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8, September 2020

1 Introduction: Formulations, fundamental background and
definitions

Let n,m ∈ Z+, and f : Rn → R, g : Rn → Rm and h : Rn → Rp all be continuous.

P :

inf f(x)

s.t. g(x) ≤ 0

h(x) = 0

We also have
S := {x ∈ Rn : g(x) ≤ 0, h(x) = 0}

which is the feasible solution set of (P ), equivalently feasible region of (P ).

Definition 1: Global Minimizer

We have x ∈ Rn is a global minimizer of (P) if x ∈ S and f(x) ≥ f(x), ∀x ∈ S.

Remark. Sometimes we simply say x is a minimizer

Definition 2: Local Minimizers

x ∈ R is a local minimizer of (P), if x ∈ S and ∃ a neighborhood U of x such that

f(x) > f(x), ∀x ∈ S ∩ U

x ∈ R is a strict local minimizer of (P), if x ∈ S and ∃ a neighborhood U of x such that

f(x) > f(x),∀x ∈ (S ∩ U) \ {x}

x ∈ R is a isolated local minimizer of (P), if x ∈ S and ∃ a neighborhood U of x such that
x is the only local minimzier of (P ) in S ∩ U .

Definition: 0

A continuous optimization problem is a problem of optimizating (minimizing or maximiz-
ing) a continuous function of finitely many real variables subject to finitely many equations
and inequalities on continuous functions of these variable?
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What kind of problems can be formulated as Continuous Optimization problems?
A: Almost Everything

Example 3: Fermat’s Last Theorem

There do not exist positive integers x, y, z and an integer n > 3 such that

xn + yn = zn

Consider,

(P ) :

inf f(x) := (xx41 + xx42 − xx43 )2 + sin2(πx1) + sin2(πx2) + sin2(πx3) + sin2(πx4)

s.t.

g1(x) := 1− x1 6 0

g2(x) := 1− x2 6 0

g3(x) := 1− x3 6 0

g4(x) := 3− x4 6 0

Note: (xx41 + xx42 − xx43 )2 = 0 iff xx41 + xx42 − xx43 = 0. f(x) = 0 requires all sin in the f(x)
is zero, so all x’s are integers.
Conclusion: The optimal pbjective value of (P ) is zero and attained iff Fermat’s Last theo-
rem is false.
We can show that (P ) has a sequence of feasible solutions

{
x(k)
}

such that

f(x(k))↘ 0

Since f(x) > 0,∀x ∈ R4, the optimal value of (P ) is zero.
FLT is true ifff (P ) does not attain its optimal value (of zero)

What does this example tell us?
Even when number of variables in a continuous optimization problem is very small (e.g. 4)
the optimization problem may be notoriously hard.
Even discrete structures can be formulated

sin(πx1) = 0⇔ x1 ∈ Z

In Example 1.3, we have functions that are ”highly nonlinear”
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Example 4: Combinatorial Optimization,0,1, Interger Programming

Let positive integers m,n,A ∈ Rm×n, b ∈ Rm, c ∈ Rn be given. Consider the 0, 1 Integer
Programming problem:

(IP ) : Min : cTx

s.t.

Ax 6 b

x ∈ {0, 1}n

We can have g(x) := Ax − b 6 0 and h(x) := {xj(xj − 1) = 0,∀j ∈ {1, 2, . . . , n}}. This
is problem with linear objective function, linear inequality constraints and only quadratic
equations.
Our continuous optimization problem is only mildly nonlinear.

Some conclusions from Example 1.3 and 1.4:
Continuous Optimization problems can be very hard even when

• number of variables and constraints are both small

• the nonlinearity in f, g, h is very mild

To successfully solve continuous optimization problems we must study the problem class at hand,
discover special properties and structures and then exploit these special properties & structures.
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1.1 Conic form of Continuous Optimization Problems

Definition 5: Cone

A set K ⊆ Rn is a cone if
∀x ∈ K, ∀λ ∈ R+, λx ∈ K

R+ is the set of all non-negative real numbers.

Definition 6: Convex set

A set S ⊆ Rn is convex if for every pair of points in S, the line segment joining them lies
entirely in S.
(That is, S is convex if ∀u, v,∈ S,∀λ[0, 1], [λu+ (1− λ)v] ∈ S)

Definition 7: Convex Cone

A set K ⊆ Rn is a convex cone if it is convex and is a cone.

Let g : Rn → Rm, f : Rn → R be continuous functions. Consider

inf f(x)

s.t. g(x)4
K

0⇔ −g(x) ∈ K

where K ⊆ Rm is a convex cone and for u, v ∈ Rm, u<
K
v means (u− v) ∈ K

This is at least as general as our original (P ), the very first problem in the introduction.
Consider K := Rm

+ ⊕ {0} , 0 ∈ Rp, . . .
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1.2 Derivatives
Definition 8: Directional Derivative

Directional derivative of f : Rn → R at x ∈ Rn along the direction d ∈ Rn is

f ′(x; d) := lim
α↘0

f(x+ αd)− f(x)

α

(Gâteaux (directional) derivative)

Exercise. What is the diretional derivative of f : Rn → R, f(x) := ||x||∞, for every x, d ∈ Rn?

Definition 9: Differentiable

f : Rn → Rm is differentiable at x ∈ Rn if ∃A : Rn → Rm, linear, such that,

lim
h→0

(h∈Rn)

||f(x+ h)− [f(x) + A(h)]||
||h||

= 0

such A is called the derivative of f at x and is denoted by Df(x) or f ′(x) (matrix represen-
tation of Df(x)).
We will also use

Of(x) := [f ′(x)]T

Suppose f : E1 → E2, then

Df(x) ∈ L(E1,E2), DF : E1 → L(E1, E2)

D2f(x) ∈ L(E1, L(E1,E2)), D
2F : E1 → L(E1, L(E1, E2))

L means the linear transformations.
If f : Rn → R, then
Dkf(x)[h(1), h(2), . . . , h(k)] : kth differential (derivative) along the directions h(1), h(2), . . . , h(k) ∈
Rn

Theorem 10: Taylor Theorem

Let U ⊆ R be open, f :→ R be a Cr (r times continuous and differentiable) function on
U . Let x, d ∈ Rn. If x, (x + d) and the line segment joining x and (x + d) lie in U , then
∃z ∈ (x, x+ d) such that

f(x+ d) = f(x) +
r−1∑
k=1

1

k!
Dkf(x) [d, d, . . . , d]︸ ︷︷ ︸

k−times

+
1

r!
Drf(z) [d, . . . , d]︸ ︷︷ ︸

r−times

7



1.3 Contraction and Fixed Points
Definition 11: Contraction Mapping

Let U ⊆ Rn be a closed set.
f : U → U is called a contraction mapping if ∃λ ∈ [0, 1) such that

||f(x)− f(y)||6 λ||x− y||, ∀x, y ∈ U

Theorem 12: Banach Fixed Point Theorem[1922]

Let U ⊆ Rn be a closed set and let f : U → U be a contraction mapping. Then

1. (Existence and Uniqueness of solution-fixed point)
the mapping f has a unique fixed point x ∈ U

2. (Algorithm and convergence)
∀x(0) ∈ U , the sequence

{
x(k)
}

generated by

x(k+1) := f(x(k)), k ∈ {0, 1, 2, . . .} ⇒ Fixed Point Iteration

converges to x. In particular,

||x(k) − x||6 λk||x(0) − x||, ∀k ∈ {0, 1, 2, . . .}

8



10, September 2020

Proof. Suppose U ⊆ Rn is a nonempty closed set, and f : U → U is a contraction mapping with
λ ∈ [0, 1). Let

x(k+1) := f(x(k)), ∀k ∈ Z+

Then, ∀k ∈ Z+,

||x(k+1) − x(k)||= ||f(x(k))− f(x(k−1))||6 λ||x(k) − x(k−1)||

By induction on k, . . . we obtain

||x(k+1) − x(k)||6 λk||x(1) − x(0)||,∀k ∈ Z+ . . . (eq.1)

∀m ∈ Z++,∀k ∈ Z++, we have

||x(m+k) − x(m)|| = ||x(m+k) − x(m+k−1) + x(m+k−1) − x(m+k−2) + . . .+ x(m+1) − x(m)||

6
k∑
i=1

||x(m+i) − x(m+i−1)|| By triangle inequality

6 (λm+k−1 + λm+k−2 + . . .+ λm)||x(1) − x(0)||, by (eq.1)

= λm(1 + λ+ λ2 + . . .+ λk−1)||x(1) − x(0)||

=
λm(1− λk)

1− λ
||x(1) − x(0)||

6
λm

1− λ
||x(1) − x(0)||→ 0 as m→ +∞ independent of k

∴
{
x(k)
}

is a Cauchy sequence and hence it converges (U is complete). Let x be its limit. x ∈ U
(it is closed).
∀k ∈ Z+, we have

||f(x)− x|| 6 ||f(x)− x(k)||+||x(k) − x||
6 λ ||x− x(k−1)||︸ ︷︷ ︸

0

+ ||x(k) − x||︸ ︷︷ ︸
0

As k → +∞, RHS → 0. Thus, f(x) = x (Existence proven)
Uniqueness: Suppoese ∃x, y ∈ U, s.t.f(x) = x and f(y) = y. Then

||x− y||= ||f(x)− f(y)||6 λ||x− y||
⇒ (1− λ)||x− y||= 0 ⇒

λ∈[0,1)
x = y
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Now that we have estabilished existence and uniqueness of x, for a proof of convergence rate
claim, we proceed as in the beginning of the proof. However, we use x.

||x(1) − x||= ||f(x(0))− f(x)||6 λ||x(0) − x||
⇒ ||x(2) − x||6 λ2||x(0) − x||

By induction on k, . . .

||x(k) − x||6 λk||x(0) − x||, ∀k ∈ Z+

as desired.
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Theorem 13: Brouwer’s Fixed Point Thm[1910]

Let U ⊂ Rn be a nonempty, compact and convex set; let f : U → U continuous such that
f(U) = U . Then ∃x ∈ U s.t. f(x) = x

Theorem 14: Kakutani’s Fixed Point Theorem[1941]

Let U ⊂ Rn be a nonempty, compact convex set and f : U → 2U be a set-valued map on U

(2U is the set of all subsets of U ). If Graph(f) :=

{(
x
v

)
∈ U ⊕ U : v ∈ f(x)

}
is closed

and f(x) is nonempty and convex for every x ∈ U , then ∃ x ∈ U s.t. x ∈ f(x)

Theorem 15: Borsuk-Ulam Theorem[1930-1933]

Let f : {x ∈ Rn+1 : ||x||2= 1} → Rn be continuous. Then ∃ x ∈ Rn+1 s.t. ||x||2= 1 and
f(x) = f(−x)

Example

Let n := 2. Assuming temperature and barometric air pressure are continuous functions on
the Earth’s surface, and Earth’s surface is homemorphic to a sphere, there always exists an
antipodal pair of points on Earth with the same temperature & the same air pressure.
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Notation. Sn := n-by-n symmetric matrices with real entries.

