € Eq, (2,0) € Ey...(3)

Combining with we obtain

Next, we show that v # 0
Suppose on the contrary that v = 0. Observe that this implies that (1) and (2), 30 # 0

‘v’(x,a) - Cl V(y,ﬁ) & Cg
{z,0) < (y,b)

dz € 4 Ely € Oy
(T,b) < (7, b)

That is, C, Cy are properly separated. By the earlier Fact(L7-2), we learn that 7i(C7) N
ri(Cy) = (), which is a contradiction.
Altogether,

v <0

‘We will show that,

b b
Nejne, 2= —— +n+—
Y Y
~~~ S~——
GNCI (z) ENO2 (z)
Recall

(2,5) + a7 < (. B) + B (1)

Next, we claim that Vy € (',

(b,y) < (b,x)...(4)

Indeed, observe that Vy € C4, (y,0) € Ey, and by (3) (z,0) € Es. Therefore, (1) yields (4).
This implies that b € N, (x). Hence,

b1
2 = _Zhe Ng(z)
Y Y
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Finally, using (3) (z,0) € E4, and
Yy € Cy, (y, (n,y — ) € Ey

Therefore, (1) yields
\V/y € 027 <b7$> < <bay> +’y<n,y - ZE'>

Eauivalently,
b
Vy€C2,<——|—n,y—x> <0
v

Therefore,

b
~ +n € Ng,(z)
fy

Altogether, we conclude that

b b
n= - +; +n € Ng, (z) + Ng, (2)
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Proposition 35: L.7-3

Let f : R™ +— (—o00, 00| be convex L.s.c and proper. Let z € R™ and let u € R™ then the
following are equivalent:

uedf(r) <= (u,—1) € Nepicp)(z, f(2))

Proof. Observe tha epi(f) # () and convex (because f is proper+convex). Now let u € R™, then

(u, =1) € Nepi(p) (2, f(2))
< [z € dom(f), and V(y, B) € epi([), {(y, B) — (=, [(x)), (u, —1))
<= [z € dom(f), and ¥(y, B) € epi(f),{(y — =,8 — f(2)), (u,—1))
= V(y,B) € epi(f), (y —x,u) + f(z) < B
< Yy € dom(f), (y — z,u) + f(z) < f(y)

0]
0]

NN

For (7), clearly = holds, so (y, f(y)) € epi(f), and <= hold because (y, 5) € epi(f) <~
fly) < B,s0
u € 0f(z)

Theorem 36: L7-4(txtbook THM 23.9)

Let f : R™ — (—o0,00], g : R™ + (=00, 0] be convex 1.s.c. and proper. Suppose that
ri(dom(f)) Nri(dom(g)) # 0. Then Vo € R™, we have

Of (x) + dg(x) = O(f + g)(x)

Proof. Letx € R™. If x ¢ dom(f) Ndom(g) 2 dom(9f) N dom(dyg),
= Jf(x) +dg(x) =10

Also, O(f + g)(z) = 0.
Now, let z € dom(f) Ndom(g) = dom(f + g), one can easily verify that

Of () + Dg(x) € A(f + g)(x) ... (A2)

We now verify the opposite inclusion.
Suppose that u € I(f + g)(x),

Vy e R™, (f+9)y) = (f+9)(@) +(u,y —x)...(1)
Consider the closed convex sets:

0 # B ={(z,a,8) e R" x R x R[f(x)

<a} =epi(f) xR
) # Ey ={(z,0,0) € R" x R x R|g(x) < 5}
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We claim that
(U, _17 _1) € NElﬂEz(x7 f($)ag(x)) s (2>
Indeed, let (y, o, ) € E1 N Ey, then f(y) < a,g(y) < B

— f(y) —a<0, gly) — <0

Now,
((u,—1,-1), (y, o, 6) (z, f(2), 9(2)))
=<uy—w> (a—f(x)) = (B—g(x))
(uy—x> () g(z) —a—f
= (uw,y— )+ (f+9)(x) — (a+B)
<(f+9)(y)—a—ﬂ
=fly) —a+gly) - B
<0

This proves (2).
Next we claim that:
ri(Ey) Nri(Ey) # 0

Using that Fact (L7-4), we know that

ri(Ey) = ri(epi(f) x R)
= ri(epi(f)) x ri(R)
=ri(epi(f)) x R

Moreover, we can show that

ri(Ey) = {(z,a,8) € R" x R x Rlg(z) < B}
Now, let z € ri(dom(f)) Nri(dom(g)), then

(z, f(2) +1,9(2) + 1) € ri(Ey) Nri(Ey) # 0

Therefore, F, E, are nonempty closed convex,ri(E;) Nri(Es) # (). Hence by Theorem L7-2, we
have

Nenm(2, f(r),9(x)) = Ng, (2, f(2), 9(2)) + Np, (2, f(2), g(2))

Therefore,
(u,—1,-1) = (u1,—,0) + (ug,0,—p)

-~

ENp, (,]().9(2) N, (2.F(2).9(2))
Observe that F; = epi(f) x R. Hence

N, (2, [(2),9(2)) = Negi(p) (%, f(2)) X Na(g(x)) = Negip)(z, f(x)) x {0}
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This yield: © = u; + us, @ = 3 = 1, hence,

(u1, =1) € Nepip)(z, f())
(UQ, _1) € Nepi(f)(x7g(x))

Recalling Proposition L7-3, we conclude that
u € Of(x), uy € Og(x)
Hence,
u=1u +uy € 0f(x)+ dg(x)
The proof is complete. U

Example 15: L7-5

Let f : R™ — (—o00, 0] be convex Ls.c. and proper and let ) # C' C R™ be convex and
closed. Suppose that
ri(C) Nri(dom(f)) # 0

Consider the problem:
(P) min f(z), st.x € C

Let T € R™, then T solved (P) if and only if (0f(T)) N (=N (T)) # 0

Proof. Write (P) as
min f(z) + dc ()

zeR™

Observe that f 4 d¢ is convex l.s.c. and proper.
By Fermat’s Theorem
Zsolves p <= 0€ I(f + d¢)(T)

Now,

ri(dom(f)) Nri(dom(dc))
=ri(dom(f)) Nri(C)
#0

Therefore, by Theorem L.7-4, we conclude that

Zsolvesp <= 0€ I(f +0c)(T) = 0f(T) + 0dc(T) = Of (T) + N (T)
< Ju € 9f(T), —u € No(T)
> 0f(@)N(=Nc()) # 0
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Example 16: L.7-6

Letd € R™, and let ) # C' C R™ be convex and closed. Consider the problem
(P) min{d,z), s.t.z € C

Let 7 € R™. Then 7 solved
p <= —d € N¢o(T)
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3.7 Differentiability of Convex Functions

Definition 17: L8-1

et f: R™ — (—o0, 00| be proper, and let x € dom(f). The directional derivative of f at x

in the direction of d is
T ylo t

f is differentiable at x if there exists an operator V f(z) : R™ +— R™, called the derivative
(or gradient) of f at x that satisfies

pn 1@+ ) — £@) = (V@) |

0#[[y[|—0 |

=0

Remark. 1If f is differentiable at x, then the directional derivative of f at = in the direction of d is

f'(a;d) = (Vf(x),d)

Theorem 37: txtbook Thm 23.2

Let f : R™ +— (—00, o] be convex and proper and let z € dom(f). Let u € R™. Then u is
a subgradient of f at x of and only if

Vy € R™, f'(z;y) = (u,y)

Proof. Using the subgradient inequality we have

u€df(x) <= YyeR™" X>0, f(x+ \y) > f(x) + (u,z + Ay — z)
) —
< Vy e R™",\ >0, flo+ z\) /() > (u,y)
Taking the limit as A | 0 in view of Theorem 23.1 in the textbook yields the desired result. Ul

Theorem 38: Txtbook 25.2

Let f : R™ — (—o0, 0] be convex and proper and let x € dom(f). If f is differentiable at
x, then V f(z) is the unique subgradient of f at x.

Proof. Recall that Vy € R™,
f(@y) =(Vfx),y)

Let u € R™, using the previous theorem we have
u€ 0f(z) < Vy eR™, f(z;y) > (w,y)

Altogether,
uedf(r) <= Yy e R"(Vf(x),y) = (u,y)
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Clearly, we have {V f(z)} C 0f(x). Moreover, letting y = u — V f(z) yields
lu =V f(@)|*=0
= u = Vf(x)
= 0f(z) S {Vf(2)}

Hence,

Of (x) ={Vf(x)}

Lemma 39: LS-4

Let ¢ : R — (—00,00] be a proper function that is differentiable on a nonempty open
interval I C dom(yp), then:

¢ is increasing on [ = ¢ is convex on [

Proof. Fixx,y € I,and A € (0,1). Set
YR (—o0, 0]
sz dp(z) + (1= Ne(2) — p(Ax + (1= N)z2)
Then
P(z) = 1= N¢'(z) = (1= ' Az + (1 = Nz)...(x)

and ¢/ (z) = 0¢Y(x).
And (x) implies that

Y/(2) < whenever z <
¥ (z) > 0 whenever z > x

Therefore, 1) achieves its infimum on [ at z.
Thatis Vy € I,¢(y) = ¢(x) = 0.
Thatis Vy € I,
Ap(x) + (1= Ney) = e(Az + (1= A)y)
O

Proposition 40: L.8-5

et f : R™ +— (—o00, 00| be proper. Suppose that dom(f) is open and convex, and that f is
differentiable on dom( f). Then the following are equivalent:

1. fis convex

2. Va,y € dom(f), (x —y,Vf(y) + fly) < f(x)
3. Yo,y € dom(f), (x —y,Vf(x) = Vf(y) =0
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Proof. e 1) = 2): Combine the subgradient inequality with the previous result
e 2) — 3): See A2 for a proof in a more general setting

e 3) = 1): Fixz € dom(f), y € domf(f), z € R™. By assumption, dom(f) is open.
Therefore, 3¢ > 0 such that

y+ (1 +e)(z—y)=ax+e(x—y) €dom(f)
y—clz—y)=y+ely—z) €dom(f)

Hence, by convexity of dom/(f) we have
Va € (—e,1+¢), x4+ a(x —y) € dom(f)
Set C'=(—¢,14+¢) CRandset p: R — (—o0, 0], where
pla) = fy+ oz —y)) + dc(z)
Then ¢ is differentiable on C', and Vo € C,
¢'(a) =(Vf(y+alx—y) z—y)
Now, take a € C, 8 € C, o < 3. Set

Yo =Yy +alx—y)

y5=y+ﬂ(x—y)} = Ys— Yo = (f—a)(x —y)

¢'(B) = ¢'(a) = (Vfly+ Bz —y)),x—y) = (Vfly+alr —y),z —y)
JWs) = Vf(ya),® —y)

= (V) = VS (), T fj>
1

5 g VI s) = VI (ya) ys — )
0

WV

That is ¢’ is increasing on C'. By lemma L8-4, we know ¢ is convex on C'. Recalling

pla) = fly+a(z —y)) +dc(a)

We learn that
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Example 17: L8-5

Let A be m x m matrix, and set f : R™ — R, f(z) = (x, Az). Then the followings hold:
1. Vf(z) = (A+ AT)(x),Vz € R™

2. fis convex if and only if A + AT is positive semidefinite.

Proof. 1. See A3

2. Recall Prop L8-5. Therefore f is convex if and only if

= Vr,y e R"(A+ ANz — (A+ ANy,z —y) >0
= Vze|R"((A+A")z,2) >0
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3.8 Subdifferentiability and Conjugacy
Recall that, for a function f : R™ — [—00, 0o, the Fenchel Conjugate of f is
T R™ = [—o0, 0]

fH(u) = sup ((z,u) — f(x))

zeR™

Proposition 41: L.8-6

Let f, g be functions from R™ to [—o0, co]. Then
L= () <

2. f<g = [f">g and [ < g”]

O

Proof. See A3

Proposition 42: L.8-7

et f: R™ — (—o0, o] be proper. Then Vz,y € R™

f@) + 7 (u) = (2, u)

Fenchel-Young inequality

Proof. Observe that the definition of f* yields:

=00 = f'=-x
Therefore, by assumption we know that

Vu € R™, f*(u) # —o0

Now let (z,u) € R™ x R™. If f(x) = oo, the desired inequality clearly holds, else, if f(x) < oo,
we have

f*(u) = sup ({y,u), f(u)) = (y,2) — f(z)

yeR™

O

Proposition 43: L.8-8

Let f : R™ — (—00, 00| be convex l.s.c and proper. Let z € R™ and let u € R™. Then the
following are equivalent:

uwedf(z) < flx)+ [ (u) = (z,u)
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Proof.

u € 0f(x) <= Yy edom(f), (y—=z,u)+ f(x) < f(y)
< Vy € dom(f), (y,u) — f(y)
f

< <
= [(u) :yse%%“y’u) —fy) < (@, u{ = fl2) <

— f(@)+ [ (u) = (z,u)

Proposition 44: 1.8-9

Let f : R™ — (—o00, 00| be convex and proper, let z € R™ and suppose that df(x) # (.
Then

(f) = ") = f(z)
where

[ (@) = sup {{y,z) — f*(y)}

yeR™

Proof. Letu € 0f(x). By Prop L8-8

(u, ) = f(x) + f*(u)
— f(2) = (u,x) = f*(u)

Consequently,
(@) = sup {{z,y) — f*(y)}
yER™
> (z,u) — f*(u)
= f(z)
Conversely,

f7(x) = sup {{y,z) — f*(y)}

_ u% o) — sup ()~ 1))
= s ((00) + L UG~ )
- yse‘ﬁg%{zie%fm{f(z) +{y, @ —2)}}

< s (/) = (s — )}

= s f(x)

- I
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Altogether,
f(x) = ()

Fact(L8-10) Let f : R™ +— (—00, co] be proper. Then
[f is convex and L.s.c] < f = f**

In this case, f* is also proper.

Corollary 45

Let f : R™ +— (—o00, o0] be convex L.s.c and proper. Then

1. f*is convex Ls.c and proper

2. f** — f

Proof. e Combine Fact L.8-10 and Prop L6-6

e Follows from Fact L8-10

Proposition 46: 1.8-12

Let f : R™ +— (—o00, o0] be convex Ls.c and proper. Then

u€ df(x) < x € df*(u)

Proof. Recall that
uedf(x) <= flz)+ f(u) = (z,u)

by Proposition L8-8.
Set g := f*. Then Corollary L8-11 imply that g is convex l.s.c and proper. Moreover, g* = f.