Theorem 16: Spectral Decomposition Theorem

For every A ∈ Sn,∃ Q ∈ Rn×n orthoganal (QTQ = I) such that

A = QDQT , where D ∈ Rn×n is a diagonal matrix.

In the above theorem, the diagonal matrix D contains all eigenvalues of A, and the columns of
Q are the corresponding eigenvectors of A.

Definition 17

A ∈ Rn×n is positive semidefinite if hTAh > 0, ∀h ∈ Rn;
such A is positive definite if hTAh > 0, ∀h ∈ Rn \ {0}

If A ∈ Rn×n is skew-symmetric (A = −AT ), then hTAh = (hTAh)T = −hTAh = 0, ∀h ∈ Rn.
Therefore, such A is positive semidefinite but NOT positive definite.

Notation.

• Sn+ := positive semidefinite matrices in Sn,

• Sn++ := positive definite matrices in Sn.

In fact, Sn++ = int(Sn+)

Theorem 18: Choleski Decomposition Theorem

Let A ∈ Sn. Then,

(a) A is positive semidefinite iff ∃L ∈ Rn×n lower triangular such that A = LLT

(b) A is positive definite iff ∃L ∈ Rn×n lower triangular and non-singular such that A =
LLT

For (b), L is non-singular makes sure there is no non-zero vector in the null space of L.
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15, September 2020
Note that Taylor’s Theorem (Theorem 10) cannot be completely generalized to functions f : Rn →
Rm with m > 2, even for r = 1.
However, we have

Theorem 19

Let U ⊆ Rn be an open set and f : U → Rm be C1 on U . Suppose for x, d ∈ Rn, [x, x +
d] ⊂ U . Then

f(x+ d)− f(x) =

∫ 1

0

Df(x+ αd)d (∂α)

A consequence of this result is obtained when DF () is Lipschitz continuous on U (in a neighbor-
hood of [x, x+ d]) suffices. Let L denote the Lipschitz constant. Then

‖Df(x)−Df(y)‖ 6 L‖x− y‖, ∀x, y ∈ U
Then, we have

‖f(x+ d)−f(x)−Df(x)d‖2

= ‖
∫ 1

0

[Df(x+ αd)−Df(x)]d (∂α)‖2

6
∫ 1

0

‖Df(x+ αd)−Df(x)‖2 ∗ ‖d‖2 (∂α)

Prove the inequality later. First norm above is an operator 2-norm, the second one is a 2-norm on Rn

6
∫ 1

0

L ∗ ‖d‖2 ∗ ‖d‖2α (∂α)

=
1

2
L ∗ ‖d‖22

So, if ‖d‖2 < ε , then the rror in this first-order estimate of f(x + d) is bounded above by 1
2
Lε2

(The estimate is f(x) +Df(x)d)

h :=

∫ 1

0

[Df(x+ αd)−Df(x)]d (∂α)

‖h‖22 = hTh = hT
∫ 1

0

[Df(x+ αd)−Df(x)]d (∂α)

=

∫ 1

0

hT [Df(x+ αd)−Df(x)]d (∂α)

6
∫ 1

0

‖h‖2‖[Df(x+ αd)−Df(x)]d‖2(∂α)

By Cauchy-Schwarz

=⇒ ‖h‖2 6
∫ 1

0

‖[Df(x+ αd)−Df(x)]d‖2(∂α)
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Note that we may replace f in Theorem 19 by Df r() (assuming f ∈ Cr+1) and apply the same
reasoning. Indeed, Theorem 19 can be very useful in the design and analysis of continuous opti-
mization algorithms.

Theorem 20: Inverse Function Theorem

Let U ⊆ Rn be open, f : U → Rn be C1, x ∈ U, det(∇f(x)) 6= 0. Then ∃ and open
neighborhood V of x in U and an open neighborhood W of f(x) such that

• f(V ) = W

• f has a local C1 inverse f−1 : W → V

• ∀y ∈ W , with x = f−1(y), we have Df−1(y) = [Df(x)]−1

In the above, if f is Cr, then ∃ such an f−1 ∈ Cr. Theorem 20 can be proved By utilizing
theorem 12 (in showing that the inverse is well-defined, i.e. one-to-one).

Theorem 21: Implicit Function Theorem

let h : Rn → Rp, h ∈ C1 in a neighborhood of x ∈ Rn where h(x) = 0. Suppoese h′(x) has
full row rank (rank(h′(x)) = p 6 n). Define a partition [B|N ] of columns of h′(x):

h′(x) =: [h′B(x)|h′N(x)]

where h′B(x) ∈ Rp×p, nonsingular, partition
x and x with respect to the same [B|N ]. Then, ∃ neighborhood UB of xB and UN of xN and
a C1 function f : UN → UB such that

• f(xN) = xB

• h
(
xB
xN

)
= 0⇔ xB = f(xN), ∀xB ∈ UB, xN ∈ UN

Moreover, f ′(xN) = −[h′B(x)]−1h′N(x)

Recall the very special case (e.g. equality constraints in a LP problem):

A ∈ Rp×n, rank(A) = p, given


Min cTx

Ax = b

x > 0

h(x) := Ax− b =⇒ h′(x) = A

xB = A−1B b− A−1B ANxN

xB = A−1B b− A−1B ANxN

f(xN) := A−1B b− A−1B ANxN

14



In this setting UB := Rp, UN := Rn−p

Lemma 22

Let U ⊆ Rn, V ⊆ Rm be both open sets f1 : U → Rm, f2 : V → Rp be differentiable on
U and V respectively such that f1(U) ⊆ V . Then f2 ◦ f1 is differentiable on U and

D(f2 ◦ f1)(x) = Df2(f1(x)) ◦Df1(x),∀x ∈ U

Example: Line Search, directional derivative

Suppose f : Rn → R differentiable on Rn is given also given are a current point x ∈ Rn

and a ”search direction ” d ∈ Rn.
We define φ : R→ R by φ(α) := f(x+ αd), then

φ′(α) =< ∇f(x+ αd), d >

. If f is C2, then φ′′(α) = dT∇2f(x+ αd)d. Note

• φ′(0) =< ∇f(x, d) >

• φ′′(0) = dT∇2f(x)d

Corollary 23

Suppose h and x are as in Theorem 21 (Implicit Function Theorem). Also assume Z ∈
Rn×q(q 6 n− p) such that h′(x)z = 0. Then there exists a neighborhood U of 0 ∈ Rq and
a C1 function t : U → Rn such t hat

• t(0) = 0

• t′(0) = 0

• h(x+ zdz + t(dz)) = 0, ∀dz ∈ U

So, the function t gives us a way of moving away from x (a solution of h(x) = 0) in a way that
keeps feasible with respect to h(x) = 0.

Proof. Let h, x and z be as in the assumptions. Using the partition [B|N ], define

z =:

[
zB
zN

]
(recallh′(x) = [h′B(x)|h′N(x)])

let
U := {dz ∈ Rq : (xN + zNdz) ∈ UN}

Define t by
tN(dz) := 0, tB(dz) := f(xN + zNdz)− xB − zBdz

15



Thus,

h(x+ zdz + t(dz)) = h

[
xB + zBdz + f(xN + zNdz)− xB − zBdz

xN + zNdz + 0

]
= h

[
f(xN + zNdZ)
xN + zNdz

]
= 0 By theorem 21

Also,

t(0) = f(xN)− xB = 0

t′N(0) = 0

t′B(0) = f ′(xN)zN − zB (By chain rule 22)
= −[h′B(x)]−1h′N(x)zN − zB
= [h′B(x)]−1 [−h′N(x)zN − h′B(x)zB]︸ ︷︷ ︸

−h′(x)z=0

= 0

Question: What does the size of the neighborhood depend on? Note: In LPs t(dz) := 0∀dz ∈ Rq

Corollary 24

Assume h and x are as described in Theorem 21. Let d ∈ Rn such that h′(x)d = 0. Then
there exists λ > 0 and a C1 arc(directed curve) t̂ with the properties

• t̂(0) = x

• h(t̂(λ)) = 0, ∀ ∈ [0, λ)

• t̂′(0) = d

Proof. In the statement of Corollary 23, plug in z := d and then using the resulting t, t̂(λ) :=
x+ λd+ t(λ) where think λ as ”dz” and d as z.

16



17, September 2020
If h is affine, then h(x) = Ax− b for some given A ∈ Rp×n, b ∈ Rp. Let y ∈ Rp be given then

h−1(y) = {x ∈ Rn : Ax = y + b}

Theorem 25: Sard’s Theorem, Morse-Sard Theorem

Let h : Rn → Rp, where p 6 n, h ∈ Cr with r > n − p + 1. Then the p-dimensional
Lebesgue measure of

{y ∈ Rp : y is not a regular value} is zero

Note. Morse[1939] proved the p = 1 case, Sard[1942] proved the generalization above.
Smale[1965] proved an infinite dimensional version.
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2 Unconstrained Continuous Optimization

(P ) inf f(x) f : Rn → R
s.t. g(x) 6 0 g : Rn → Rm

h(x) = 0 h : Rn → Rp

S := {x ∈ Rn : g(x) 6 0, h(x) = 0}
Here, we assume S = Rn

Theorem 26: First-order necessary conditions

Let f : Rn → R be C1 and S = Rn. Then, x ∈ Rn is a local minimum for (P )⇒ f ′(x) = 0
x is a stationary point of f

Proof. Suppose f : Rn → R is C1, S = Rn, and x ∈ Rn is a local minimizer for (P ).
For the sake of seeking a contradiction, suppose f ′(x) 6= 0. Then, ∃d ∈ Rn such that 〈f ′(x), d〉 <
0(e.g. let A ∈ Sn++, and set d := −Af ′(x)). Consider φ : R→ R, φ(α) := f(x+ αd). Then,

φ′(0) = 〈f ′(x), d〉 < 0

Thus, for all sufficiently small, positive α, f(x+αd) < f(x). Therefore, x is not a local minimizer
for (P ).

Optimality conditions are widely used in algorithm design. E.g. for many software ‖∇f(x(k))‖ <
ε is a part of the stopping criteria.

Definition 27

d ∈ Rn is a descent direction for f at x ∈ Rn, if 〈f ′(x), d〉 < 0.
d ∈ Rn is a improving direction for f at x ∈ Rn, if f(x + αd) < f(x), ∀α > 0 and suffi-
ciently small.

Theorem 28: Second-Order necessary conditions

Let f : Rn → R be C2 and S = Rn. If x ∈ Rn a local minimizer for (P ), then f ′(x) = 0
and ∇2f(x) ∈ Sn+

Proof. Suppose x is a local minimizer for (P ). Since f is C2 by theorem 27, f ′(x) = 0. Suppose
for the sake of contradiction that ∇2f(x) /∈ Sn+. Since f ∈ C2, ∇2f(x) ∈ Sn. So, ∃d ∈ Rn such

that dT∇2f(x)d < 0. Define φ : R → R by φ(α) := f(x + αd). THen φ′(0) =

〈
∇f(x)︸ ︷︷ ︸

=0

, d

〉
=

0, φ′′(0) = dT∇2f(x)d < 0
Therefore, for all ε > 0 and sufficiently small f(x + εd) < f(x) which contradicts the fact that x
is a local minimizer for (P ).
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Definition 29

d ∈ Rn is called a direction of negative curvature for f at x if dT∇2f(x)d < 0.

Theorem 30: Taylor’s Theorem– implicit remainder version

Let U ⊆ Rn be open, f : U → R be Cr on U . Let x, d ∈ Rn, assume [x, x+ d] ⊂ U . Then,

f(x+ d) = f(x) +
r∑

k=1

1

k!
Dkf(x) [d, . . . , d]︸ ︷︷ ︸

k times

+R(x, d)

where R(x, ∗) : Rn → R such that

lim
h→0

R(x, h)

‖h‖r
= 0

Theorem 31: Second order sufficient conditions

Let f : Rn → R, f ∈ C2, S = Rn. Let x ∈ Rn. If f ′(x) = 0 and ∇2f(x) ∈ Sn++, then x is
a strict local minimizer for (P ).

Proof. let x ∈ Rn such that f ′(x) = 0 and ∇2f(x) ∈ Sn++,

δ︸︷︷︸
λn(∇2f(x))

:= min
{
dT∇2f(x)d : ‖d‖2 = 1

}
> 0

By theorem 30, ∀d ∈ Rn, ‖d‖2 = 1, and α > 0 and small enough, we have

f(x+ αd) = f(x) + α 〈∇f(x), d〉︸ ︷︷ ︸
=0

+
α2

2
dT∇2f(x)d+ o(α2) > f(x) +

δ

2
α2 + o(α2)

Choose a neighborhood U of x such that δ
2
α2 > |o(α2)|. Then ∀x ∈ U \ {x}, f(x) > f(x).

THerefore, x is a strict local minimizer for (P ).

Proposition 32

Let f : Rn → R be C2 and consider f̃(x) := f(x) + cTx, where c ∈ Rn is given. Then for
almost all c ∈ Rn,
f̃ ′(x) = 0⇒ ∇2f(x) is nonsingular.

Proof. Apply Sard’s theorem (theorem 25) to g(x) := f ′(x), with r := 1 and p := n
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22, September 2020

Definition 33

f : Rn → R ∪ {+∞} is convex if epi(f) :=

{(
µ
x

)
∈ R⊕ Rn : f(x) 6 µ

}
is convex

Theorem 34

let f : Rn → R be a convex function and S := Rn. Then every local minimizer of (P ) is
a global minimizer of (P ). If in addition, f is differentiable on Rn, then every stationary
point of f is a global minimzer of (P ).
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2.1 Unconstrained Continuous Optimization and Affine Subspace Constraints
One of the most popular form of continuous optimization problems is

(P ) =

{
inf f(x), A ∈ Rp×n, b ∈ Rp

s.t. Ax = b

At a first glance (and strictly speaking) (P ) does not belong to the class of Unconstrained contin-
uous optimizating problems.
We may assume rank(A) = p; otherwise

• We easily prove Ax = b has no solution =⇒ (P ) is infeasible

• Or we easily find all redundant equations and x ∈ Rn s.t. Ax = b

So, rank(A) = p. Find a basis B of A and form the partitions

[AB|AN ] := A,

[
xB
xN

]
:= x

Then
Ax = b⇔ xB = A−1B b− A−1B ANxN

THerefore, for every x ∈ S,

f(x) = f(

(
A−1B b− A−1B ANxN

xN

)
)

We define f̃ : Rn−p → R by

f̃(Xn) := f

(
A−1B − A

−1
B ANxN

xN

)
Thus, (P ) is equivalent to

(P̃ ) inf f̃(x), x ∈ Rn−p

any algorithm from any starting point x0 ∈ Rn−p.
Another equivalent approach:
Let x ∈ S(i.e., Ax = b). Then,

S = {x+ u : u ∈ Null(A)}

Let columns of Z ∈ Rn×(n−p) form a basis for Null(A). Then (P ) is also equivalent to

inf f̂(v), v ∈ Rn−p

where f̂ : Rn−p → R is defined as f̂(v) = f(x + Zv) In applications, with either of these two
approaches, we must be very careful about exploiting sparsity as well as making sure we can
efficitently and accurately evalueate all ingredients of the algorithms we choose to use on such
problems.
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2.2 A small preview and dipping our toes into some applciations
Some other ways of dealing with constrained optimization problems using Unconstrained opti-
mization algorithms:

1. Form the Lagrangian for (P ):

l(x, v) := f(x) + vT (b− Ax)

where v ∈ Rn represents the Lagrange multipliers (dual variables corresponding to the con-
straints)

2. Use a penalty function (penalizing any violation of the constraints):

ρ(x, η) := f(x) + η||Ax− b||αβ

where β, α ∈ R suitably defined, η ∈ R++ is a penalty parameter (think about spline regres-
sion, smoother, etc)

In compressed sensing and related applications one seeks a solution of

inf{f(x) + η||x||0: Ax = b}

where ||x||0:= number of nonzero entries of x.
As an approximation, many researchers and pratitioners work with

inf{f(x) + η1||x||1+η2||Ax = b||αx}

where η1, η2, α ∈ R are usually fixed.
We can generalize such approaches to matrix variables. Very many interesint applications in Ma-
chine Learning, AI and modern Data Science. In many of these applications, we want to find a
low-rank solution.

E.g. min{rank(x) : A(x) = b}

where A : Rm×n → Rp linear, b ∈ Rp both A, b are given.
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2.2.1 Prototype lowrank approximation problem

Given A ∈ Rm×n
+ (both m&n are huge), we want to find matrices u ∈ Rm×k

+ , V ∈ Rn×k
+ such taht

A = UV T and k is as small as possible.
If we do not requireU and V to be nonnegative, the problem is solved by Singular Value Decomposition (SVD)
and optimal k is the rank of A

A = Q1DQ
T
2

where Q1 ∈ Rm×n, Q2 ∈ Rn×n are orthogonal and D ∈ Rm×n diagonal. Let’s assume m 6 n ,
then

D =


σ1(A) 0 . . . 0 0 . . . 0

0 σ2(A) . . . 0 0 . . . 0
. . . . . . . . . . . . 0 . . . 0
0 0 . . . σm(A) 0 . . . 0


where σ1(A) > σ2(A) > . . . > σm(A) > 0 are the singular values of A.

Theorem 35

Every A ∈ Rm×n has a SVD. Requiring U, V to be nonnegative, makes the problem hard.
Let p be an upper bound on k (taking p as (nm + 1) suffices, but in pratice, better guesses
can help).
Suppose our guess for the min. nonnegative rank of A is p.
Then let U ∈ Rm×p and V ∈ Rn×p denote the variable matrtices and consider

inf f(U, V ) := η1||A− UV T ||+η2||U−||+η3||V−||

where η1, η2, η3 ∈ R+ are parameters that we can fixe, and U− denotes the Rm×p matrix
with obnly negative entries of U .

2.3 Classical Algorithmic Approaches to Unconstrained Continuous Option
1. Search direction +line search strategies

Pick a search direction d(k)

Pick a step-size αk > 0
x(k+1) := x(k) + αkd

(k)

Repeat

2. Trust-Region strategies
Use the information gathered about f so far and construct an approximation (”model”) mk

of the function f .
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Then solve

min mk(x
(k) + d)

s.t. d ∈ Trust Region (around x(k))

x(k)∈R
n is our current iterate. Let Bk denote ∇2f(x(k)) or an approximation of it. choose σk > 0,

and solve

min mk(d) := f(x(k)) +
〈
∇f(x(k)), d

〉
+

1

2
dTBkd

s.t. ||d||26 Sk

Let d denotes an optimal solution of this trust-region subproblem. If x(k) + d satisfies certain
criteria, then set x(k+1) := x(k) + d; otherwise either modify σk, or the step size, . . .
Depending on how well we did with teh latest σk choose a suitable value for σK+1 and repeat.
(Size of the Trust-Region is being adjusted.)

2.4 Search direction +line search strategies
• d(k) := −∇f(x(k)), steepest-descent direction

• any d(k) with
〈
∇f(x(k)), d(k)

〉
< 0

• d(k) := −[∇2f(x(k))]−1∇f(x(K)), Newton direction Assuming∇2f(x(k)) ∈ Sn++

For convex optimization problems and also near local minimizers of nonvoncex problems we want
αk ≈ 1 with thise Newton diredtion −→ Superlinear or quadratic convergence.
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1. Exact Line Search
Find α > 0 such taht

φ(α) := f(x(k) + αd(d))

is minimized. Typically not practical

2. Inexact Line Search
Armijo-Goldstein[1966-67] conditions, (or Wolfe[1969] conditions)
Choose α > 0 so that

f(x(k) + αd(k)) 6 f(x(k)) + c1 ∗ α
〈
∇f(x(k)), d(k)

〉
sufficiently good rate for the decrease in the objective function and〈

∇f(x(k) + αd(k)), d(k)
〉
> c2

〈
∇f(x(k)), d(k)

〉
(step size should not be too small)
where constants c1, c2 satisfy 0 < c1 < c2 < 1

3. Strong Wolfe Conditions

f(x(k) + αd(k)) 6 f(x(k)) + c1
〈
∇f(x(k)), d(k)

〉
and

|
〈
∇f(x(k) + αd(k)), d(k)

〉
|6 c2|

〈
∇f(x(k)), d(k)

〉
|

The second condition disallows |
〈
∇f(x(k) + αd(k)), d(k)

〉
| being too large and positive.