Hence,

uwedf(z) — flz)+ [ (u) = (z,u)
= g (x) +g(u) = (z,u)
<~ z € dg(u) =0f"(u)
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Theorem 47: 1.9-1

Let f : R™ — R be proper, Ls.c and let C' be a compact subset of R™ such that C' N
dom(f) # (). Then the following holds:

1. f is bounded below over C'

2. f attains its minimal value over C'

Proof.

1. Suppose for eventual contradiction that f is not bounded below over C'. Then there exists a
sequence (,)nen in C such that lim,,_,, f(z,) = —oco. Recall that C' is compact, equiv-
alently, C'is closed and bounded (finite-dim). Since (z,),en is a sequence in C, (2,)nen
must be bounded. By Bolzano-Weierstrass theorem, there exists a convergent subsequence
say xj, — = € C because C'is closed.

Since f is l.s.c, we learn that,
£(z) < limin f(z,)

n—oo

but, f(Z) € R by definition, contradiction.

2. Let fuin be the minimal value of f over C. Then there exists a sequence (z,,),en in C' such
that

f(xn) — fmin

AND C'is bounded = (2,)nen is bounded.
Let 7 be a cluster point of (x,,)nen, say zx, — T € C. Then by l.s.c.

f(@) < liminf f(z,) = foin

Hence, 7 is a minimizer of f over C'.

O
Definition 18: 1.9-2

Let f : R™ — (—o00, 00|. Then f is coercive if

IIQ\'I\LHOOJC(@ -

and f is super coercive if

f(z)

|00 |||

Theorem 48: 1.9-3

Let f : R™ — (—o00, 00| be proper, l.s.c. and coercive and let C' be a closed subset of R™
satisfying that C' N dom(f) # (. Then f attains its minimal value over C.

72



Proof. Letx € C'Ndom(f). Since f is coercive, M > 0 such that
f(y) > f(z) whenever||y||> M ...(1)

observe that if T is a minimizer of f over C, we have f(7) < f(x). In view of (1) above, we learn
that the set of minimizers of f over C' is the same as the set of minimizers of f over C'N B(0; M).
The latter is closed and bounded. Hence, it is compact, then apply the previous result with the set
C' replaced by C' N B(0; M) we conclude that f attains its minimal value over C'N B(0; M) say at
Z. Altogether, 7 is a minimizer of f over C. 0
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3.9 Differentiability and Strong Convexity:

Definition 19: 1.9-4

LetT : R™ — R™, and let L > 0. Then T is L-Lipschitz if Vx € R™, Vy € R™,
[Tz —Tyl|< Lz —y|

Example 18: L9-5

Let f : R™ — R: 2 — 3 (x,Az) + (b,x) + ¢, where A = 0 (A is positive semi-definite),
b € R™, C' € R. Then the following hold:

l. Ve e R™, Vf(z) = Az +b

2. Vf is Lipschitz with a constant L = || A, where || A||= max 4|0 ”ﬁf”

Proof.

1. It follows from lecture 8 that Vo € R™,
1 1
Vf(z)= 5(AJFAT)a:er: E(A+A)a;+b:Ax+b

2. Indeed,

IVf(x) =V [yl = Az — Ay|
= [[A(z — )
< [lAllllz = vl

and the conclusion follows.

O

Example 19: 1L.9-6

Let C' be a nonempty closed convex subset of R™. Then P is Lipschitz Continuous with a
constant 1.

Proof. If C'is a singleton, the conclusion is trivial. Now, suppose that C' is not a singleton. Let
{z,y} SR™, 2 #y. If Po(z) = Pe(y),

0= [[Fe(z) = Pe(y)lI< llz =yl
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Else, if Po(z) # Pco(y), then,

1Pe (@) = Po(y)lI*= (Pc(=
{

)
= (Po(x)
+ (Pe(x) = Fel(y), = —y)
= (Pe(z) = Poly), Po(x) — ) + (Pe(y) — Fo(z), Po(y) —v)

-~ -~

<0 <0
+ (Po(z) — Po(y),  — y) by projection theorem
<(Pe(@) = Poly), x —y)
<lPe(@) = Pe)lllz = yll

so by || Pc(x) — Pe(y)|# 0, we have
1Po(x) = Pe()lI< [l =yl

0l

Lemma 49: (descent lemma) 1.9-7

Let f : R™ — (—o00,00] be differentiable on ) # D C int(dom(f)) such that Vf is
L-Lipschitz over D, D is convex. Then Vz,y € D,

F(w) < F@) + (VF()y— ) + 5 e~ y?

Proof. Recall that the fundamental theorem of calculus implies that
1
f6) = £(a) = [ (V4w tly - ).y~ o) d
0

= (Vf(x),y— )+ / (Vf(@+ty — 2)) — Vf(x),y— ) dt
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Hence,
|f(y) = flz) = (Vf(z),y — )|
tA<Vﬂw+ﬂy—@)—Vf@%y—@dt

<A|Wﬁ@+dy—@%—vﬂ@w—xﬂﬁ
<AHVﬂm+ﬂy—@)—Vﬂ@MW—$Mt

1
g/ Lljz + t(y — z) — z||||ly — z||dt by V f is L-Lipschitz
0

1
:/tMW—xWﬁ
0
1
zﬂw—yW/tﬁ
0
L 2
-

Hence, I
Fy) < f@) + (Vf(@)y =) + S lle =yl
L]

Theorem 50: L9-8

Let f : R™ — R be convex and differentiable, and let . > 0. Then the followings are
equivalent:

1. Vf is L-Lipschitz

2. Vx,y € R™, .
F) < F@) + (VS @)y~ 2) + 2z~ I
3. Va,y € R™,
Fw) > @)+ (VF(@)y — ) + 5 VT @)~ V)P
4. Yo,y € R™,

(V1) = Vi) x ~ ) > IVFE) - VI

Proof. e 1) = 2) This is the descent lemma applied with D = R™
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e 2) — 3) Without loss of generality, we can and do assume that Vf(x) # Vf(y).
Otherwise, the conclusion follows immediately using the subgradient inequality and the fact

that 0f(X) = {Vf(z)}

Fix £ € R™ and set,

he :R™ =R, ho(y) = fly) — flz) —(Vf(2),y — )

Observe that h,, is convex, differentiable and

Vhe(y) = Vf(y) — Vf(x)

We claim that Vy, z € R™,

he(2) < ha(y) + (Vha(y), 2 — y) + gHz —y|?

he(2) =1(2) — (&)~ (Vf(2), 2 — )
<FW)+ (V)2 — 9} + 2z — vl ~f(@)  (VF(z),= — o)
=1(y) ~ F@) ~ (Vf(@),y — 7) — (V). =~ )

FVF), 2 =9+ 5l ol

= () ~ f(2) ~ (Vf(@).y — 2) + (V) ~ VI (@), 2 =) + 2]z~
“haly) + (Vhaly). 2 — )+ 5z = 9% (1)

Observe that Vh,(z) = Vf(z) — Vf(z) = 0. Hence, because h,, is convex, x is a global
minimizer of h,,.
That is, Vz € R™,

he(z) < he(2)...(2)

Let y € R™ and let v € R™ be such that ||v]|= 1 and (Vh,(y),v) = ||Vh.(y)||. Set

r=y— IIth( My, (3).
On the one hand applying (2) with z as defined in (3) yields
hy
0 = hy(z) < hy (y Iv L( L )

77



On the other hand, (1) implies that

< noly) = 4@ 3, 03+ o) Pl
= haty) ~ Dy )2

= haly) — 5 I Vha ()P

= (o)~ F@) — (VF(x),y — ) — 5 IV (@) = V()P
e 3) — 4): Using 3) we have

1) > 1) + @)y~ 2) + 5= V(@) - V)P
F@) > F0) + (VW) 7~ ) + 5=V 1 ) — V@)

Adding the above two inequalities yield 4).

e 4) = 1), Without loss of generality we can and do assume that V f(z) # V f(y) (other-
wise the conclusion is trivial). Now 4) implies

IVf(z) = VIWIP< L{Vf(2) = V ),z —y) < LIVF(x) = VI)llle -yl

Since V(x) # Vf(y).
IVf(x) - VEW)I< Llle -yl
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Example 20: L10-1

Let C' be nonempty closed convex subset of R”. Then Vx,y € R™,

1Pe(@) — Pe)lI*< (Po(@) = Poly),z —y) ... (%)

Proof. Observe that () can be rewritten as:

(Pe(z) — Pe(y), Po(z) — Pely) — (x —y)) <0

Now:

Pc(ﬂf) —
Po(x) — Pe(y), Po(x
Po(z) — Po(y), Po(z) — 2) + (Pe(y) — Po(z), Pe(y) —y)

( Pe(y), Po(z) — Po(y) — (z —y))
= c
=
<0 by projection theorem

(z) —z) — (Po(z) — Pe(y), Pe(y) —y)

O

The above property is know as ”Firm nonexpansivenes’ of the projection onto convex sets.

Example 21: L10-2

Let C' be nonempty closed and convex subset of R™. Consider the function f : R™ — R,
where f(z) = $d%(z). Then the following holds:

1. f is differentiable over R™ and Vx € R™,

Vf(x)=2z— Po(x)

2. V[ is 1-Lipschitz

Proof.
1. Let x € R™. Define Vy € R™,

he(y) = f(x +y) — f(x) = {y, 2 — Po(x))

Clearly, h, is convex.
By the definition of V f(x), it is sufficient to show that

D
—| (y)] —0asy — 0

[y
Observe that, Vo € R™,

f(&) = 3(z) = 5l — Pe@)]?
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Now, on the one hand:

1 1
ha(y) = 5z +9) = Pole + y)IP =5 lle = Po(@)|*= (g2 — Po(x)

1 1

<l +9) = Pe(@) P =5 lle = Po(@)|*= (v, = — Fe(x)
1 2 Looe 1 2

= 2lle = Po(@)lP+ {y. 2 — Pe(a)) + Sl —gllz — Pe(@)*~ (v, ~ Pola)
Lo

== (1
Sl ()

On the other hand, by the above argument h,(—y) < %||y[|>. Therefore,

1

0= hu(0) = b (—

2(y + (—y))) < %hz(y) + %hz(—y)

— hafy) > ~hel—9) > 5yl (2)

(1) and (2) imply |h,(y)|< 2

|ha(y)|
[yl

1
= §||y||—> Dasy — 0

2. To show that V f is 1-Lipschitz, let 2,y € R™. Now:

IVf(@) = VEI* = llz — Po(x) = (y — Pc(y))ll2
= Iz —y) — (Pe(2) = Pe))I
= ||z — ylI*-2 <w—y,Pc(ﬂf) Pe(y)) + [|1Pe(@) = Pe(y)|®
< e —yl*=2l1Pe(x) — Pe()lI*+] Pe(z) — Po(y)ll*
= ||z = ylI*~ [ Pe(z) — Pe(y)|®
< e = yl®

O

Theorem 51: Second Order Characterization, L10-3

Let f : R™ — R be twice continuously differentiable over R™, and let L > 0. Then the
following are equivalent:

1. V fis L-Lipschitz
2. Ve € R™, [|[V3f(2)||< L

Proof.
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e 1) — 2). Suppose that V f is L-Lipschitz continuous. Observe that for any y € R™,
a > 0, we have

IVf(z+ay) = Vf(@)|[< Ll|lz + ay — z||= aL||y||
That is,

IV (@)(w)]] = lim IV + az;) — V@)

Lz + oy — x|
m

<l
al0 [0
L
o aLlyl
al0 (6]
= Lyl

Equivalently, || V?f(z)||< L as desired.

e 2) = 1): Suppose that for any = € R™, ||V?f(z)||< L. Using the fundamental theorem
of calculus we have Vz,y € R™,

Vf(@) = Vi) + / V2(y + e — )z - y)do

=Vfly) + Uol V2 fy +ale - y))d@] (z =)

Hence,
195 =il = | [ 950+ ate = e 2 - )|

<\ I =)l

/O V2 f(y + alz —y))do

< / V£ + ol — y)| da |z — )]

< Lz =yl

Fact(L10-4):
Ket A be an m x m symmetric matrix. Then [[A|= sup,_[|Az[= maxicicn|Ail , where
A1, ..., Ay are the eigenvalues of A.
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Proposition 52: 1.10-5

Let f : R™ — R be twice continuously differentiable. Then f is convex if and only if
Vo € R™, V2 f(z) is positive semi-definite.

Proof. See A3. O

Corollary 53: L10-6

Let f : R™ — R be convex and twice continuously differentiable and let . > 0. Then V f
is L-Lipschitz <= Vz € R™, A\pax(V2f(2)) < L.

Proof. Since f is convex and twice continuouly differentiable, we have Vx € R™ V?f(x) is
positive semi-definite. Now combine with earlier result 1 to learn that

L2 ||V (@)1= [Amax(Vf (2)) = Anax (V2 f(2))
O
Let f : R™ — R be given by Vx € R™,
f(@) = 1+ ||z
Prove that:

1. fis convex

2. Vf is L-Lipschitz

Proof. See A3 U

Strong Convexity:
Recall that a function f : R™ — R is strongly convex(2) with constant (3, if for some S > 0 we
have: Vz,y € dom(f),VA € (0,1),

FO -+ (1= X)y) < M)+ (L= X))~ DA = N)le — g

Proposition 54: .10-8

Let 5 >0, f: R™ — (—o00, 0] is f-strongly convex <= f — §||H2 is convex.

Proof. See A3 ]
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Proposition 55: L.10-9

Let f: R™ — (—00,00], g : R™ — (—00, 00| and let 5 > 0. Suppose that f is S-strongly
convex and that g is convex. Then f + g is S-strongly convex.

Proof. Set

h=fro= 2= | r=21 |+
———

convex by prev. prop.

Then h is convex being the sum of two convex functions (see A2). Therefore, applying the previous
proposition again with f replaced by f + g yields the desired result. O]

Fact (L10-10):
Let f : R™ — (—o00, 00| be strongly convex l.s.c. and proper. Then has a unique minimizer.