Lemma 36

Let f : Rn → R be C1, and d ∈ Rn be a descent direction at x ∈ Rn for f . Suppose f is
bounded from below on the ray {x+αd : α ∈ R+}. Then ∀0 < c1 < c2 < 1, ∃ step lengths
α > 0 satisfying Armijo-Goldstein-Wolfe as well as strong Wolfe conditions.
With φ(α) := f(x+ αd), 0 < c1 < c2 < 1, choose α > 0 such that

Armijo-Goldstein-Wolfe =

{
φ(α) 6 φ(0) + c1αφ

′(0)

φ′(α) > c2φ
′(0)

Strong Wolfe =

{
φ(α) 6 φ(0) + c1αφ

′(0)

|φ′(α)|6 c2|φ′(0)|

Proof. Suppose the stated assumptions hold. We adopt the above mentioned notation with φ.
Then φ(α) is bounded from below on {α ∈ R : α > 0}. Since c1 ∈ (0, 1) and

φ′(0) = 〈∇f(x), d〉 < 0d is a descent direction for f
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the ray {φ(0) + (c1φ
′(0))α : α > 0} is unbounded below and therefore, intersects the graph of φ at

least once for α > 0. Let α > 0 denote the smallest value of α which the ray intersects the graph
of φ. Then,

φ(α) = φ(0) + αc1φ
′(0) . . . (∗)

Thus, the first condition of A-G-W holds on (0, α]
By the mean value theorem, ∃α̂ ∈ (0, x) such that

φ(α)− φ(0) = αφ′(α̂)

Therefore,
φ(α)− φ(0) = αφ′(α̂) = αc1φ

′(0) > c2αφ
′(0)

by (∗) and c2 > c1&φ
′(0) > 0

Thus, A-G-W conditions strictly hold at α̂. Since φ′(α̂) < 0, strong Wolfe conditions also hold at
α̂ as well as in a sufficiently small neighborhood of α̂

Read about Backtracking Line Search in the textbook.
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29, Sept 2020

2.5 Convergence Properties of Descent Algorithms
Let f : Rn → R. FOr every β ∈ R,

• {x ∈ Rn : f(x) 6 β} is called a sublevel set of f (some literature use level set)

• {x ∈ Rn : f(x) = β} is called a level set of f (some literature use contour of f )

Consider a descent algorithm:
Start with x(0) ∈ Rn, at each iteration k, choose d(k) ∈ Rn s.t.

〈
∇f(x(k)), d(k)

〉
< 0 and choose

αk > 0, x(k+1) := x(k) + αkd
(k)

Recall the geometric factL

∀u, v ∈ Rn, 〈u, v〉 = ||u||2||v||2cos(θ)

where θ := angle between u and v
Define

θk := arccos

(
−

〈
∇f(x(k)), d(k)

〉
||∇f(x(k))||2||d(k)||2

)
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Theorem 37: Zoutendijk[1970], Wolfe[1969]

Let f : Rn → R bet bounded from below, x(0) ∈ Rn and f be C1 on

N := nbhd{x ∈ Rn : f(x) 6 f(x(0))}

Asuume ∇f is Lipschitz continuous on N with Lipschitz constant L ∈ R++. Thenm ev-
ery descent algorithm following Armijo-Goldstein-Wolfe consditions for stepsize selection
satisfies:

∞∑
k=0

cos2θk||∇f(x(k))||22<∞

Proof. Suppose the assumptions in the statement hold. For every iteration k, due to the second
A-G-W condition, we have 〈

∇f(x(k+1)), d(k)
〉
> c2

〈
∇f(x(k)), d(k)

〉
=⇒

〈
∇f(x(k+1))−∇f(x(k)), d(k)

〉
> (c2 − 1)

〈
∇f(x(k)), d(k)

〉
(eq.2)

Due to the fact that we are working with a descent algorithm (
〈
∇f(x(k+1)), d(k)

〉
< 0,∀k) and the

first condition of A-G-W, {x(k) ⊂ N}. Since ∇f is Lipschitz cont on N with Lipschitz constant
L, 〈

∇f(x(k+1))−∇f(x(k)), d(k)
〉

6 ||∇f(x(k+1))−∇f(x(k))||2||d(k)||2
6 αkL||d(k)||22 (eq.3)

=⇒ αk >
(c2 − 1)

〈
∇f(x(k)), d(k)

〉
L||d(k)||22

Substituting this lower bound on αk into the first A-G-W condition, we obtain

f(x(k) + αkd
(k)) 6 f(x(k))−

c1(c2 − 1)
〈
∇f(x(k)), d(k)

〉2
L||d(k)||22

⇔ f(x(k+1)) 6 f(x(k))−
(
c1(1− c2)

L

)
cos2θk||∇f(x(k))||22

Applying the above to pairs of consecutive iterates, we obtain:

f(x(k+1)) 6 f(x(0))− c1(1− c2)
L

k∑
l=0

cos2θl||∇f(x(l))||22

Since f is bounded from below, [f(x(0))− f(x(k))] is bounded from above, and

c1(1− c2)
L

∞∑
k=0

cos2θk||∇f(x(k))||22<∞
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A consequence of Theorem 37:

∞∑
k

cos2θk||∇f(x(k))||22<∞

=⇒ cos2θk||∇f(x(k))||22→ 0 as k →∞

Therefore, if cos2θk > δ > 0, ∀k ∈ Z+, then limk→∞||∇f(x(k))||2→ 0 ( In some places, includ-
ing the textbook, this criterion is used to conclude that Steepest-Descent Algorithm is ”globally
convergent”)

2.6 A General Conversation about Convergence
Ex:

f : R→ R, f(x) =
1

4
x4 − 5x

Then f is convex, global minimizer is unique and attained at x = 3
√

5 (irrational, even thought
the data are integers)
=⇒ We cannot expect finite algorithm in the worst case (machine has finite precisions)
We will generate a sequence x(1), x(2), . . . And we hope for

• ∀x(0), x(k) → x a global minimizer

• ∀x(0), x(k) → x a local minimizer

• ∀x(0) all limit points of {x(k)} are global (local) minimizers or f(x(k))→ −∞

• ∀x(0) all limit points of {x(k)} satisfy second-order necessary conditions

• ∀x(0) all limit points of {x(k)} satisfy first-order necessary conditions

• ∀x(0), limk→∞||∇f(x(k))||= 0

Locally, replace ”∀x(0) ∈ Rn” by x(0) ∈ B(x, η) and hope that second-order sufficient condition
holds.

How fast does it converge? εk := ||x(k) − x||
Ex:

• εk := (0.1)k → 10−1, 10−2, . . . linear converge

• εk := (0.9)k → 0.9, 0.82, 0.0729, . . . linear converge

• εk := (0.1)2
k → 10−2, 10−4, 10−8, . . . quadratic converge

• εk := (0.9)2
k → 0.81, 0.65, 0.43, 0.185, 0.034, . . . quadratic converge
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• εk := (0.1)3
k → . . . cubic converge

Definition 38

If ε↘ 0, and εk+1 6 β (εk)
p for some p > 1 and β(β < 1 if p = 1), and for all sufficiently

large k, then we say εk → 0 with Q-order at least p. If εk ↘ 0, and εk+1

εk
→ 0, as k → ∞

then the convergence is superlinear.

• Q-linear: Q-order 1

• Q-quadratic: Q-order 2

e.g.:εk = ( 1
k
)k, k ∈ Z++, then εk ↘ 0 Q-superlinearly, but it does not have Q-order p > 1

Given a sequence {εk} ⊂ R+, let ηi := sup{εk : k > i}. Then

lim
k→∞

sup{εk} := lim
i→∞
{ηi}

Definition 39: I

εk ↘ 0, and limk→∞ sup{ε
1

qk

k } < 1,∀0 < q < p, p > 1, then εk → 0 with R-order (at least
) p.

This is the same as
lim
k→∞

sup{ 1

qk
log(εk)} < 0

Proposition 40

1. If x(k) → x with Q-order p (R-order p) so does {x(k+l)} for all xied l ∈ Z+

2. If εk ↘ 0 with Q-order p and 0 < ηk 6 εk,∀k ∈ Z++ then ηk ↘ 0 with R-order p
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2.7 Fast Local Convergence of Newton’s Method
This goes to Kantorovich. In addition to his funcdational work on the convergence theory of New-
ton’s Method, Kantorovich also made significant contributions to functional analysis and operation
theory.

Lemma 41: L

t A,B ∈ Rn×n, A nonsingular, ||A−1||26 γ and ||A − B||26 1
3γ

. Then, B is nonsingular
and ||B−1||26 3γ

2

Proof. A,B as above, then

B = A− (A−B) = A[I − A−1(A−B)]

, and

||A−1(A−B)||26 ||A−1||2||A−B||26 γ
1

3γ
=

1

3

If C ∈ Rn×n nonsingular such that ||C||26 1
3

then (I −C) is invertible and (I −C)−1 = I +C +
C2 + . . . =

∑∞
k=0C

k

=⇒ ||(I − C)−1||26
∞∑
k=0

(
1

3
)k =

1

2/3
=

3

2

Then, C := A−1(A−B), (then B = A(I − C)), B is invertible

B−1 = (I − C)−1A−1

and
||B−1||26 ||(I − C)−1||2||A−1||26

3

2
γ

Lemma 42: L

t g : Rn → Rn, g ∈ C1 and ∇g ∈ Lip(L) on some open and convex set D ⊆ Rn. Then

||g(y)− g(x)−∇g(x)(y − x)||26
L

2
||y − x||22,∀x, y ∈ D

Proof. We already proved this as a part of THM19
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Newton’s Method x(0) ∈ Rn, f : Rn → R, f ∈ C2

∀k ∈ Z++ :

{
d(k) := −[∇2f(x(k))]−1∇f(x(k))

x(k+1) := x(k) + d(k)

Theorem 43

Let f : Rn → R, f ∈ C2, x(0) ∈ Rn, L > 1.
Assme ∇f(x) = 0, ∇2f(x) is nonsingular, ∇2f ∈ Lip(L) in an open neighbor-
hood of x. Then exists an open neighborhood N1 of x such that ∀x(0) ∈ N1, New-
ton’s Method converges to x linearly and the method is locally Q-quadratically convergent
(there exists an open neighborhood N2 ⊆ N1 of x such that ∀x(0) ∈ N2, ||x(k+1) − x||26
constant ||x(k) − x||22,∀k ∈ Z+)

Moreover, ||∇f(x(k))|| also converges to zero in N1, locally Q-quadratically. (∀x(0) ∈
N2, ||∇f(x(k+1))||26 constant ||∇f(x(k))||22, ∀k ∈ Z+)

Proof. Suppose assumptions hold.