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3.10 The Proximal Operator

Definition 20: L10-11

Let f : R™ — (—00, 00]. The proximal point mapping of f is the operator
Proxy : R™ = R™

given by
1
Prox(x) = arg min,cgm {f(u) + §Hu — xHQ}

Theorem 56: 1.10-12

Let f : R™ — (—o0,00] be convex l.s.c. and proper. Then Vz € R™, Proxs(x) is a
singleton.

Proof. Observe that for a fixed z € R™. h, := 3||- — z||* is S-strongly convex for every § < 1.
Set g, := f + h,, we learn that g, is strongly convex for every z € R™. Using A2, we know that
Vr € R™, g, is l.s.c (because f is l.s.c. and h, is L.s.c). And, Vx € R™, g, is proper (because f,h
are proper and dom(f) N dom(h,) = dom(f) N R™ =# ). Therefore, applying earlier Fact, we
learn that Vx € R™, arg min,egm ¢, = Prox¢(z) exists and is unique. O

Example 23: 1.10-13

Let C' be a nonempty closed convex subset of R™. Then Prox;s, = FPc

Proof. Let x € R™. By definition,

p = Proxs.(x)
. 1
<= p = argmin,cgm {50(9:) + 5“3: — uHQ}

= Vu € R™, 8o(p) + gz — pI*<S be(u) + glla — ulf?
e=peCVuel, |lz—rp|’< ||z —ul?
—=peCWel,|z—p|< |z —ul

< p = Po(z)

Proposition 57: L10-14

Let f : R™ — (—o00, 00| be convex l.s.c. and proper. Let z € R™, let p € R™. Then

p= Prors(z) <= Yy € R™, (y —p,v—p) + f(p) < f(y)
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Proof. Lety € R™.

e (= ) Suppose that p = Prox;(z) and set VA € (0,1), P\ = Ay + (1 — A)p. Then

1 1
F) + 3llz = pIP< f(r) + Slle = pall?

which implies that

F(0) < Foa) + 5o = pallP =3 7 I
= (o) + 3l = Xy = (1= NplP=5 e — I
= f(px)+%<x—p—k(y—p) —(@=phr—p=Ay—p)+@-p)
= )+ 5 My ), 2w~ p) = Ay )
= f(pr) + A;Ily —pll*=A{z —p.y —p)
= FOw+ (1= Xp) + 5y~ pl-A (&~ py— )

By convexity of f we have for every A € (0, 1),

F(B) < AP + (1= N10) + oy~ plP-A e poy— )

Rearranging yields

)\2
M =p.y—p)+ M) M) + S lly —pIP
Dividing by A and taking the limit as A — 0 yields the desired inequality.

e ( <) Suppose that
(y—p,x—p)+flp) < fy)
Then
f0) < fy) = y—p,x—p)=fly) +{z—p,p—y)

Therefore,
]‘ 2 ]‘ 2
f(p) + §|Il‘ —plIF < fly)+{x—pp—y)+ §|Il‘ — |
1 1
<FW A+ -pp=y)+ 5l —p||2+§\|p— yll?
1
= [+ 3l —p)+ (- y)|I”

= ) + 5l — oIl

85



O

Example 24: 1.10-15

Let f: R — R:z — |z|, then

r—1, x>1
Proxs(z) = ¢ 0, -1<z<1
r+1, z<-1

Proof. Letp € R. Recall that p = Prox.|(z)
— WeR (y—plz—p)+pI<lyl.. (1)
Setting y = 0, y = 2p respectively yield

—p(z —p) + [p|< 0, p(z —p) + |p|< 2|p|
= p(x —p) = |p|, p(r —p) < |[p|
= p(x—p)=|p|...(2)

Therefore, (1) becomes

Yy €R,(y —p)(x —p) +plx—p) <yl
= Yy eR, y(z—p) <yl
— r-p<Lz—p=-1
= pz2ae—1,p<xr+1...(3)

e If x > 1: Then (3) implies p > x — 1 > 0. Hence, (2) implies that x — p = 1. Equivalently,
p=z—1.

e If x < —1: Proceed similar to the above case
o If —1 < o < 1: It follows from (3) that
r—p<lz—p>2—-1 = (z—p’=lz—pP>1
Now, using (1) with y = z yields
|2|> [pl+(z = p)* = |p|+1

That is
OD<|p<|z|-1<1-1<0] <= p=0

Proposition 58: L10-16

Let f : R™ — (—00, 00| be convex 1.s.c. and proper. Then

x minimizes f over R" <= x = Proxs(z)
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Proof. Recall the prop L10-14. Let x € R™, then

x = Proz¢(z)
<:>Vye]Rm,<y—x,x—x>+f(a:) <f(y>
= Vy eR™, f(z) < f(y)
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3.11 More on Proximal Operators

Why Proximal Operators of convex functions are really “nice”? Consider the functions f, g,h
defined on the real line:

Vee R,A>0
f(z)=0
_J0, x #0
g(fﬁ)—{_% 0
_J0, x#0
h(x)_{x, =0

Clearly, f is convex, but

QorNe X Gnuve X

e Proxy: Let # € R. Proxy(x) is the “unique” minimizer of the function $(y — z)* > 0.
Clearly, Vx € R, Proxs(z) =z

0, x#0

\ 0 Let z € R. Prox,(z) is the minimizer of function
i Tr =
)

e Prox,: g(x) = {

k(y) = g9(y) + %(y —z)?

— {%(y_x)Qa y#o
sz2—X, y=0

Let k,,; be the minimum value of k(y). Observe that if 22 > 2, then k,,; > 0.

If 22 > 2\ (equivalently |z|> v/2)\), then kopt = 0 and is attained <= y = x.

If 22 = 2) (equivalently |z|= v/2)\), then k,,, = 0 and is attained <= y € {0,z}.

If 22 < 2) (equivalently |7|< V2)), then k, = $2% — 2) and is attained <= y =0

Therefore,
{z},  |z[>V2X
Proz,(z) =< {0,z}, |z|=v2X
{0}, Jz[<v2X
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which shows that Prox, is NOT necessarily single valued.

{z}, 2#0

Proxy(z) = {@ 0

i.e., Proxy(z) is not defined at x = 0.

So convexity is critical for the Proximal Operator to be well defined.

Proof. See A3 ]

Example 25: L11-1

Let f : R — R:a — Alz|, A > 0. Then f is convex. We claim that Y € R

r—A x>\
Prozs(z) = ¢ 0, A<z <A
D N A

This is know as the soft threshold. The above formula is often written as

Proz¢(z) = sgn(x)(|z|—A)+

where Vy € R,
) L y=20
sgn(y) =
gy -1, y<0
%70, y<o
= max{y, 0}

Theorem 59: LL11-2
Let f : R™ — (—o0, 00| be given by Vo = (z1,...,x,) € R™,

m

f(iL‘l, To, ... ,LL‘m) = Z fz(wz)
i=1
where Vi € {1,...,m},
fi : R — (—00, 0] is convex l.s.c and proper

Then Vo = (z1,...,2,) € R™,

Proxy(x) = (Proxy,(x;))iy = (Proxy (z1),..., Proxy, (x,))
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Proof. 1t follows from A2 that f is convex l.s.c and proper.
Letp = (p1,p2,...,Pm) € R™. Then

p = Proxs(x)
<:>vy: (yla"'vym) ERm?

f(y) = f(p) + (y — p,x — p) by L10-14
(:)‘v’{yl,,ym} QR,

filyr) + o fnYm) 2 fi(pr) + - fon(pm) + (1 —p1) (@10 = p1) + oo+ (Y — D) (T — D)
Setting Vi € {2,...,m}, y; = p;, we learn that Vy; € R,
filyr) = filp) + (g1 — p1) (21 — p1) <= p1 = Proxzy, (71)

Similar arguments yield
Vie{l,...,m}, p, = Proxy,(x)

The proof is complete. O

Example 26: L11-3

Let g : R™ — (—00, 00] be given by o > 0,

g(x) = {—a Yo log(z;), x>0

0, otherwise

Then,

) 244 "
Prozg(x) = (xl il 2331 il oz)
i=1

Proof. Consider the function f : R — (—o0, o] where Vz € R,

flz) = {—alog(w), x>0

00, otherwise

Then f is convex, l.s.c and proper.
Indeed,

Va > 0, f is differentiable = l.s.c
Ve >0, f/(z) = % > (0 = convex
x

Vo >0, f(z) > —oo, dom(f) # 0 = proper

We claim that Vz € R,
T+ Va? 44\

Proxs(z) = 5

90



Indeed, recall that p = Prox(x) is the unique minimizer of the function.

h(y) = f(y) + %(y —x)?
_ J-alog(y) +3(y—2)®, y>0
00, otherwise

Clearly, h is differentiable on its domain = (0, c0). Therefore,
p = Proxs(z) < h'(p) =0
1
< (—alog(p) + i(p —z)?)' =0
«
— —+p—x=0
p

= pP’—azp—a=0,p>0

r+Vr? + 4o
= p>0,p:#
T +Vr?+4da
et p:—
2
Now combine with 111 — 2,
fi=f=..=fu=Ff

0

Theorem 60: L11-4

Let g : R™ — (—o00, 00| be proper, let ¢ > 0, leta € R™, let v € R, and set Vx € R™,

fa) = glx) + 512+ {a,x) +

Then Vz € R™,

T —a
P =P 1
roxs(x) ror 1, (c—l—l)

Proof. Indeed, recall that

1
Proxs(z) = arg min,cgm {f(u) + §Hu — x||2}

. c 1
= arg min,gm § g(u) + §Hu||2+ {a,u) + v+ §Hu — x|

g

(1)
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Now,

1
Sl (a,u) + 5 flu— o
1 1
=S llulP+ (@, w) + 5 lullP= {u, 2) + 5 2]
c+1

c+1 9 T —a 1 9
= —2
e -2 (w250 + ]

2
lz—al®, 1
— (2
+ —llal?| ...

(c+1)?

T —a
c+1

Observe that for any function h,c € R, a > 0,
arg min, cpm{ah(u) + ¢} = argmin, cpm {h(u)}

Combining (1), (2),

, c+1 z—al| |z — al? 1 )
Proxg(x) = arg min,cgm 4 g(u) 5| 1 +v— cr1) + o ||
) c+1 z—all’
1 1 z—all?
— ' . 1) | — 2y, —
At Milluer {(C+ ) c+ 1g(u) * 2 H c+1 }
. 1 1 z—all?
= argminegn o) + 5 = o

= Prox 1 g(x—a)
ot c+1
O

Example 27: L11-5

Let a € [0,00),let C' = [0, af, set f = d¢c. Then Vx € R,

Proz¢(z) = Po(z)
0, <0
=<z, O<zr<a
a, Tz

= min{max{z, 0}, a}
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Proof. Recall L10-13: If C' is a nonempty, closed convex subset of R™, then Proxzs., = FPc. O

Example 28: L.11-6

Let f : R — (—o00, 00] be given by Vz € R,

pr, O0<z< o
f(x) = .
oo,  otherwise

where 1 € R, a0 > 0.
Then Vx € R,
f(x) = px + 0 (x) ... (1)
Moreover,
Proz¢(zr) = min{max{z — p,0}, a}

Proof. (1) follows from the definition of

5o (2) = {O, z €1[0,q]

oo, otherwise

f is proper, convex and l.s.c.
Then apply Theorem L11-4 withc = v = 0, g = dj,a, @ = i1, C = [0, a]. In the view of L11-5,
we yield

Proz¢(z) = Proxy(x — p) = Po(z — p) = min{max{z — 4,0}, a}
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Theorem 61: 1.12-1

Let g : R — (—o00,00] be convex l.s.c and proper such that dom(g) C [0,00) and let
f:R™ — R be given by
f(@) = g(ll=)
Then
PT’O(L’f([E) _ PTOQZQ(HZEH)m, x 7é 0
{u e R™|[|lull= Proxy(0)}, =
Proof.

e 1 = (: By definition we have Proxz(0) is the set:

) 1
arg min, cgm {f(u) + §||u||2}

Using the change of variable, w = ||u||, the above set of minimizers is the same as

1
arg min,,cg {g(w) + §w2} = Prox,4(0)

That is,
Proxs(0) = {u € R™|||u||= Prox,(0)}

e 1 # (: In this case Prox¢(x) is the set of solutions of the problem

uER™

. 1
win {olul) + 5l oI
= min {g(llul) + SllulP— (wz) + 2]

L 1, Lo
—rg;gﬁr%ln {g(a)+§04 = (u2) + S| }

Observe that

— (u,z) = —||ull[|z]lcos(Ou,z) = —|lulll|z]
Therefore,
Inin —(u, 2) = —[|ull[|z]|= —a]jz]
[lull=c

and it is attained at u = aﬁ.

The corresponding optimal value of the inner minimization problem is therefore

1 1 1
g() + 50 = allall+5ll2l*= gla) + 5(a — 2])?
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Therefore, Proxs(x) = @, where

3= mip fote) + S~ e1)*}

The proof is complete. U

Example 29: L.12-2

Leta >0, f : R — (—o0, o0] be given by Vx € R,

Fa) = {Am, 2]< @

00, otherwise
where A > 0. Then f is convex l.s.c and proper. Moreover, Vx € R,
Proz¢(r) = min{max{|z|—\, 0}, a}sgn(z)

where Vx € R,

1, x>0
sgniw) = -1, <0

Proof. Define Vx € R,

A, 0<zr<a
g(z) = .
oo,  otherwise

dom(g) = [0, a] € [0, 00)
Moreover, Vz € R, f(x) < g(|z|), using theorem L12-1, we learn that

Prozy(|z|)= x#0

m7

Prox(w) = {{u € R| |u|= Proz,(0)}, x=0

Recalling

A, 0<z<a
g(x) = .
00, otherwise

and example L.11-6, we obtain

|u|= Proz,(0) <= |u|= min{max{—\,0},a} =0 <= u=0
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Hence,

Prozy(|z|)sgn(xz), = #0

Prox¢(x) =
() {0’ 0

= min{max{|x|—\, 0}, a}sgn(x)

O

Example 30: L12-3

Letw = (wi,...,wy,) € RT, leta = (aq,..., o) € RT. Let f : R = (—o00, 00] be given
by

00, otherwise

f(l') _ {ZleZkL‘ZL —O[<ZL‘<OZ

Then,
1. Proxs(z) = (min{max{|z;|—w;, 0}, oy }sgn(z;)):~,
2. Letzy € R™. Vn € N, update via
Tpy1 = Proxe(x,)

Then x,, — T where T solves the problem

m
=1

subject to |x;|< oy, 1 € {1,...,m}

Proof.
1. See A3

2. See A3 for numerical illustration. Proof later.
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4 Nonexpansive, Firmly Nonexpansive and Averaged Opera-
tors

From now on, we shall use /; to denote the m X m identity matrix on R™, i.e.,

I;: R™ — R™
T =X

Definition 21: 1.12-4

1. Let T : R™ — R™. Then 7' is nonexpansive if Vx,y € R™,
[Tz —Ty|< [z =yl
2. T'1is firmly nonexpansive if Vx,y € R™,
1Tz = Ty|P*+[[(1a = T)a = (Ia = T)yIIP< Il — ylI*
3. Leta € (0, 1), then T is a-averaged if

dN : R™ — R™, N is nonexpansive
T = (1—0&)Id+OéN

We can show that Firmly nonexpansive (f.n.e) = Averaged = (Triangle Inequality)
nonexpansive.

Proposition 62: L12-5

LetT": R™ — R™. Then the following are equivalent:
1. T'is f.n.e.
2. I,—Tisfn.e.
3. 271" — I, is nonexpansive.
4. Vr,y € R™, || Tz — Ty|*P< (v —y, Tz — Ty)
5. Vo,y e R™ (Tx — Ty, (Iy— Tz — (I —T)y) =0

Proof.
e (1) < (2): clear from the definition

e (1) <= (3) <= (4) < (5) See A3
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For linear operators the previous Proposition can be defined as follows:

Proposition 63: 1L.12-6

Let T : R™ — R™ be linear. Then the following are equivalent
1. T'isf.ne
2. []2T = Lall< 1
3. Vz € R™, ||Tx|]?< (2, Tx)
4. Yz e R™, (Te,x —Tx) 20

Proof.

e Using Prop L12-5, we have T"is f.n.e <= 2T — I, is nonexpansive. Since 7' ie linear, so
is 27" — 1. Therefore, 21" — I, is nonexpansive <= Vzx,y € R™,
12T = Ig)x — 2T = La)y|I< [lz = y]|
<= Vz e R™||(2T — 1;)z||< |2l
|7 — 1)l _

= Vs €R™\ {0}, T S
(2T — 14)=|]

2]

— [|]2T - I||< 1

= sup <1

e Conversely, suppose that ||27" — [4]|< 1, then Vz € R™ \ {0},
[T ~ L=l __ 2T ~ L)z

~X

= 2T - Lif[< 1
2] 20 2]

which implies
vz e R™, [|(2T — lLa)z[I< |||

letz,y € R™, setting z = x — y shows that 27" — [; is nonexpansive, so we yield the desired
results.

O
Remark. 1.12-7 It follows from the equivalence,
T is fne <= 27 — I, is nonexpansive

that 7" is fne <= T'is % — averaged.
Indeed,

Tisfne <= 271 — I; =: N is nonexpansive
<= 2T = I;+ N, N nonexpansive

1 1
— T = §Id + §N, N nonexpansive
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Example 31: L12-8

Let C be convex closed nonempty subset of R™. Then P is f.n.e. Simply recall L10-1 and
L12-5.

Example 32: L12-9

Suppose that T' = ——Id Then 7' is averaged but NOT f.n.e.
Indeed,

1
T:—Id+§

.3
1 4(—Id) = T'is Z-averaged

T is NOT f.n.e as Vo € R™,
1 9
T |*+]|x — Tx|*= ZH!EHQQHW H 1°= H:rH2> ]|

whenever = # 0.

Example 33: L12-10

Suppose that 7' = —1;. Then 7' is nonexpansive, but 7" is NOT average. Indeed,

T is averaged
<= Ja € (0,1), N : R™ — R™ nonexpansive, T’ = (1 — a)I; + aN
< Ja € (0,1), —ls=(1—a)ly+aN
<= Ja € (0,1), (—24+a)ly=aN
a—2
(0,1)

<~ Ja € (0,1), N Iy

(0%

and so

N is nonexpansive

oa—2

which is absurd (contradiction).




Proposition 64: L.12-11

Let 7" : R™ — R™ be nonexpansive. Then 7" is continuous.

Proof. Let (x,,)nen be a sequence in R™ such that x,, — 7. Goal: T'(z,,) — T'(T).
Indeed, Vn € N,
0 < |T(zn) = T@)I< |20 — 7|

Letting n — oo,
0 < lim |T(z,) — T(T)[|< 0

n—o0

which shows
T(x,) —T(7)

, as claimed. O

4.1 Fixed Points
Definition 22: 1.12-12

Let T : R™ — R™. Then
Fiz(T) = {x € R"|x = Tz}
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Definition 23: 1.13-1

Let C' be a nonempty subset of R™ and let (z,),en be a sequence in R™. Then (z,),en 18
Fejér monotone with respect to C'if Ve € C,n € N,

2011 = ell< [lan = €]

Example 34: 1.13-2

Recall Fiz(T) = {z|Tx = z}. Say T : R™ — R™ nonexpansive, Fiz(T) # (). Let
xo € R™, Vn € N update via

Tpr1 = T(zp)

Then (z,),en is Fejér monotone with respect to Fliz(T).
Indeed, observe that Vf € Fixz(T),

f=T()=T*(f)=T°(f) = ...
Observe also that Vn € N,
Tpi1 = T(2,) = T(T(xp-1)) = T*(2n_1) = ... T™(20)

Now, letn € N, let f € Fiz(T).
Then

[2n1 = fIl = (1T (o) = T"(S)]
= |T(T" (wo)) = T(T" ()
= 17 (zn) = T(S)l

< [z — /Il

Proposition 65: L.13-3

Let ) # C C R™, let (x,,)nen be a sequence in R™. Suppose (x,,)nen is Fejér monotone
with respect to C'. Then the following hold:

1. (2)nen is bounded.
2. Forevery c € C, (||, — ¢||)nen converges.

3. (do(xp))nen is decreasing and converges.
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Proof. 1. Let ¢ € C'. By the triangle inequality, Vn € N, have

|ell+[l2n — <

[[a]] < |
< lell+llen— = cll

< llell+llzo — ¢l
Hence, (x,,),en is bounded as claimed.
2. Observe thatVn € N, c € C,
0 < [[ngs — el <l — ¢

That is the sequence (||z, — ¢||)nen is @ non increasing sequence of real number, bounded
below implies that (||z, — ¢||)nen converges.

3. Recall thatVn € N, ¢ € C,
[Znt1 — cl|< [|zn — €]
Now take the infimum over ¢ € C' to learn that

0 < dC(xn-‘rl) < dC’(J;n)

so it converges.

Lemma 66: 1.13-4

Let (2, )nen be a sequence in R™ and let C' # () subset of R™. Suppose that for every ¢ € C,
(lzn, — ¢||)nen converges and that every cluster point of (x,,)nen lies in C. Then (z,)nen
converges to a point in C.

Proof. Observe that (z,,),cn is bounded, because ||z, ||< ||z, — c||+]|c|| where ||z, — c|| converges
and ||| is a constant.
Let x, y be two cluster points of (,,),en. That is

Ty, — T, Ty, — Y
By assumption x € C, y € C, observe that

l2n = yl*=llzn — zl*+[|2]*~lyl*
=zl PHYIP =2 (20, y) — N2al*~ll2]*+2 (@0, ) + l|2]°=[ly]?
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Since (2, — y) and (x,, — x) converges, we have (x,, r — y) converges say to [.
Taking the limit along xj,, and z;, respectively yield
(.0 —y) = (v —y) =1
(x,:z:—y) - <yax_y>

Theorem 67: L.13-5

Let ) # C C R™ and let (z,,) be a sequence in R™. Suppose that (z,,),en if Fejér with
respect to C, and that every cluster of (z,,),ey lies in C. Then (z,,),cn converges to a point
in C.

Proof. By Fejér monotonicity of (x,,) we have
For every ¢ € C, (||, — ¢||)nen converges
Now combine with Lemma 13-4 O
Letz € R™, lety € R™ and let o € R. One could directly verify that
law + (1 = a)ylI*+a(l — a)llz — y[*= allz|*+(1 — a)|ly|*
Indeed:

laz + (1 = a)yl*= o?||z]*+2a(1 — a) (2, y) + (1 — &)?[|y]|*
o(l = a)llz —yl*= a(l — a)|z[*+a(l — o)y’ ~2a(1 — a) (z,y)
Adding yields:
laz + (1 — a)yl*+a(l - a)llz — y|
=(0” + (o = ®)) 2" +(1 — &) (1 — a + &) lly”
=allz[*+(1 — a)ly[*

Theorem 68: L13-6

Let o« € (0,1) and let T : R™ — R™ be «-averaged, such that Fiix(T) # (). Let 2o € R™.
Update via Vn € N,
o1 = T(zp)

Then the following hold:
1. (2)nen is Fejér monotone with respect to F'iz(T)
2. H(T— (1 — a)Iy)(zn) — 2 — 0

3. (Zn)nen converges to a point in Fiz(T).
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Proof.
1. T is averaged implies that 7" is nonexpansive. Now we use the example L.13-2

2. By assumption, 3N : R™ — R™, N is nonexpansive, such that

L - (- o))

«

T=(1-a)l;+aN = N =

Hence Vn € N,
Tpi1 =T (z,) = (1 — @)z, + aN(z,)

Now let f € Fix(T),

a1 = FII* = 11 = @)an + aN(za) — fII”
= (1= a)(@n — f) + a(N(z. = ))I”
= (1= a)llzn = fIP+alN(z,) = NI —a(l = a)|[N(z,) — za|*
< (1= a)llzn = fIP+alz, = fIP—a(l = @) [N (2n) — 2l
= llzn = fI*—a(l — &) N(za) — 2a®

Telescoping, yields
Y a(l = a)l|N(z) = 2l *< [lz0 — f]*< o0
n=0

That is,

a(l — a)||N(z,) — xn|]2—> 0
< [|[N(z,) — z,]|— 0

Recall that (x,,),en is Fejér monotone with respect to F'iz(T'), Observe also that
Fix(T) = Fixz(N)
Indeed, let x € R™, then

x € Fix(T) r="T(z)
r=(1—-a)zr+aN(z)
r=1z—ar+ aN(x)
ar = aN(x)

r = N(z)

z € Fiz(N)

1111t

Altogether, we learn that (z,,),cn is Fejér monotone with respect to Fiiz(N).
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3. Let T be a cluster point of (x,,)nen say xx, — Z. Observe that N is nonexpansive implies N
is continuous. Now, recall
Nz, —x, — 0

Taking the limit along the subsequence xy, , we learn that
Nz —-7=0

equivalently, Nz = 7.
That is, every cluster point of (z,)nen lies in Fix(N) = Fixz(T). Now combine with
theorem L13-5

‘l

Corollary 69: L.14-1

Let T : R™ — R™ be f.n.e and suppose that Fix(T) # ). Let zg € R™. Vn € N, update
via

Tn4+1 = T('Tn)

Then 37 € Fiz(T) such that
Ty, — T

O

Proof. Since T'is f.n.e T'is averaged. Now combine with Theorem L13-6

Proposition 70: L.14-2

Let f : R™ — (—o00, 00| be convex Isc and proper. Then Prox; is f.n.e.

Proof. Let x,y € R™. Set
p = Proz¢(x), ¢ = Proxs(y)

Using we have Prop L10-14, Vz € R™,

(z=pz—p)+ f(p) < f(2) (4.1)

(z—qy—aq + flg) < f(2) (4.2)
Choosing z = g in (4.1), z = p in (4.2), we obtain

(g—px—p)+ fp) < flg)

(p—aqy—a) + flg) < f(p)

Adding the last two inequalities yields

(g—p,(x—p)—(y—p) <0
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Equivalently,

(p—q,(x—p)—(y—p) =0
Now recall that

p = Proxz¢(x), ¢ = Proxs(y)

Combining L.12-5(5) with the conclusion yields the desired results. 0

Corollary 71: L14-3

Let f : R™ — (—o0, 00] be convex lIsc and proper, such that arg min f # (). Let 2o € R™,
Vn € N, update via
Tpy1 = Proxs(xy)

Then 37 € argmin f such that
T, — T

Proof. Observe that by L10-16,
argmin f = Fiz(Proxys) # 0

Recall the Proxy is f.n.e by L14-2
Now combine with L14-1 applied with 7" replaced by Prox ¢ U

The following simple identity will be used in the next result.

Letz,y € R™, a € R\ {0}, then
2
-«
>=a(MW— o= olP-1ul?)

1 1
2 2 1— = -
o @ﬂl o=+ 1y
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Indeed,

1 &
LHS = o? <||$||2— H(l — =)z + —y )
[0} [0}
1\? 1 a—1
2 2 2 2
— —(1=2= i 2
o] <||93|| ( Q) ]| Q2||y|| + a_2<x,y>>

2 1 1 a—1
2 2 2
== —-= ——|lyl*+2

= (2a = Dl|z[I*~llyll*+2(a — 1) (z,y)

1 -«
rits = a (JalP =1 e - -1l

l-—a -« 2(1 —a)
_ 2 2 2 2
= (el = o= 2 P 2 )~ ol
— ool ~(1 — )P~ (1 — o) l*+2(1 — ) .} —
= (20— Dl +2(a - 1) o)
=LHS
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4.1.1 Composition of Averaged Operators

Let T': R™ — R™ be nonexpansive and let o € (0, 1). Then the following are equivalent:
1. T'is a-average
2. (1 — é) I+ éT 1S nonexpansive
3. Vo,y e R™

- 7))~ (- T

IT(2) = TS llo = ylI*~

Proof.
1. 1) < 2):

T is a-averaged
<= dN : R™ — R™, Nnonexpansive

T'=(1-a)l;+aN = N = —(T — (1 — ) 1) is nonexpansive
a

1 1
= (1 — —) I, + —T is nonexpansive
o o

) = o (o= e = gl
e}
2
o o l—a
) % (b= %1 = P-1ol?)

2
<z =yl

2. Recalling the previous identity

1 1
2 2 1— = -
o (Hxll o=+ 1y

1 1
2 1— = -
(Hxll la-2+ 1y

Now, 2) <= Vz,y € R™,

H(1 _ é) T4 éT(m) - (1 _ é) y— éT(y)

We then rewrite the left hand side as

2

I(1-2) @+ 2@ -T0)

« (0%

o =yl (o = olP= 5% 0o = T@) (= TP T - TG

<[z —ylI*
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Now, we have

(1= P20 - T@) - - TP 1T - T <0

o

L9 e = T@) — (g - TP T(@) — Tw)|*> 0