σ = ||[∇2f(x)]−1||2, choose η > 0, such that B := B(x, η) = {x ∈ Rn : ||x− x||2< η}

∇2f ∈ Lip(L) on B and η 6
1

3σl

Then ∀x ∈ B
||∇2f(x)−∇2f(x)||26 L||x− x||26 Lη 6

1

3σ
. . . eq.4

Therefore, by Lemma 41 (with A := ∇2f(x), B := ∇2f(x), x ∈ B), ∇2f(x) is nonsingular
∀x ∈ B, thus, Newton’s Method is well-defined for {x(k)} ⊆ B
We prove by induction on k.
let x(0) ∈ B(in general, (k) ∈ B), then

||x(k+1) − x||2 = ||x(k) − [∇2f(x(k))]−1∇f(x(k))− x||2
= ||[∇2f(x(k))]−1[0−∇f(x(k))−∇2f(x(k))(x− x(k))]||2
6 ||[∇2f(x(k))]−1||2||[∇f(x)−∇f(x(k))−∇2f(x(k))(x− x(k))]||2

6
3γ

2
∗ L

2
||x(k) − x||22=

3γL

4
||x(k) − x||22 by Lemma 41,42

Also, if x(k) ∈ B, then we know ||x(k) − x||226 1
3σL
||x(k) − x||2

||x(k+1) − x||2 6
3σL

4

1

3σL
||x(k) − x||2

=
1

4
||x(k) − x||2← linear
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Next, d := x(k+1) − x(k), then

||∇f(x(k+1))||2 = ||∇f(x(k+1))−∇f(x(k))−∇2f(x(k))d||2 d is defined by Newton

6
1

2
||d||22

=
L

2
||[∇2f(x(k))]−1∇f(x(k))||22 eq 5

6
L

2
||[∇2f(x(k))]−1||22||∇f(x(k))||22

6
9σ2L

8
||∇f(x(k))||22 by x(k) ∈ B, eq5 and lemma 41

Now, we proved,

∀x(0) ∈ B, ||x(1) − x||26
1

4
||x(0) − x||2

x(1) ∈ B, ||x(1) − x||26
3σL

4
||x(0) − x||22

||∇f(x(1))||26
9σ2L

8
||∇f(x(0))||22

By induction on k, we estabilish the desired equations on x(k) from (eq.5)

||∇f(x(k+1))||2 6
L

2
||[∇2f(x(k))]−1∇f(x(k))||22

=
L

2
||x(k+1) − x(k)||2||[∇2f(x(k))]−1∇f(x(k))||2

6
L

2
∗ 2

3σL
∗ 3σ

2
||∇f(x(k))||2 by x(k+1), x(k) ∈ B, lemma 41

=
1

2
||∇f(x(k))||2

Therefore, ∀x(0) ∈ B

||x(k) − x||2→ 0 Q-linearly, and locally Q-quadratically

||∇f(x(k))||2→ 0 Q-linearly, and locally Q-quadratically

Note this proof can be applied to nonlinear equations.
g : Rn → Rn, g ∈ C1 an open and convex set D ⊆ Rn

∃x ∈ D, s/t g(x) = 0, ∇g(x) is nonsingular
∇g ∈ Lip(L) on D

x(0) ∈ N ⊆ D

x(k+1) := x(k) − [∇g(x(k))]−1g(x(k)),∀k ∈ Z++
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2.7.1 Potential Problems with Newton’s Method

1. Fails if ∇2f(x(k)) is singular (or very ill-conditioned)

2. x(k+1) is not the local minimizer of the local quadratic model f̃ for f if ∇2f(x(k)) is not
postive definite (f̃ is an approxiamtetion model at x(k)) using gradient and Hessian

3. Not globally convergent in general

4. May not even provide descent in general.

Possible Remedies:

• To address (1) and (2), modify ∇2f(x(k)), if necessary, to a ”nearby” systemtric positive
definite matrix Bk

• Together with the above remedy, use Armijos-Goldstein-Wolfe or strong Wolfe based line
searches to address (3) and (4)

• Still some advantages

1. evalueate Hessians at every iteration

2. We must provide n-by-n linear systems of equations in every iterations

For some problems, evaluating the Hessian is very largely extra work compared to f ,∇f .
Also, in some cases Automake differential via a smalle number of∇f() evaluataions suffice(chapter
8).
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2.8 Quasi-Newton Method
Consider Bk ∈ Sn++, then −Bk∇f(x(k)) is a descent direction for f at x(k).
Consider a quadratic model for f (new x(k))

f̃(d) := f(x(k)) +
〈
∇f(x(k)), d

〉
+

1

2
dTBkd

Since Bk ∈ Sn++, f̃ has a unique global minimizer at

d = −B−1k ∇f(x(k))

Now we can do a line search and full x(k+1), then we have f(x(k+1))&∇f(x(k+1))
How do we find Bk+1?

Wish List for Bk+1

• Bk+1 ∈ Sn++

• Bk+1 should incorporate newly discovered information about∇2f

s(k) := x(k+1) − x(k) (primnal step at iteration k)

y(k) := ∇f(x(k+1))−∇f(x(k)) (dual step at iteration k)
Magical Soltion:BFGS :

Bk+1 = Bk −
1

s(k)
T
B(k)s(k)

∗B(k)s(k)s(k)
T
B(k) +

y(k)y(k)
T

y(k)
T
s(k)

October 06,20 Note: By Theorem 19, we have

y(k) =

[∫ 1

0

∇2f(x(k) + αs(k))∂α

]
s(k)

i.e., y(k) tells us the behavior of the ”average” Hessian (along the line segment [x(k), x(k+1)]) on the
subspace span {s(k)}
so, we want Bk+1 ∈ Rn×n such that

y(k) = Bk+1s
(k) secant equation

Be enforcing this equation on Bk+1, we can incorporate new ”secant” information about ∇2f If
Bk+1 � 0 satisfies the secant equation, then〈

y(k), s(k)
〉

=
〈
Bk+1s

(k), s(k)
〉
> 0 since s(k) 6= 0, Bk+1 � 0

Notice that
〈
y(k), s(k)

〉
is positively proportional to:〈

y(k), s(k)
〉

=
〈
∇f(x(k+1)), d(k)

〉
−
〈
∇f(x(k)), d(k)

〉
= φ′(αk)− φ′(0) > 0 if we use A-G-W or strong Wolfe based line-search

The condition 〈
y(k), s(k)

〉
> 0

is called the curvature condition.
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How do we ensure Bk+1 is clsoe to Bk?

Solve the optimization problem

(P1) Min ||B −H||F
s.t. Bs = y, B ∈ Rn×n

for a fixed H ∈ Rn×n, e.g. H := Bk, and fixed y, s ∈ Rn.
Here,

||A||F :=

(
n∑
i=1

n∑
j=1

A2
ij

) 1
2

= [Tr(ATA)]
1
2 = [vec(A)Tvec(A)]

1
2

where |||̇|F represents Frobenius norm.
(P1) always has a unique solution B

Z := B −H

Note Bs = y ⇔ Bs−Hs = y −Hs =: r

With this change of variable and definitions, (P1) is equivalent to

(P2) Min ||Z||F
s.t. Zs = r

Suppose s 6= 0 (i.e., we moved!). Let Q ∈ Rn×n be orthogonal such that Qs = βe1, β 6= 0,
z̃ := ZQT . Then (P2) is equivalent to

(P3) Min ||z̃||F

z̃e1 =
1

β
r

=⇒ z̃ =
[
1
β
r 0 0 . . . 0

]
Using our definitions, we compute:

z = z̃Q =
1

β
reT1Q =

1

β2
rsTQTQ =

1

β2
rsT

zs = r =⇒ 1

β2
r(sT s) = r =⇒ sT s = β2 unless r = 0, in which case z = 0

Therefore, the unique optimal solution of (P1) is :

z =
rsT

sT s
=

1

sT s
(y −Hs)sT
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Theorem 44: (Broyden[1965])

Let s, y ∈ Rn, s 6= 0, H ∈ Rn×n be given. Then the unique optimal solution of (P1) is

B := H +
1

sT s
(y −Hs)sT ← Good Broyden

Setting v := HTy and

B := H +
1

vT s
(y −Hs)vT ← Bad Broyden

leads to ”Broyden’s Second Method”

Let us modify problem (P1) by requireing B ∈ Sn (and H ∈ Sn in the data).
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Consider

Min ||B −H||F
Bs = y

B = BT

B ∈ Rn×n

Theorem 45: Powell[1970]

The unique optimal solution (s 6= 0) of the above problem is given by

B := H +
1

sT s

[
(y −Hs)sT + s(y −Hs)T − (y −Hs)T sssT

]
In the above formula, B may not be positive definite even if the curvature condition is
satisfied (yT s > 0) and H is symmetric positive definite.
We want B to be systemtric, positive definite, provided H � 0 and yT s > 0.
We consider solving

(Pw) Min ||W
1
2 (B −H)W

1
2 ||F

s.t.Bs = y

B ∈ Sn

where W :=

[∫ 1

0

∇2f(x(k) + tαkd
(k))∂t

]−1

but any W ∈ Sn++ satisfying Wy(k) = s(k) works.