—_— 2_
= [lz —yl

L]
Theorem 73: L.14-5
Let oy, a0 € (0,1), let T; : R™ — R™ be a;-averaged. Set

-2
T =TT, a:= 1t ap e

1-— 1009

Then 7' is a-averaged.

Proof. First observe that a € (0, 1). Indeed, clearly a;, ay € (0, 1).
Now,

o€ (0,1) <— a1t ay — 2000 <1 — i
< a1 tay <l+ajas
< ) — oo < 1— oo

<~ 041(1—052)<1—042

Hence, a € (0, 1) as claimed. Recalling L14-4
Now, call the inequality below (4.3),

IT(2) = T()II*=IIT2(Ta(x)) — T1(Ta(y)|I*

<UTa(e) = Talo) P~k = T (1) — (G = T T )
<l = o= 122 (0~ ) 0) — (= B )IP
L gy B @) — - T )

[\ S/

(

<

)
~

Set 5 = 1;% + % > 0, we claim that

(1 — 041)(1 — 042)
Barag

(1) +(2) = I(Za = T)(z) = (La = T)(W)|*. .. (3)
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Indeed, we have

S0+ @) =1 2L~ T)le) - (= T
(T = T (Tle)) ~ (s = T B
1-— (e7] 1—- (8%
| = 1) (0ato) = = Tt~ 5
(1—a)(d — o) 2
By (e — %@)(95) — (s —TT)(y)|
e [ IR T

Note we go from the first equation to second one by, & € R,
[az — (1 = @yll*+a(l - a)llz - yl*= allz*+(1 —@)lly|l*

So we have proved (3).
Consequently, (4.3) becomes

(1—oq)(1—az)

Bonay U= D)@) = (a = T)(w)I

IT(2) = TIPS flo — ylI*~

Finally, recalling that
o tag— 2001009

1-— 109

we can verify that
1-a)(l-a) 1-a

Bagas «
Indeed,
(1-@1)(1 —Oég) _ (1-0&1)(1-0&2)
e (ﬂ + ﬂ) (1 —ag) +ai(1 —as)
aq

a2

1—061-062"‘0510&2

a1+ o — 20[1@2

_ artoaz—2aiaz
-« 1 l—ai1as
a1+tas—2a1 a0
l—aja2

1—oajas —ap — ag + 20109

a1 + ag — 20109
1—0&1—0(24‘041042

a1 + g — 2001009

Now we use L14-4 to get our result.
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S5 Constrained Convex Optimization

We now consider the problem
min f(x
(P subjeJcCt( tz xel
o f:R"™ — (—o0, 0] convex, L.s.c., proper
e (C =, convex and closed.

Recall L7-5, we shall see now some weaker results, in the absence of convexity.

Theorem 74: 1.15-2

f+ R™ — (—o0,00] proper, g : R™ — (—o00,00] convex l.s.c. proper. dom(g) C
int(dom(f))
Consider the problem:

min f(z) + g(z)

1. If 2* € dom(g) is a local optimal of (P) and f is differentiable at 2*, then

—Vf(z*) € dg(a7)

2. Suppose that f is convex. If f is differentiable at z* € dom(g) then

x* is a global minimizer of (P) < —V f(x*) € dg(z")

Proof.

1. Lety € dom(g). Since g is convex, we know that dom(g) is convex. Hence Y\ € (0, 1):

4+ My —2%) = (1 = N)a* + Ay € dom(g)
=2

Therefore, for sufficiently small A

f(@) + g(zy) = f(z*) + g(z*)
= f((1 = N)z" + Ay) + g((1 = N)z" + Ay) > f(z7) + g(z7)

By the convexity of g we learn that
S =X)z" + Ay) + (1 = Ng(a") + Ag(y) = f(2") + g(27)
Rearranging yield
Ag(x") = Agly) < F((1=N)a" + Xy) — f(27)
Equivalently,

\ fUL = Nz* + Ny) — f(a*)
g(x*) —g(y) < s
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Taking the limit as A\ — 0T, we obtain
9(@") —g(y) < f'(@"y —a") = (Vf(a"),y —27)
That is: for any y € dom(g),

g(y) = g(@*) +(=Vf(a"),y —2") = =V f(z") € dg(x")

2. Suppose that f is convex. Observe that 1) prove ( < ). Now suppose that —V f(z*) €
dg(x*). On the one hand, for any y € dom(g),

9(y) = g(@") +(=V[f(z*),y —2") ... (1)
On the other hand, since f is convex, differentiable at z*, then, Yy € dom(g) C dom(f),
f) = f@) +(Vfla"),y—27)...(2)
Adding (1) and (2) yields for any y € dom(g),
) +gly) 2 f(a") + g(2")

That is, 2* is optimal solution of (P)

5.1 KKT Conditions

In the following we assume, f,g,...,g, are functions from R” — R (full domain). I =

{1,...,n}

Consider the problem,

min f(x)
s.t.gi(x) <0, (Viel)

We assume that (P) has at least one solution and that
po=min{f(z)Vi € I, g,(x) <0} € R

is the optimal value.
Define

F(x) := max{f(x) = p, 91(2), ., gn(2)}

We have Vz € R™, F'(x) > 0. Moreover, solutions of (P) is

minimizers of F' = {z|F(z) = 0}
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Proof. Letx € R™.
1. x does not solve (P)

(a) x is infeasible for (P), i.e., = doesn’t satisfy the constraints. Then

= Jj € [ such that g;(z) > 0
— F(2) > g;(z) > 0

(b) z is feasible (¢g;(x) < 0, Vi), but not optimal = f(z) > p,
— F(z) 2 go(x) = f(x) —p>0

2. z solves (P), implies that
x is feasible and f(x) = p

also,

x is feaisble <= Vie I, ¢;(X) <0
f(@) =p = go(x) = f(x) —p=0

Hence, F'(z) =0

Fact .15-4 (max rule for subdifferential calculus):
Let g1,...,0, : R™ — (—00, 00] be convex 1.s.c. and proper. Define

g(x) = max{g1(x),...,gu(x)}
Alz) ={t € {1,...,n}gi(z) = g(z)}

Let x € N, (int(dom(g;))), then

dg(x) = Conv (UieA(I)agi(x))

Theorem 76: L.15-5(Fritz-John necessary optimality conditions

0, for which
0 € apdf(x™) + Z ;0g;(x*)
iel
amd Vi € 1,
a;9;(z") = 0 < complementary slackness

Suppose that f, g4, ..., g, are convex and z* solves (P). Then Joyy > 0, . ..

, o, = 0 not all
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Proof. Recall that
F(z) =max{f(z) — p,q1(z),...,g.(x)}
By the previous lemma,
F(z*) =0 = min F(R™)
Hence,
0 € OF(2") = Convica(z)0gi(x")
where
Alx*):=<i€{0,1,...,n}gi(z")= _0
F(X*)=0
Observe that 0 € OF(x*) because go(z*) = f(2*) — p = 0 = min F(R™). Moreover, dgy =

Of (go=1f—n)
Hence, Vi € A(z*),da; > 0,

and

0e Z (L,@gl(ﬂf*)

1€A(z*)
= apdgo(z™) + Z a;0g;(x™)
i€ A(z*)\{0}
= apdf(x") + Z a;0g;(x)
1€ A(z*)\{0}
Now, fori € I\ A(x*), set o;; = 0.
If i € A(z*) N 1, then
gi(z") =0

Hence,

icAlz")NI = a;9;(z") =0
=0

i¢g Alz")NI =1\ A(z") = \aLgi(x*):O

=0

Altogether, Vi € I,
a;9;(z") = 0 < complementary slackness
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5.1.1 KKT conditions
KKT: Karush-Kuhn-Tucker conditions.

In the following we assume, f,g,...,g, are functions from R”™ — R (full domain). I =

{1,...,n}

Consider the problem,

Theorem 77: L16-1:KKT Conditions Necessary Part

Suppose f, g1, ..., g, are convex, x* solved (P). Suppose that Slater’s conditions holds,
i.e.,
dseR"™" Vie I ={1,2,...,n}, gi(s) <0

Then Ay, ..., \, > 0 such that the KKT conditions:
1. 0 € Of(x*) + >,y MiOgi(x™), stationarity condition
2. Vi € I, \;gi(z*) = 0, complementary slackness condition

hold.

Proof. Recalling Fritz-John.
dag, aq, ..., a, = 0, Not all 0, such that

0 € apdf(z") + Zaiagi(w*) (%)
icl
and
Vie I, a;g;(z") =0

Done if we can show that g > 0!
Suppose for eventual contradiction that oy = 0.

By (%), Vi € I,3y; € dg;(x*)
Z a;y; =0
iel
Hence, i € I,Vy € R™,
9i(x") + (yi,y — ") < gi(y)
In particular:
9i(z") + (ir s — &%) < gi(s)
Multiplying the inequality above by «,; > 0, then Vi € I,

;gi(x") + (04, s — %) < 94(s)
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Adding the above inequalities,

Zaigix*) + <Z Y, S — $*> < Z\Oé’z/g\z(/sl

iel iel iel 30
. , <0
=0 <0
which implies
0<0

which is a contradiction. Hence, oy > 0.
Now divide (x) and a;g;(z*) = 0 by ap and set Vi € I,
Q;

Ai=—20
Qo

Theorem 78: L16-2 KKT Conditions, Sufficient Parts

Suppose f, g1, ..., g, are convex and x* € R™ satisfies:
1. Vi € I, g;(z*) < 0, Primal feasibility.
2. Vi € 1, )\; > 0, Dual feasibility.
3. 0 € 9f(x*) + ;s NiOgi(a*), Stationarity.
4. Vi € I, N\igi(z*) = 0, Complementary Slackness.

Then z* solves (P).

Proof. Define

h(z) = f(x) + Y Nigi(x)
icl
By 2), h(z) is convex. Observe that the sum rule applies to the sum of convex functions f, \;g;, i €

1.
Therefore, Vo € R™,

Oh(x) =0 (f + Z)\igi> (z)

el

= 0f@) + ) Ndgi(x)

sum rule i€l

Consequently,
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By Fermat: z* is a global minimizer of h.
Now, let x be feasible for (P), i.e.,

Then,

5.2 Algorithms

Subgradient methods:
Gradient descent: classical theory
Consider the problem:

(P) min f(z)

reR™

Definition 24: 1.16-3

Let f : R™ — (—o0, 00] be proper and let x € int(dom(f)), d € R™ \ {0} is a descent
direction of f at x if the directional derivative satisfies

f(z;d) <0...(x)

Remark. 1.16-4

1. 0# Vf(x)existsatz = —V f(x) is a descent direction
Indeed:

f'(w; =V [f(z)) = (Vf(2), -V [(z))
=—V/@)|*

<0

2. (x) = Fe>0,V0<t<e flz+td) < f(x)

Gradient/Steepest descent method: With f is differentiable, 2o € R™. Vn € N, update via

Tp+1 = Tp — tnvf(mn)
t, € arg I%1>1(I)1 f(zn =tV f(zn))
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If f is strictly convex and coercive,
Z, — unique minimizer of f

”Peressini, Sullivan, Uhl”

In the lack of smoothness

Example 35: 1.16-5 (L.Vandenberghe)

Negative subgradients are NOT necessarily descent directions.
Consider

f:R* 5 R,
(21, x2) > |2 42] 29|

f convex (sum of convex functions), full domain = continuous.

0f(1,0) = {1} x [-2,2]
> (1,2)

Consider d = —(1,2) = (—1,—2), lett > 0, then

fU(1,0)+t*(—=1,-2)) = f(1 —t,—2t)

= |1 —t|+2|-2¢|
= |1 — t|+4]t]

1+3t, 0<t<1;
=q—-1-3t, t<O0;

5t — 1, t>1;
Therefore,

f((1,0);(=1,-2))
f((1> 0) + t(_1> 2)) B f(17 0)

=lim
tl0 t
o 143t—1
=lim
tl0 t
=3>0

Hence (—1,2) is NOT a descent direction. Moreover,

Vt >0, f(1,0)=1< f((1,0) +t(—1,-2))
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Example 36: L16-6 (Wolfe)

Let v > 1. Consider the function:
f:RZ=SR
. (.T T ) — { V ‘T% +7'IL‘%7 |$2|< X3

s WAL b2 x1+7|x2| .
T otherwise

Observe that arg mingegpn f(z) = ¢

Indeed, inf,cpm f(z) = —00, as
-
r,0) = —— — —00, asT — —00

Plot of f withy = 2

Z

One can show that

f=oc

, Where

2 1
Cz{(wl,xz)eRQIw%%sl,x@ }

Therefore, f is convex.
Also, f is differentiable on

R?\ (o0, 0] x {0})
Now, let g = (, 1) be in the set above.
The steepest descent will generate a sequence (details omitted)

e () o (52)) o0

Observe that (0,0) is NOT a minimizer of f.
In the absence of smoothness a lot of pathologies happen.
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5.3 Projected Subgradient Method

min f(x)

st.x e’

(P)
where
e f:R™ — (—o00, 0] is convex, l.s.c., proper.
e (' # () convex closed subset of int(dom(f))
o 5:=argmingec f(z) # 0
= minec f(x)

AL > 0, sup||0f(C)||I<K L < o0 <= Ve e C,Vu € 0f(c), ||u||< L

Projected Subgradient Method

Get o € C. Vn € N, note int(dom(f)) C dom(0f), given x,, pick a stepsize t, > 0 and
7 f'(x,)” € Of (x,). Here f'(x,) means the subgradient of f at z,,.

Update via

Tny1 = Polx, — tof' (2,))

Recall that C' C int(dom(f)), hence Vn € N, x,, € int(dom(f)). Therefore Of(x,) # 0, and
() nen is well-defined.

Lemma 79: 1L.17-1

Let s € S = argmin,ec f(z) and f(s) = p. Then
2 — sIP< Hlon — sI* =260 (f (@n) — ) + G f ()

Observe that S C C

Proof.

2ns1 = sl*=[Pe(an = tuf'(za)) = Pels) |?
~———
s€C,Pc(s)=s
< |‘xn - tnfl(xn) - 3“2
~~~
Pc f.n.e, nonexp
=[l(@n — 5) = tuf'(a)|I”
=llzy = slIPH I f (@) I =2tn (z0 — s, f'(20))