For every H ∈ Sn++, y, s ∈ Rn such that yT s > 0 and W ∈ Sn++ such that Wy(k) = s(k),
the unique solution of (Pw) is

B := (I − ysT

yT s
)H(I − syT

yT s
) +

yyT

yT s

Morover, B ∈ Sn++

Note that

B−1 = H−1 − H−1yyTH−1

yTH−1y
+
ssT

yT s
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Next, consider

(PBFGS
w ) Min ||W− 1

2 (B −H)W− 1
2 ||F

s.t. By = s

B ∈ Sn

Theorem 46

For every H ∈ Sn++, y, s ∈ Rn such that yT s > 0 and W ∈ Sn++ such thaty Wy(k) = s(k),
the unique solution of (PBFGS

W ) is

B := (I − syT

yT s
)H(I − ysT

yT s
) +

ssT

yT s

Moreover, B ∈ Sn++

To approximate the Hessian we invert the above formula and obtain (in terms of H as an
approximation to the Hessian):

H − HssTH

sTHs
+
yyT

yT s
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October 08,2020
P := {B ∈ Sn : Bs = y, B � 0}

D := {B ∈ Sn : By = s, B � 0}

with

W :=

[∫ 1

0

∇2f(x(k) + tαkd
(k))∂t

]−1
DFP: Solve

Min ||W ( 1
2
)(B −H)W ( 1

2
)||F

s.t.Bs = y

B ∈ Sn

BFGS: Solve

Min ||W− 1
2 (B −H−1)W− 1

2 ||
s.t. By = s

B ∈ Sn

then the inverse of the solution is the BFGS estimate of the Hessian∇2f
P and D are convex sets

u ∈ P ⇔ u−1 ∈ D

Therefore, ∀u ∈ P, ∀v ∈ D, ∀λ ∈ [0, 1], [λu+ (1− λ)v−1] ∈ P and [λu−1 + (1− λ)v] ∈ D.

Broyden’s convex class {λBDFP + (1− λ)BBFGS}

40



2.8.1 Convergence Results

1. Global Convergence

(a) Powell[1972]: If f is strictly convex (f is convex and f(λu + (1 − λ)v) < λf(u) +
(1− λ)f(v),∀λ ∈ (0, 1) and u 6= v),

{x ∈ Rn : f(x) 6 f(x(0))} is compact,

f ∈ C2, and exact line search is used then Quasi-Newton methjod based on DFP con-
verges.

(b) Dixon[1972]: If exact line search is used then DFP, BFGS (and many others) all give
identical sequence of iterates {x(k)} for the same (x(0), B0).

(c) Powell[1976] same assumptions on f as in (a), but line-search satisfying A-G-W con-
ditions imply global convergence of BFGS.

(d) Byrd, Nocedal and Yuan[1987]: Result of (3) holds for all of Broyden’s convex class,
except DFP(i.e.λ ∈ [0, 1))

(e) it seems that DFP is worse than BFGS in practice

2. Local Convergence: Assume

f ∈ C2, x(k) → x,∇f(x(k))→ 0,∇2f(x) ∈ Sn++

(a) Powell[1971]: With exact line search, DFP, BFGS both attain Q-superlinear conver-
gence.

(b) Broyden, Dennis, More[1973]: If we use αk = 1, ∀k ∈ Z+ and for suitably small
ε > 0, σ > 0, we have ||x(0) − x||6 ε and ||B0 −∇2f(x)||6 σ then

x(k) → x Q-superlinearly

(c) Powerll[1976]: Assumptions as in 1.(a), BFGS with αk := 1 chosen whenever possible
(i.e. , whenever αk := 1 satisfies A-G-W conditions), attains Q-superlinear conver-
gence (note: no assumptions on B0)

(d) Byrd, Nocedal and Yuan[1987]:2.(c) applies to every update in Broyden’s Convex
Class, except DFP.
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2.8.2 Implementation of Quasi-Newton Methods

The most popular and the most successful (generally speaking) Quasi-Newton algorithms belong
to the class of

Limited Memory BFGS (L-BFGS)

which only keep the most recent r updates (s(k−r), y(k−r)), (s(k−r+1), y(k−r+1)), . . . , (s(k), y(k)).
Typically r ∈ {10, 11, . . . 23}
Implementing L-BFGS is relatively straightforward by utilizing the formula from Theorem 46.
Suppose for the current estimate of the Hessian, H , we have a Choleski decomposition:H = LLT .
We would like Choleski decomposition of BBFGS

Lemma 47

Let H ∈ Sn++, y, s ∈ Rn such that yT s > 0. Also let L ∈ Rn×n, lower triangular satisfy
LLT = H . Then,

BBFGS =

(
L+

(y − βHs)sTL
βsTHs

)(
LT +

LT s(y − βHs)T

βsTHs

)
,

where β :=
√

yT s
sTHs

Proof. Just a computation

So, B is written as

(L+ uvT )(LT + vuT )← Not a Choleski decomposition

However, we can recover a Choleski factorization LL
T

of B as follows:

Remark. For every orthoganal matrix Q ∈ Rn×n,

B = (L+ uvT )QTQ(LT + vuT )

We will use a sequence of orthogonal matrices on LT + vuT . First, focus on vuT
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2.8.3 Using Givens’ Rotations(James Wallace Givens’ Jr[1958])

For ∀a, b ∈ R,∃θ ∈ [0, 2π) such that[
cos(θ) sin(θ)
−sin(θ) cos(θ)

] [
a
b

]
=

[
∗
0

]


1 0 0 . . . 0 0
0 1 0 . . . 0 0

0 0 0
. . . 0 0

0 0 0 . . . c s
0 0 0 . . . −s c




v


=



∗
∗
.
.
.
∗
0


Then, 

1 0 0 . . . 0 0 0
0 1 0 . . . 0 0 0
0 0 1 . . . 0 0 0
...

...
... . . . ...

...
...

0 0 0 . . . c s 0
0 0 0 . . . −s c 0
0 0 0 . . . 0 0 1





∗
∗
.
.
.
∗
∗
0


=



∗
∗
.
.
.
∗
0
0


Keep doing this, we find Q1 ∈ Rn×n orthoganal such that

Q1(L
T + vut) = A+


∗
0
...
0

 [uT ] = A′

where A and A′ are Upper Hessenbergs
Nexty, we apply (n− 1) special orthogonal matrices (Givens’ Rotations), to zero-out the nonoze-
roes below the diagonal. 

c s 0 . . . 0
−s c 0 . . . 0
0 0 1 . . . 0
...

...
... . . . ...

0 0 0 . . . 1


, then 

1 0 0 0 . . . 0
0 c s 0 . . . 0
0 −s c 0 . . . 0
0 0 0 1 . . . 0
...

...
...

... . . . ...
0 0 0 0 . . . 1
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→ orthogonal matrix Q2 ∈ Rn×n such that

(Q2Q1)(L
T + vuT ) =: L

T ← Choleski factor of B

Total work: O(n2) arithmetic operations.
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2.9 Conjugate Gradient Methods
Let C ⊆ Rn be a convex set. Note that every C2 function f : C → R with ∇2f(x) � 0,∀x ∈ C,
is strictly convex on C
On strictly convex quadratic functions f : Rn → R (f(x) := γ + cTx + 1

2
xTHx, with γ ∈ R, c ∈

Rn, H ∈ Sn++ given), BFGS and many other Quasi-Newton Methods require at most n iterations
(with exact line search)
Special case: f(x) := γ + cTx + 1

2
xTDx. D is diagonal and positive definite. In this case, the

problem
inf f(x), x ∈ Rn

is separable.
Coordinate Descent solves this problem in n iterations.
Now, consider an arbitraryH ∈ Sn++ with f(x) := γ+cTx+ 1

2
xTHx. LetQ ∈ Rn×n be orthogonal

such that H = QDQT , where D ∈ Rn×n is diagonal and positive definite (Theorem 15, Spectral
Decomposition Theorem).
Then upon defining v := QTx, we have

f(x) = γ + cTx+
1

2
xTQDQTx

= γ + cTQv +
1

2
vTDv

Thus, coordinate Descent is the same as a search along the columns of Q in the x − space (if we
are told ahead of time what the eigenvectors are).
This also shows how Coordinate Descent might suffer, if we do not have the ”right basis”.

Definition 48

Let H ∈ Sn++. Then, u, v ∈ Rn are called H-conjugate if

uTHv = 0

Observation 49

If we have n, H-conjugate non-zero vectors, searching along them sequentially will mini-
mize f(x) := cTx+ xTHx, where H ∈ Sn++.

Lemma 50

Let H ∈ Sn++, suppose that d(1), d(2), . . . , d(k) ∈ Rn \ {0} are pairwise H-conjugate. Then
{d(1), d(2), . . . , d(k)} is linearly independent.

Proof. Let H and d(1), d(2), . . . , d(k) be as in the statement of the lemma. Then,

H
1
2d(1), H

1
2d(2), . . . , H

1
2d(k) ∈ Rn \ {0}
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since d(1), d(2), . . . , d(k) ∈ Rn \{0} and H
1
2 is nonsingular. Moreover,H

1
2d(1), H

1
2d(2), . . . , H

1
2d(k)

are pairwise orthogonal (since they are H-conjugates), therefore, they are linearly independent.
Thus, under a change of basis with H−

1
2 , we see that {d(1), d(2), . . . , d(k)} is linearly independent.

Theorem 51

Let c ∈ Rn, H ∈ Sn++ be given. Define f : Rn → R by f(x) := cTx +
1
2
xTHx. Further assume d(0), d(1), . . . , d(n−1) ∈ Rn \ {0} are pairwise H-conjugate,
D := [d(0), d(1), . . . , d(n−1)] ∈ Rn×n. Then,D is nonsingular and with f̂(y) := f(x(0)+Dy)
for any x(0) ∈ Rn, f̂ is separable.

Proof. Suppose c,H, f,D, x(0), f̂ are as described in the statement of the thorem. Then, D is
nonsingular, by Lemma 50. Moreover,

f̂(y) = cTx(0) + cTDy +
1

2
(x(0) +Dy)TH(x(0) +Dy)

=

(
cTx(0) +

1

2
x(0)

T
Hx(0)

)
+
(
DT c+DTHx(0)

)T
y +

1

2
yT (DTHD)y

(ij)th entry of DTHD =
〈
d(i), Hd(j)

〉
=

{
0, if i 6= j

> 0, if i = j
Therefore, f̂ is separable.

Corollary 52

Let f, d(0), d(1), . . . , d(n−1) be as above. If we start with an arbitrary x(0) ∈ Rn and suc-
cessively search along the directions d(0), d(1), . . . , d(n−1) using exact line searches to get
x(1), x(2), . . . , x(n), then x(j) minimizes f on the affine subspace

{x(0) +

j−1∑
i=0

µid
(i) : µi ∈ R}, ∀j ∈ {1, 2, . . . , b}

and x(n) is the global minimizer of f

Proof. Follows from the last theorem.

2.9.1 Conjugate Gradient Algorithm

Let f be as above, assume x(0) ∈ Rn is given.

d(0) := −∇f(x(0))
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Iteration k:(We have x(k) and d(k))

If ∇f(x(k)) = 0, set x(k+1) := x(k)

Else x(k+1) := x(k) + αkd
(k)

d(k+1) := −∇f(x(k+1)) + βkd
(k)

where βk :=

〈
∇f(x(k+1)), Hd(k)

〉
〈d(k), Hd(k)〉

note that the αk above is obtained by exact line search.
Theorem 53

In the above algorithm, d(0), d(1), . . . , d(n−1) are pairwise H-conjugate and x(n) is the global
minimizer of f .

Proof. If ∇f(x(0)) = 0, then there is nothing left to prove. So, we may assume d(0) 6= 0. Proof is
by induction on the iterate number k. Assume that d(0), d(1), . . . , d(k) are all nonzero and pairwise
H-conjugate. We will prove that

• either ”∇f(x(k+1)) = 0”→ then, we are done!

• or ”d(0), d(1), . . . , d(k+1) are all nonozero and pairwise H-conjugate”→ this will finish the
proof.

Thus, we may assume ∇f(x(k+1)) 6= 0. Then, by Corollary 52, x(k+1) minimizes f on the set
{x(0) +

∑k
i=0 µid

(i) : µ ∈ Rk+1}. Then,〈
∇f(x(k+1)), d(j)

〉
= 0, ∀j ∈ {0, 1, . . . , k}

Since
〈
∇f(x(k+1)), d(k)

〉
= 0, d(k+1) = −∇f(x(k+1)) + βkd

(k) 6= 0.
Next, we prove

〈
d(k+1).Hd(j)

〉
= 0,∀j ∈ {0, 1, . . . , k}

By definition of βk, 〈
d(k+1), Hd(k)

〉
=
〈
−∇f(x(k+1)) + βkd

(k), Hd(k)
〉

= 0

Consider d(j), j ∈ {0, 1, . . . , k − 1}.

x(j+1) = x(j) + αjd
(j)

, and αj > 0 since〈
∇f(x(j)), d(j)

〉
=
〈
∇f(x(j)),−∇f(x(j)) + βj−1d

(j−1)〉 = −||∇f(x(j))||22< 0

So, Hd(j) = 1
αj
H[x(j+1) − x(j)] = 1

αj
[∇f(x(j+1))−∇f(x(j))]

Since∇f(x(j+1)) ∈ span{d(j), d(j+1)}
and ∇f(x(j)) ∈ span{d(j−1), d(j)}

we have Hd(j) ∈ span{d(j−1), d(j), d(j+1)}
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Then, 〈
d(k+1), Hd(j)

〉
=
〈
−∇f(x(k+1)) + βkd

(k), Hd(j)
〉

=
〈
−∇f(x(k+1)), Hd(j)

〉
= 0

This finishes the inductive step.

Note the realationships with Gram-Schmidt orthogonalization/conjugation and the appearance
of Krylov subspaces
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What if f is not quadratic?

2.9.2 Nonlinear Conjugate Gradient

We can apply the algorithm to an arbitrary C1 function f using, y(k) := ∇f(x(k+1))−∇f(x(d))

βk =


〈x(k+1),y(k)〉
〈d(k),y(k)〉 Sorensen-Wolfe (SW), Hestenes-Stiefd

〈f(x(k+1)),∇f(x(k+1))〉
〈f(x(k)),∇f(x(k))〉 Fletcher-Reeves

〈x(k+1),y(k)〉
〈f(x(k)),∇f(x(k))〉Polak-Ribiere

• Still, we have to do exact (or almost exact) line search

• Quadratic or cubic splines are used in applications.

• All of the above choices for βk become the same on quadratic functions

• Performance depends on the spectral structure of ∇2f(x(k)), including distribution of its
eigenvalues

Hager&Zhang[2005] use

βk+1 :=

〈
y(k) − 2

||y(k)||22
〈d(k), y(k)〉

d(k),
∇f(x(k+1))

〈d(k), y6(k)〉

〉
= SW + 2

||y(k)||22
〈d(k), y(k)〉

〈
d(k),∇f(x(k+1))

〉
2.9.3 Preconditional Conjugate Gradient

Let L be lower triangular such taht

LLT ≈ ∇2f(x(k))

(e.g. ”approximate” possibly ”incomplete” Choleski decomposition)
Then apply Conjugate Gradient Algorithm to

f̃(x) := f(L−T x̃︸ ︷︷ ︸
:=x

) =⇒ ∇f̃(x̃) = L−1∇f(L−T x̃)

Conjugate Gradient Algorithms are related to ”Memoryless BFGS”
CGAs can be even slower than Steepest-Descent. Even on strongly convex functions they are not
”optimal algorithms” with respect to the worst-case behaviour (Nemirovskii&Yudin[1980])
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3 Constrained Optimization

3.1 Back to Constrained Optimization
f : Rn → R, g : Rn → Rm, h : Rn → Rp, all assumed to be C1.

(P ) = inf f(x)

s.t. g(x) 6 0

h(x) = 0

S := {x ∈ Rn : g(x) 6 0, h(x) = 0}.
For x ∈ S, J(x) := {i : gi(x) = 0} ← active constraints at x; tight constraints at x J := J(x),
then gJ is the corresponding ”subfunction”. d ∈ Rn is a feasible direction for (P ) at x, if ∃α > 0
such that (x+ αd) ∈ S, ∀α ∈ [0, α).

Lemma 54

If d ∈ Rn is a feasible direction for (P ) at x, then

〈∇gi(x), d〉 6 0, ∀i ∈ J and h′(x)d = 0

Recall:
Corollary 24: Assume h and x are as described in Theorem 21. Let d ∈ Rn such that h′(x)d = 0.
Then there exists λ > 0 and a C1 arc(directed curve) t̂ with the properties

• t̂(0) = x

• h(t̂(λ)) = 0, ∀ ∈ [0, λ)

• t̂′(0) = d

Lemma 55

Let x ∈ S such that h′(x) has rank p, and d ∈ Rn satisfies g′J(x)d < 0 and h′(x)d = 0.

Then ∃α > 0 and a C1 arc t̂ : [0, α)→ Rn such that


t̂(0) = x

t̂′(0) = d

t̂(α) ∈ S,∀α ∈ [0, α)

Proof. Assignment 4
Sketch:Apply Corollary 24, to determine α > 0( and to prove its existence) note that ∀i ∈
{1, 2, . . . ,m} \ J, gi(x) < 0( by definition of J = J(x))
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Corollary 56

If x ∈ S is a local min of (P ) and h′(x) has rank p, then @d ∈ Rn satisfying
〈∇gi(x), d〉 < 0,∀i ∈ J(x)

h′(x)d = 0

〈∇f(x), d〉 < 0

If such a direction d ∈ Rn existed, then by Lemma 55 we would have feasible solutions along the
C1 arc t̂(α) for α ∈ [0, α) that are better than x, contradicting the fact that x is a local min. for (P )

Lemma 57: a theorem of the alternative-Farkas-type

Let A ∈ Rn×q, B ∈ Rn×r. Then exactly one of the following two systems has a solution:

1. ATd < 0, BTd = 0

2. Au+Bv = 0, u > 0, u 6= 0

Proof. Suppose (1) has a solution d ∈ Rn and (2) has a solution (u, v) u ∈ Rq, v ∈ Rr. Then,

0 = Au+Bv =⇒ 0 = d
T
Au︸ ︷︷ ︸
<0

+ d
T
Bv︸ ︷︷ ︸
0

< 0

a contradiction.
Suppose (2) does not have a solution. Consider for the LP

(LP ) Max 1Tu

Au+Bv = 0

u > 0

(LD) Min 0Td

ATd > 1

BTd = 0

(LD) is equivalent to Min{0Td : ATd 6 −1, BTd = 0} Since (2) has no solution and u :=
0, v := 0 give a feasible solution of (LP ) with objective value zero, optimal objective value of
(LP ) is zero. By Strong Duality Theorem, of linear programming, (LD) has an optimal solution
d. Therefore, system (1) has a solution.

Where we used
Theorem 58: Strong Duality Theorem of Linear Programming

Let (LP ) be a linear programming probblem, and let (LD) be its dual. If (LP ) has an
optiomal solution then so does its dual (LD); moreover, in this case, the optimal objective
values of (LP ) and (LD) are the same.
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Theorem 59: Karushp[1939],FritzJohn[1948]

Suppose x ∈ S is a local minimizer for (P ). Then ∃λ ∈ R+, u ∈ Rm
+ , v ∈ Rp,

λu
v

 6= 0

such that {
λ∇f(x) +

∑m
i=1 ui∇gi(x) +

∑p
i=1 vi∇hi(x) = 0∑m

i=1 uigi(x) = 0

Consider the second condition. Since u > 0 and g(x) 6 0, this condition is equivalent to
∀i ∈ {1, 2, . . . ,m}, either gi(x) = 0 or ui = 0 (possibly both). (Complementary Slackness
Conditions, or Complementarity Conditions)

Proof. Suppose x ∈ S is a local minimizer for (P ). If h′(x) does not have rank p, then ∃v ∈
Rp \ {0} such that vTh′(x) = 0T . So, we may set λ := 0 and u := 0, and we are done.
Otherwise (rank(h′(x)) = p), by corollary 56, the system

〈∇f(x), d〉 < 0

〈∇gi(x), d〉 < 0,∀i ∈ J(x)

〈∇hi(x), d〉 = 0

has no solution.

Thus, by Lemma57, ∃λ ∈ R+, uJ > 0, v ∈ Rp such that
(
λ
uJ

)
6= 0 and λ∇f(x)+

∑
i∈J(x) ui∇gi(x)+∑p

i=1 vi∇hi(x) = 0

Note that being able to set λ = 0 :makes the statement of the theorem work, without a Con-
straint Qualification” but it also takes away from its potential power.

Example 60

check the handwritten notes

Example 61

check the handwritten notes
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To have more useful results (than Theorem 59), we will look for necessary conditions in which
λ > 0.