Recall we want to show

= sl (@) I =2t (f (20) — 1)

Done if
=2ty (Tn — 5, [/(2n)) < —2ta(f(20) — p1)
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Equivalent It,
<$n - S, f/(ajn» > (f(xn) - :u)

which is true by the subgradient inequality which is

f(s) = f(zn) + <f,(37n)a § = Tn)
N2

m

What is a good stepsize ¢,
Let us minimizer the upper bound
d
0=—RHS
dt,
d

= (“2(F () = 1) + L (za)]1?)
— — 2(f (w0 — 1) + 20| f () |?

Assuming f'(x,) # 0 (else, 0 € Of(x,) and hence , by Fermat z,, is a global minimizer and we
are DONE). Pick
f(@n) — p

by = 2

1f () [I?

which is known as Polyak’s rule.
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min f(x)
st.x el

(P)
where
e f:R"™ — (—o0, 0] is convex, l.s.c., proper.
e C =+ () convex closed subset of int(dom(f))
o S:=argmingec f(z) # 0
o pu:=mingec f(2)
e JL > 0, sup||0f(C)|I<K L < 00 <= Ve e C,Vu € 9f(c), |Jul|< L

® Tp € C’
Tnt1 = PC(l’n - tnf/(xn»
Polyak’s stepsize

" f(xn) — M
" ()2
Theorem 80: 1.17-2

We have
1. Vs € S,Vn €N, ||zpt1 — s||< ||zn — $||. 7(2n)nen is Fejér monotone w.r.t. S

2. f(zn) =

3. i — < EEBL = O(J), where Vi € N, 1, := mingepen f(5)

4. Leta>0.Ifn>%—l = U, S p+eE

Proof. Lets € S, n € N.
1.
lzns1 = slP<llwn = sl =2t (f(za) = 1) + 1L/ (20)|?

f(xn) = p Flan) — )
Hf’( )H2<f(95n) M)—I— (Hf/( )"2) ||f( )H
(flzn) =) (flan) = )

=2, — 5H2_2

B VPN | R TN
= — sl - 2L

n | f/ ()2
Sl — sip- L 20

<llan — s)*
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Note || f/(z,)|?’< L? = L - <H = <%

1 (@a)? L2

. Observe that Vk € N,

(f(xn) — M)2
L2

Summing the above inequalities over £ = 0 to k = n yields

< e = sl*=llzrss — sl

n

1
73 2 (@) = 1) <llzo = slPP=l|znsr = s[P< llwo = s]*.. - (%)
k=0
Letting n — oo, we learn that

o0

0< Y (flan) = n)? < Ly — s*< o0
k=0

which implies
flar) —p—0 <= flzy) —p

. Recall Vn € N, p,, := mingcg<, f(xy). Let n > 0.
Then Vk € {0,...,n},

dS<ZL‘Q>2L2 < 2

Then by 3), we have

which implies
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Recall that: Theorem L13-5

Theorem 81: L17-3 Convergence of Projected Subgradient

Suppose that (x,,),ecy is generated as in (7). Then

x, — asolution of (P)in S

Proof. By the previous theorem, (x,, ),y is Fejér monotone w.r.t. S.
Since (z,,)nen is Fejér monotone w.r.t to S, (x,,),en is bounded.
Also, by the previous theorem,

F(a) = = min f ()

zeC

By Bolzano-Weirestrass, 3z, — 7 and T € C (because (x,,)nen lies in C' by construction, C' is
closed).

Now,
o < #(7) < lminf _
p=min f(z) < f(7) iminf f(zy,) = p
fislsc

which implies f(Z) = p. Hence, T € S That is, all cluster point of (x,,),ey lies in S.
rn, — T € S by the Fejér monotone theorem. 0
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Example 37: L18-1

Let C' C R™ be convex closed and nonempty and let z € R™. Then

z—Po(z)
Do) = 1 e vgd
Ne(z) N B(0;1), zeC

Consequently, Vx € R™,
sup||0de(x)|I< 1

Proof. Omitted. The bound can be easily verified. U]

Lemma 82: 1.18-2

Let f be convex, l.s.c, proper and let A > 0. Then

ONf) = A0f

O

Proof. Easy
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5.4 The Convex Feasibility Problem

e Given k closed convex subsets .S; of R such that

S=8N8SN...S #0

e Problem: Findz € S
e Can we use the Projected subgradient method for (P)? What is f? What is C'? What is L?
Set C' = R™, Po = 1. Set f(z) = max{dg, (2),...,ds, (x)}, then f(z) > 0, Vo € R™. And
flz) =0

—Vie{l,...,k}, ds,(x) =0
—Vie{l,...,k}, z €S

k
=ae()S=5

i=1
s#0) = u:;gﬁ%f(x):()

L =1 by the previous example.
Finally, observe that the max formula for subdifferentials implies that x ¢ S.

Of(z) = Conv{ddg,(x)|ds,(x) = f(x)}

= Con {25 2 (0) = 1)}

What do we do with that?
Well, given z,, pick an index %,, such that

dSin (2n) = f(2,)

Set

What about ¢,,?
Polyak’s step size:
b= f(@n) —
1" () 12
o dsin (LCn) — 0
o xn_PSin 2
dsan (I’”«)
. dSin (l‘n)
~ len—Ps, I

@, (@n)

= dsin (IN)
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The update leads to the Greedy Projection Algorithm.

Tp+1 = Tp — tnf,<xn)

Tn — PS- (xn>
— 2 —de Zn 7S, \n)
Tn Sin (:L') dSin (xn>
=Tp — (mn - PSin (1711))

= PSin (xn>

o)
Tpgr1 := Ps, ()

where S;, is any set that is farthest away from x,,. And, by theorem L17-3,

x, — some point in S
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5.4.1 The Case k =2

We obtain that method of alternating projections "MAP”".
o € R™. Update via
Tn+1 = PSZPSﬂ?n

Example 38: L18-3

Find x € S where
S:={z eR"Az =b, x >0}

e Ais k x m matrix
e bcRF

We can use "MAP”! Set S; = R,

PS1<I) =zt = (max{&, O}):ll? = (517 s 7§m)
Sy = {x € R"|Ax = b} = A'(b)( the inverse image of b)
Ps,(z) =2 — AT (Az — b)

AT is the Moore-Penrose pseudo inverse (pinv). Let x, € R™. Update via
Tn4+1 :PSQPSI (xn)
=Ps, (:L‘;iz_)
=x; — AT (Ax} —b)
—=7€8

Remark. 1.18-4 In practice, it is possible that 4 = min,cc f(z) is NOT known to us. In this case
replace Polyak’s stepsize by a sequence (t,,)nen such that

2 k=oli

=—— —s0asn— o0

ZZ:O tk

for example,
1
by = ——
A |
One can show that
pn = min{ f(zo), ..., f(@n)} — p

asn — oo
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5.5 The Proximal Gradient Method(PGM)

Consider the problem
(P) min F(z) := f(z) + g(z)

xe]R'm

Assumptions:
(P) has solutions
S :=arg min F(x) # ()

and
= min F(x)

zeR™

e fis "nice”: convex, Isc, proper and differentiable on int(dom(f)) # 0. V f is L-Lipschitz
on int(dom(f))

e ¢ is convex, Isc and proper.
dom(g) C int(dom(f))

implies that
0 # ri(dom(g)) € dom(g) C ri(dom(f))

and implies
ri(dom(g)) Nri(dom(f)) = ri(dom(g)) # 0
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Example 39: L18-5

min f(z)

where is () # C' C R™ convex, closed is equivalent to

min f(z) + o (x)

TrER™ N——
=g
PGM:
x € int(dom(f)) D dom(g)
Update via
1
ry = Prox., (:E — sz(:z:))
— g min | Lo(0)+ 2y (2 - 295
=ere i | o0+ v (7o VG
€ dom(g) C int(dom(f)) = dom(f)
Set .
T = Prox%g (Id — EVf)
1e.,Vr € R™

Tz = Prox,, (x - %Vf(x))

Theorem 83: .18-6

Let x € R™. Then

r € S = argmingegm F' = argmingegm (f + g)
—
x =Tz (ie., z € Fix(T))

Proof. Observe that by Fermat,

reS <= 0€d(f+g)(z)
= 9f(x) + dg(x)
=V f(z) + 09(x)
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Letz € R™. Thenz € S

= 0€d(f+g)(z)
< 0€ Vf(z)+ dg(x)
— — V/f(z) € dg(z)

— — %Vf(m) € l8g(x)

<:>x—%Vf( )Ex—l—(’?(% )( ) = (Id+a(1 ))(;p)
el o)

ﬁ}x—Prox% (d——Vf)

Fact L18-7
Let f : R™ — (—o00, 0] be convex Isc and proper and let 3 > 0. Then f is -strongly convex
<= Vx € dom(0f), Yv € 0f(x),

FW) > £la) + vy — )+ Dy~ aff
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5.6 The Prox-Grad Inequality

Proposition 84: L18-8
Letz € R™, y € int(dom(f)),
y, =Ty = Prox%g(y —V£(y))

Then
F(z) = F(y4) = —Ilw—y+||2——||x—y|| +Dy(z,y)
where
Dy(z,y) == f(z) — fly) = (Vf(y),z —y) =20

which is the ”Bregman distance” by convexity of f.

Proof. Define .
h(z) = f(y) + (V)2 —y) +9() + Sz =yl

Then h is L-strongly convex.
Let 2 € R™. Then
z minimizes h

— 0€d (f(y) +(Vf(y),z—y) +g(2) + gllz - y||2)

.y <<Vf(y), z—y)+g(z) + g“z - y||2>
= Vfy) +9g(2) + L(z —y)

%g) (z) + (z — y)
oL ) (2)
Jo

) (y — —Vf(y))
= Pr0£1 (y i )

=Ty=1y4

+

1
<~ 0€ ZVf(y)—l—E)

— y—lVf() z

5
(el
e o)

which implies
argminh =: {y, }
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Recalling L18-7, f = h, 8 — L,y — x, x — vy, then

()~ h(ws) > =yl (1)

Moreover, by the descent lemma, we have

Fw) < T0) +{VFW). 0 ) + 2l — ol

Therefore,
L
h(y+) = F) + (VW) ys —y) +9(ue) + 5 v — ol
> flys) +9(ys)
= F(y+)
Combining with (1),

() = Fys) = h(e) — h) > 5 e — P

Using the definition of A, the inequality above becomes
L 2 L 2
Fy) + (Vi) —y) +g(2) + Sllo = yl"=Fys) = S llw =y

Adding f(z) to both sides and rearranging yields:

£@) + 9(2) = Flys) > e =yl = oll*+ f2) = £) + (VS ).x — )

J/

-~

Df(zvy)
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The Proximal Gradient Method:
The problem is here:

(P) min F(x) := f(z) + ()

zeR™

Assumptions:
(P) has solutions
S :=arg min F(z) # 0

zeR™

and
4= min F(x)

zeR™

e [ is ”nice”: convex, Isc, proper and differentiable on int(dom(f)) # (. V f is L-Lipschitz
on int(dom(f))

e ¢ is convex, Isc and proper.
dom(g) C int(dom(f))

implies that
0 # ri(dom(g)) C dom(g) C ri(dom(f))

and implies
ri(dom(g)) Nri(dom(f)) = ri(dom(g)) # 0

Lemma 85: LL19-1 (Sufficient Decrease Lemma

L
F(yy) < Fy) — §||y —yi])?

Proof. Use L18-8 with x replaced by y and recall that, because f is convex,

Di(z,y) = f(x) = fly) —(Vf(y),z —y) =0

The Proximal Gradient Method:
Given y € int(dom(f)), update via

v = Proxy, (v-1910)
=: Ty € dom(g) C int(dom(f)) = dom(Vf)

The Algorithm:
Given z € int(dom(f)). Vn € N, update via

1
Tppt = Tx, = Prox%g <azn — EVf(xn)>
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Theorem 86: 1.19-2 O(1/n) rate of convergence of function values

The following hold:
1. Vse S, neN, ||z, — s||< ||zn — s, i-e., (21)nen is Fejér monotone w.r.t S.

2. (F(zy))nen decreases to p. more precisely,

.2
ng(xn)_ﬂg%éﬁ(xo):o(l)
n

Proof. Applying L19-1 with y replaced by z,, (y4+ = x,,41) yields

L
F(ns1) < F(an) = Sllne = Zal*< F ()
1. Recalling: Let s € S, let k € N.

Applying L18-8 with (x, y) replaced by

—~

s, xy) yields

Do |t~

L
0> F(s) =F(ar) = Flls —wpnlP=lls — 2l (+)
~—~—
o

implies that
(1 )nen is Fejér monotone w.r.t. S

2. Multiplying (*) by 2 and adding the resulting inequalities from k = 0 to k = n — 1 and
telescoping yields:

n—1

2

17 (Z(M - F(wm))) > [|s — 2l *~lls — zolI*= —|ls — 2o|?
k=0

In particular, setting s = Ps(zg) € S, we obtain

dg(wo) = [|Ps(w0) — o

>2 <2(F($k+1) - u))

k=0
2 n—1
> 7 < (F(xn) — u)) by F(2p41) < F(xy)
k=0
= 2n(F(a,) - )
= pE (@) —p
Equivalently,
L- d2 ($0)
0< Fla,) —p<—2
() — o
and



Theorem 87: 1L.19-3 Convergence of PGM

x,, converges to some solution in S = arg mingegm F'(x)

Proof. By the previous theorem we have (x,,),cn is Fejér monotone w.r.t S. Done if we can show
that every cluster point of (x,,),ey lies in S.
Suppose that 7 is a cluster point of (x,,),en, say xx, — Z.

Indeed,
p < F(z) <liminf F(zg,) = p
— F(T) =p
—=7TES
O
The following hold:

1. 1V fisfne.
2. I — %Vf is f.n.e

3. 7T = Prox%g(Id — Vf) is 2/3-averaged

Proof.

1. Recall L9-8 4). Dividing both sides by % yields

2

<%Vf(a:) - %Vf(y), x— y> > %Vf(x) - %Vf(y)

T T T

There fore 1) and 2) follows from A3 Problem 3 a),b),d)
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Problem 3.
u[ 'I‘ - R!H ) R!H.

(i) Prove that the following are equivalent:
(a) T is firmly nonexpansive.
(b) Id ~T is firmly nonexpansive.
(¢) 2T - Id is nonexpansive.
(d) (Vz € B™) (Vy € B™) ||T(z) - T(y)I]* < {z - y.T(z) - T(y)).

() (Ve R™) (Vye ™) ((Id -T)(z) - (Id =T)(y).T(x) - T(y)) = 0.

2. as above

3. Recall that Proz 1y is f.n.e. Hence, Prox 1, and [;— %V f are both %—average. Consequently,

the composition Prox 1, (I d— %V f ) is averaged with constant 2/3
O]

Remark. 1.19-5 Recall L14-4 1), 3). One can show that for T' = Prom%g (Id — %g) we have Vz, y,

1
se =)z = (La = T)y|’< lle = P =Tz — Ty’

Theorem 89: 1.19-6

Recalling the PGM iteration we have.

201 = 2all S ——=— =

i) o 1)

Proof. Using the previous remark we have, Vz,y
1 2 2 2
Sl =Tz = (Lo = Tyl < llz = yl* =T = Tyll"... (+)

Let s € S and observe that s = T's by L18-6.
Applying (x) with x =z, y = s € S, we get

1
—N(Iqg =Ty — (Ig — T)s||? — 5|2 =|| Tz, — Ts ||
Slla = T)aw = (Lo = T)s|"< llzw — s|"=[| T2 — T's

0 Tht1 S

That is 1
§I|xk — e [IP< ok — sl ~llarar — sl . (#)
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Using the previous proposition 7" is 2/3-averaged, hence T is nonexpansive. Therefore

| 2n —2pp |l < |lop—1 — 2|
NN

kafl Txk

Summing (#) oVerk =0 —n — 1,
1 1
o = slP*=llzn — s]*> 5 ;ka —wen > nllena — ol

In particular, for s = Pg(x), we get

1
Sl =l < di (o)

= @1 — 2l < %ds(ﬂco) _0 (%)

Corollary 90: L.19-7 The Classical Proximal Point Algorithm 1970’s Rockafeller

g : R™ — (=00, 00| convex lIsc and proper, ¢ > 0.

p .
(P) min g(z)
Assume that S := arg mingegm g(x) # 0.
Let o € R™. Update via

Tnt1 = Proxegr,

Then

9(xn) “\ pp = min g(R™)

d2(1130)
0<g(w,) —p<-2
9(xn) — p Sem

r, — some point in S

V2ds(z)

|1 — @l € — =

vn

Proof. SetVx € R™, f(x) =0. ThenVz € R™, V f(x) =0

—> Vf = 0is L-Lipschitz
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for any L > 0. In particular, for L = % > 0.
Observe that (P) can be written as

min - f(z) + g(z)
N—————

TER™
F(z)=g(z)
= in F
— S = arg min (x)
= arg min g(z)

1
VI=0 = Li- V=1

1
= T = Prox%g ([d — ZVf)

= Prox.g o (Iy)

= Prox.g

Done by the previous results.
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5.7 Fast Iterative Shrinkage Thresholding Algorithm(FISTA)

(P) min F(z) := [(z) +g(x)

Assumptions:
(P) has solutions

S

and

e fis ”nice”: convex, Isc, proper and differentiable on R™. V f is L-Lipschitz on R™

e ¢ is convex, Isc and proper.

FISTA:
To € Rm, to = 1, Yo = Top. Update via

tn+1

- 2tn+1 - 1
= t721+1 — tnt1

xn—i—l

Yn+1

Remark. 1L20-1
The sequence (t,)nen satisfies Vn € N,
Indeed, base case:

Now suppose for some n > 0,

= arg min F(z) # 0

zeR™

p = min F(z)

14 /1442
S
=y/1+ 4¢2

=t2
1
:Prox%g( Iy — EVf (va) = Ty,
t, — 1
=Tnp+1 + (xn+1 - xn)
n+1
1—-1t, 1-1,

:<1— Ty

caff{x,, Xn41}

) Tn+1 +

t, = ”T“ > 1. Verify using induction!

tn+1 tn—l—l

0+2
n+2
t, = 5
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Now

Zfn—i—l -

14 /14422
2

(n+2)2
1+ /1 +40425

2
1+ +/1+ (n+2)?

2
14+ +/(n+2)?
2

1+n+2
2
(n+1)+2
2

WV

WV

and the conclusion follows.

Theorem 91: 1.20-2 (O(1/n?) convergence for FISTA

0 Flam) =1 < 720

= 0(1/n?)

Proof. Set s = Pg(zy)
By convexity of F' (note t,, > (n + 2)/2 > 1), we have

F (%s + (1 - ti) xn> < %F@) + (1 - ti) F(a)

SetVn € N,
On = F(zn) =20
Observe that,
(1= ) ot = (1 1) (Fln) = Fs)) = (Flanan) = F(5)
_ (1 _ %) Fla,) — (1 - %) F(s) = Fany) + F(s)
_ (1 _ %) Flan) + lnF(s) — F(enn)
>F (%s v (1 - %) $n) — F(zn)... (1)

Recall the FISTA updates, applying L.18-8 with = = is + (1 —1/ty)xn, y = yn, implies
Yr =Ty, = Tn1
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yields

n

F (tls +(1— l/tn)xn) — F(xp41)

L > L ’
5 t ( — 1/tn)l'n — Tp+1 5 t ( - 1/tn)xn — Yn
1 2 1 ’

= ithaenﬂ — (s + (tn — Dzy)||>— thyn — (54 (t, — D)% .. (2)

212 212

and
ltnyn — (s + (t, — 1)xy,)

th-1—1
tn (mn + ;4(% - xn_1)> — (s + (tn — Day)
= |[tpxn + (tho1 — V)(xy — Tpo1) — s — tyxn + anQ
:th—lajn —tp1Tp_1+ Ty — S||2

=t 17 — (5 + (tno1 — D, 1) .. (3)

2

Then using 2, — t,4+1 = {2, we have

t2

n—1

O — 20041 = (12 — )0, — 120,41

(- 2)s-s)
tn

>152Fl+1—l — F(zp41)
T tns P Ty Tnt1
(

1

~

L L
> §thxn+l — (s + (tn — 1)$n)‘|2_§|’tnyn — (s + (tn — 1>$n)”2
(2)
L L
(3:) 3 Itnnis = <Si (t, — 1):cn2\|2—5|!§n71xn — (s +§n71 — D)
Un+1 Un,

Multiplying by % and rearranging yield

2 5
Hun+1H +L nOnt1 < HunH +L n—10n
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Therefore,

2 2
zti—l(sn < Hunl|2+zti—15n

/N

2

< ||U1||2+zt(2)51
2
=l to 21— (s+ (to — 1)$0)!\2+z(1)(F($1) — 1)
=1

9 2
= [|xy — s +E(F(SB1) — 1)
< Jlzo — s|?

where the last inequality follows from applying L18-8 with z = s, y = yo, y+ = T'yp = 21 t0

obtain
L L

F(s) =F(z1) > 5 |ls = 1]]* =5 ||lzo — s
~— 2 2
“w
That is,
F(mn)_ﬂ: n
L 5 1
<l - sl
L 4 n+2
< Zllzo — s|? by t, >
X 2”750 s|| (n + 1)2 Yin = 5

= m recall s = PS(I'(])

5.7.1 The Iterative Shrinkage Thresholding Algorithm (ISTA)
Special case of the PGM with
g(x) = Allz],A >0

1 A
— —g(x) = Zllall

n

Prox%g(x) = (Prox%“,ll(x)>i X
: A"
= (szgn(xi) max < 0, |$Z|_Z}>
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5.8 The Fast Iterative Thresholding Algorithm (FISTA)

Is the accelerated version of ISTA?
Il VS ||-||2 Consider the two problems

(P) min ||z[]2 s.t. Az =b

and
(P,) min ||z||; s.t. Ax =b

Ax = bis underdetermined system of equations.
v l

.Sa-Ld“i\OY\ RN 1)‘

*

D/

solubon tn 3R P
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Example 40: 1.20-3

l; regularized least squares. Consider the problem
(P) min Z]|Az — nl}3+A]]
iai 5 lAe = nlfz+Allel,

A > 0, Aisn x m matrix.
e g(z) = A||z||; convex, lIsc, proper

o f(x) = L||Az — b]|3 smooth, Vo € R™, Vf(x) = AT(Az — b)

2

o dom(f) = dom(g) = R™. Is V f Lipschitz? Recall L10-6,

V f is L-Lipschitz continuous
= Aax(V2f(2)) < L
= Anax(ATA) < L

Take L := Apax (AT A)

e S # 0. Indeed, F(z) = f(z) + g(z) = 3||Az — b||34+A||||1 is continuous, convex,
coercive, dom(F) = R™, implies S = argmin F' # () (Here we used the fact that: F
is convex Isc proper + coercive. C' convex closed # ), dom(F) N C # () Then F has
a minimizer over (')

Computational Tip Somtimes m is large and computing the eigenvalues of A7 A (m xm matrix)
is not so easy.
In this case, you could use an upper bound on eigenvalues, e.g., the Frobenius norm:

1AIR =" af

j=1 =1

= tr(ATA)

= i A(ATA)
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Consider the problem
(P) minimize,cgm F(x) = f(x) 4+ g(x)
e f is convex Isc and proper
e ¢ is convex Isc and proper
e S =argmingegm F(z) #0

No further assumptions of smoothness or domain inclusions.
Suppose that 3s € S such that 0 € df(s) + dg(s) C A(f + g)(s)
One situation is when

ri(dom(f)) Nri(dom(g)) # 0

then sum rules applies, i.e.

f+9)=0f+0yg
Recall that in A4 you proved that

Prox; = (I;+ 0f) "
Prox, = (I;+ dg)~"

Set

Rf = 2PI‘OXf — Id
Rg := 2Prox, — 14

Define the Douglas-Rachford (DR) operator as follows:

T = 1; — Prox; + Prox,(2Prox; — 1)
= I; — Proxy + Prox R

Lemma 92: L22-1

The following hold:
1. Ry and R, are nonexpansive
2. T =3(Is+ RyRy)

3. T'is firmly nonexpansive

Proof.

1. Recall that Prox; is f.n.e by L14-2
Now combine with A3, T is f.n.e <= 271" — I; is nonexpansive.
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2. Indeed,
%(Id + RyRy)
:%(]d + (2Prox, — I4)Ry¢)
:%(Id + 2Prox,Rf — Ry)
:%( 14+ 2Prox Ry — (2Prox; — 14))

1
:§(Id + 2Prox,R¢ — 2Prox; + 1g)
1

=5 (214 = 2Prox; + 2Prox,Ry)
=14 — Prox; + ProxRy¢
=T

3. Observe that R,Rs(= R, o Ry) is a composition of two nonexpansive mappings, hence
Ry Ry is nonexpansive.
Therefore,

1

11
= I+ -R,R
gl ooty

T

=N

That is 7" is 1/2-averaged, equivalently, 7" is f.n.e by L12-7

Useful if we plan to iterate 7'. Shall we?
Remark. 1.22-2
FixT = FixR,R¢
Indeed, let x € R™. Then

z € FXT <— z=Tx
1 1
Tr = §(Id + Rng)(l’> = 5(23 + RngiL‘)
2r=x+ RyRsw
xr = Rng.T

x € FiXRg Ry

1117

Proposition 93: 1.22-3

Prox¢(FixT) C S
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Proof. Let x € R™, and set s = Proxx. On the one hand.

s = Prox;(x) (Prox; = (Iq + 0f)~!
= xe(ly+0f)(s)=s+0f(s)
<= 2 Prox¢x —(2 Prox¢x —x) € s + 0f(s)
— &
<= 25— Ry(x) € s+ 0f(s)
<= 25— Ry(x) —s € 0f(s)
< s — Ry(x) € 0f(s)

On the other hand,

x € Fix(T) v =Tz, (T = 1; — Prox; + Prox,Ry)

r =z — Prox¢(x) + Prox,R¢(x)

Prox;(x) = Prox,R¢(x)

s = Prox,R¢(x)

Rs(x) € s+ g(s), (Proxg = (Ig + dg) ™)
0€s— Re(x)+dg(s)

Ry(z) — s € 0g(s)

[

Altogether, the last inclusions imply that

0 €9f(s) 4+ dg(s)

CO(f +9)(s)
= se&S =arg m{?{n F(x)
TreR™

O

Theorem 94: 1.22-4

Let o € R™. Update via
Tpy1 = &, — Proxe(xy) + Proxg(2Prox;(x,) — x,)

Then
Prox¢(x,) — a minimizer of f + g

Proof. Rewrite x,,,1 as

Tpy1 = (g — Prox; + Proxg(2Prox; — 14))x,
=Tx,

= TnJrlCEO
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Then by L14-1 z,,.1 — 7 € FixT. Observe that Prox; is (firmly) nonexpansive by [.14-2, hence
continuous by L.12-11. Consequently, Prox;x, will converge to Prox¢X =: s
Finally, observe that

s € Prox¢(FixT) < S
~—
Prop L22-3

The proof is complete. [
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Consider the problem
(P) minimizer f(x) s.t x € C

Assumptions:

e f is convex Isc and proper

e () # C closed and convex C int(dom(f))
e S:=argmingec f(x) # 0

Set 1 := min f(C).
Stochastic Projected subgradient Method:
Given zy € C, update via:
Tpi1 = Po(zn, — thgn)

Assumptions on t,,:

AOQ: ¢, > 0,
o0 n 2
Ztn—>oo, =0’k 5, 0ask — oo
n—0 D k=0t

e.g.,t, = n%l, a>0

What about g,,?

Choose g, to be a random vector, such that the following assumptions are satisfied.
Al: ("unbiased subgradient™)
Vn €N,

E(gn|z,) € Of (xn)

(means expectation of g,, given x,, is a subgradient), equivalently,
Yy € R™,

f(@n) + (E(gulTn),y — 20) < f(y)

A2: ("boundedness”)
dL > 0,Vn € N,
E(|lgnll*l2n) < L

Theorem 95: 1.23-1

Assuming the previous assumptions hold. Then
E(ur) = pask — oo

where
p :=min{ f(zo),..., f(axx)} > u
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Proof. Let s € S and let n € N. Then

0 < [lpsr — sf?
= [|1Po(zn = taga) — Po(s)|?
< (@n = tagn) — sl
= ||(zn — 8) = tugall?
= [|zn — 5H2_2tn (Gny Tn — 8) + ti||gn||2

Now taking the conditional expectation, given z,,, yields,

E(l@ni1 = sl’n) <llzn = s +2t0 (E(gnln), s — n)
+ 1 E(9al|20)
< n 2 22fn - n t2L2
o = It (F(5) = flan)) + £
Al,A2

=llz = sl*+2ta(p — f(xa)) + 5,L7
Now taking the expectation w.r.t. z,, yields
E(l|za = s1?) < E(llzn = sl?) + 2ta(p — B(f(2n))) + 6,L7 ... (%)

Let k € N.
Summing ZZ:O over (x) and cancelling duplicate terms yields

0 < Blllwss = 1) < lleo — sl 2Zt +L22t2
Hence,
1 k k
5 (H:co - s||2+LQZtZ> > tu(E(f(xn) — 1)
n=0 n=0
k
2 tn(E(:ulc) - :U’)
n=0
Therefore,

gl 2
O<E(uk)—u\|’x0 il las Z"O”%O as k — oo by A0

2211 U

The proof is complete.

5.8.1 Key Application:

Minimizing a sum of functions

fi,o oy fr t R™ = (=00, 0]
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are convex, Isc proper
Set I = {1,...,r} and assume

Vi € I, int(dom(f;)) D C is convex closed, # ()

Also assume that
Vie I, 3L; > 0, sup||of;(C)||< L;

Fact: sup||0f;(C)||< L; <= fi|c is L;-Lipschitz. True if, e.g., C'is bounded.

Set

F=Y_f

icl
Goal
(P) minimizeryecf

We will apply SPGM to (P).
To do that, we verify

e f is convex Isc and proper
e () #£ C closed and convex C int(dom(f))
o S:=argmingec f(z) # 0
and we have
o f =73 .. fiisconvexIsc. by f; all convex and lIsc proper.
e dom(f) = Nierdom(f;) D C # () = f is proper.
°
int(dom(f)) = int N;er dom(f;)

= N;erint(dom(f;)) by [ finite
O (' by the previous point
e Now assume y := min f(C) is attained, i.e., P has a solution. We now will show that A1, A2
can be satisfied,

By the fact above, we have each f;|¢ is L;-Lipschitz.
Therefore, using the triangle inequality

fle=">Y_ fileis Y _ L; Lipschitz
icl icl
Therefore, once again, by the fact, we learn that
supl[0f (C)[I< D Li

el
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Let 29 € C. Given z,, € C, x,11 = Po(r, — t,gn), we pick an index i,, € I = {1,...

randomly using uniform distribution and we set

Gn =T" i/n (zn)

er- szn (ZEn)

Now,
"1
gn’(En Z ; Tf xn
=1
i1 ——
€0 fi(xn)
€ 0fi(x ) o+ Of ()
= 0(f1 .+ f)(z,) sum rule

=0f(x )
so A1 holds.
Next:

r

B(lgnlPlea) = 37+l fiCen) |

=1

= ZTHJC Tn) H2
TZL2

= I?

Therefore, A2 holds with L := /r> ;| L%

Consequently,
Tp41 = PC’(xn - tngn)

generates a sequence such that
E(pn) = p

on, mlnze{l ..... n}{f(‘ro) f($n>}
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