3.1.1 The First-order Constraint Qualification (at x ∈ S)

Let

D(x) :=

{
d ∈ Rn :

〈∇gi(x), d〉 6 0,∀i ∈ J(x)

〈∇hi(x), d〉 = 0,∀i ∈ {1, . . . , p}

}
Then, First-order CQ holds at x if ∀d ∈ D(x), there exists a sequence {d(k)} with d(k) → d such
that there exists αk > 0 and a C1 arc t(k) : [0, αk)→ Rn such that

t(k)(α) ∈ S,∀α ∈ [0, αk)

t(k)(0) = x

(t(k))′(0) = d(k)

Informally, this means the polyhedral cone D(x) is a reasonably good approximation to the set of
feasible directions at x.
In Example 60, D(x) = span{e1}. The CQ looks ok for d = e1, but fails for d = −e1. Therefore,
CQ fails at x.

In example 61, D(x) = R2. For d :=

(
−1
−1

)
∈ D(x) the CQ cannot be satisfied.

Lemma 62: Mangasarian-Fromiwitz CQ[1967]

Let x ∈ S, h, g ∈ C1. If h′(x) has rank p and ∃d ∈ Rn such that{〈
∇gi(x), d

〉
< 0,∀i ∈ J(x)〈

∇hi(x), d
〉

= 0,∀i ∈ {1, 2, . . . , p}

then the First-order CQ holds at x

Proof. Suppose the assumptions hold.
Let d ∈ D(x), d(k) := d+ 1

k
d,∀k ∈ Z++.

Then
〈
∇gi(x), d(k)

〉
< 0,∀i ∈ J(x) and h′(x)d(k) = 0,∀k ∈ Z++. By Lemma 55, there exists a

suitable C1 arc t̂(k),∀k ∈ Z++

Corollary 63

Let x ∈ S, h, g ∈ C1. If
(
g′J(x)
h′(x)

)
has linearly independent rows, then the First-order CQ

holds at x
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Proof. Suppose x ∈ S, and g, h ∈ C1. If ∃ d ∈ Rn satisfying{
g′J(x)d < 0

h′(x)d = 0

then we are done by Lemma 62. Otherwise, by Lemma 57,
(
g′J(x)
h′(x)

)
has linearly dependent

rows

Corollary 64

If all constraints in (P ) are linear (i.e. all functions g1, g2, . . . , gm, h1, h2, . . . , hp are affine)
then the First-order CQ holds at every x ∈ S.

Proof. Suppose the assumptions hold. Let x ∈ S. For every d ∈ D(x), set{
d(k) := d

t̂(k)(α) := x+ αd
∀k ∈ Z++

Lemma 65

LetA ∈ Rn×q, B ∈ Rn×r, c ∈ Rn. Then exactly one of the following systems has a solution:

1. ATd 6 0, BTd = 0, cTd < 0

2. c+ Au+Bv = 0, u > 0

Proof. Assignment 4

Theorem 66: First-order Necessary Conditions under CQ

[Karush 1939, Kuhn-Tucker 1951(KKT theorem)]
Suppose f, g, h ∈ C1 and the First-order CQ holds at x ∈ S, a local minimizer for (P ).

Then, ∃
[
u
v

]
∈ Rm ⊕ Rp such that

{
∇f(x) + [g′(x)]Tu+ [h′(x)]Tv = 0

u > 0, uTg(x) = 0
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Proof. Suppose the assumptions hold. Further suppose that ∃ d ∈ D(x) such that 〈∇f(x), d〉 < 0.
Then by First-order CQ, we can find d(k) ∈ Rn such that

〈
∇f(x), d(k)

〉
< 0 and d(k) is the first

derivative of a feasible C1 arc t̂ starting at x. Defining

φ(α) := f(t̂(α)) leads to φ′(0) =
〈
∇f(x), d(k)

〉
< 0

This leads to a contradiction to x being a local min. for (P ). So, now we may assume the system
〈∇f(x), d〉 < 0

g′J(x)d 6 0

h′(x)d = 0

has no solution.
By Lemma 65, ∃uJ > 0, v ∈ Rp such that

∇f(x) + [g′J(x)]TuJ + [h′(x)]Tv = 0

Setting ui := 0,∀i ∈ {1, 2, . . . ,m} \ J(x) yields the desired conclusion.

Many algorithms for continuous optimization problems (and discrete optimization problems)
are designed via these conditions.
KKT Conditions, KKT Triple

g(x) 6 0

h(x) = 0

}
Primal feasibility

∇f(x) + [g′(x)]Tu+ [h′(x)]Tv = 0

u > 0

}
Dual feasiblity

uTg(x) = 0
}

Complementary Slacknessxu
v

 satisfying the above conditions (KKT conditions) is called a KKT triple.
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Lagrangian l : Rn ⊕ Rm ⊕ Rp → R

l(x, u, v) := f(x) + uTg(x) + vTh(x)

∇xl(x, u, v) = ∇f(x) + [g′(x)]Tu+ [h′(x)]Tv

∇ul(x, u, v) = g(x)

∇vl(x, u, v) = h(x)

KKT Conditions can equivalently be stated as:

∇xl(x, u, v) = 0

∇ul(x, u, v) 6 0

∇vl(x, u, v) = 0

uT∇ul(x, u, v) = 0

u > 0

Where x satisfies First-order conditions for it to be a local minimizer of l(·, u, v) over Rn;(
u
v

)
satisfies First-order conditions for it to be a local maximizer of l(x, ·, ·) over Rm ⊕ Rp

Therefore,

xu
v

 satisfies the First-order conditions for it to be a saddle point of the Lagrangian.

Example 67

Let A ∈ Rp×n, b ∈ Rp, c ∈ Rn be given. Consider

(LP )

inf f(x) := cTx

g(x) := −x 6 0

h(x) := b− Ax = 0

(LD)
sup bTv

ATv 6 c

Note:{
c+ (−I)u+ (−AT )v = 0

u > 0, uTx = 0

}
⇐⇒

{
ATv 6 c

xT (c− ATv) = 0, cTx = bTv using Ax = b

}
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3.1.2 Second-order Conditions for Constrained Optimization

(P ) inf f(x)

g(x) 6 0

h(x) = 0

, Assume f, g, h ∈ C2

Example 68

inf f(x) :=
1

2
x1

2 − 1

2
x2

2

g1(x) := x2 − 1 6 0

g2(x) := −x2 6 0

x is the unique minimizer of (P ). J(x) = {1}

∇f(x) =

[
0
−1

]
, ∇g1(x) =

[
0
1

]
. KKT conditions hold at x with u :=

[
1
0

]
, ∇2f(x) =[

1 0
0 −1

]
, ∇2g1(x) = ∇2g2(x) = 0

∇2f(x) is not positive semidefinite. However, it is positive semidefinite in the
approximate linear subspace{d : g′J(x)d = 0, h′(x)d = 0} (tangent(d2 = 2) to the
active constraints(x2 = 1))

Example 69

inf f(x) := −1

2
(x1 + 1)2 − 1

2
x2

2

g1(x) :=
1

2
x1

2 +
1

2
x2

2 − 1

2
6 0

x is the unique optimal solution.

∇f(x) =

[
−2
0

]
, ∇g1(x) =

[
1
0

]
. KKT conditions are satisfied at x with u := 2

∇2f(x) =

[
−1 0
0 −1

]
, ∇2g1(x) =

[
1 0
0 1

]
. ∇2f(x) is not positive semidefinite; but,

∇2
xxl(x, u) = ∇2f(x) + 2∇2g1(x) = −I + 2I = I is positive semidefinite.
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Second-order CQ(at x ∈ S)hold if{
g′J(x)d = 0

h′(x)d = 0

}
=⇒ ∃α > 0 and a C2 arc t̂ : [0, α)→ Rn such that


t̂(0) = x

t̂′(0) = d

gJ(t̂(α)) = 0

h(t̂(α)) = 0

}
, ∀α ∈ [0, α)

Theorem 70: Second-Order necessary conditions

Suppose x ∈ S is a local minimzier for (P ) and second-order CQ holds at x.

Then, if

xu
v

 is a KKT triple, we have

g′J(x)d = 0

h′(x)d = 0

}
=⇒ dT [∇2

xxl(x, u, v)]d > 0

Corollary 71

Suppose x ∈ S is a local minimizer for (P ) and the first-order& second-order CQs hold at
x.
Then, ∃u ∈ Rm, v ∈ Rp such that

∇f(x) + [g′(x)]Tu+ [h′(x)]Tv = 0, u > 0, uTg(x) = 0,

and∇2
xxl(x, u, v) is positive semidefinite on

{
d ∈ Rn : g′J(x)d = 0

h′(x)d = 0

}

Theorem 72

Suppose g, h ∈ C2, x ∈ S.

If
[
g′J(x)
h′(x)

]
has linearly independent rows, then the First-order as well as Second-order CQs

hold at x (Use the Implicit Function Theorem (Theorem 21)).
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Theorem 73: Second Order Sufficiency Condition

Suppose

xu
v

 is a KKT triple for (P ) and

g′J(x)d 6 0

h′(x)d = 0

uTJ g
′
J(x)d = 0

d 6= 0

 =⇒ dT∇2
xxl(x, u, v)d > 0

Then, x is a strict local minimzier of (P )

Strict Complementarity

Let

xu
v

 be a KKT triple for (P ). We say that

xu
v

 satisfies strict complementarity (or, equiva-

lently x and u are strictly complementary) if for every i ∈ {1, 2, . . . , n} exactly one of the follow-

ing holds

{
gi(x) = 0

ui = 0

Recall:Since we have a KKT triple, we already have ∀i ∈ {1, 2, . . . ,m} at least one of gi(x), ui is
zero.
When the KKT triple satisfies strict complementarity the statement of the last theorem and its proof
simplify.

Theorem 74: 2nd-Order Suff. Condition when Strict Complementary

Suppose

xu
v

 is strictly complementary KKT triple for (P ) and

[
g′J(x)
h′(x)

]
d = 0

d 6= 0

 =⇒ dT∇2
xxl(x, u, v)d > 0

Then, x is a strict local minimizer of (P )

In a proof of Theorem 74 and in some similar situations, the following fact is useful.
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Theorem 75

Let A ∈ Rn×q, B ∈ Sn such that

ATd = 0

d 6= 0

}
=⇒ dTBd > 0

Then, ∃ρ > 0 such that
∀ρ > ρ, (B + ρAAT ) ∈ Sn++

When (P ) is a convex optimization problem (e.g. S is convex set and f is a convex function
on S), every local minimzier of (P ) is a global minimizer of (P) and our results above can be made
”global”

3.1.3 Augmented Lagrangians

Let ρ > 0, σ > 0.

lρ,σ(x, u, v) := inf
y>g(x);z=h(x)

{
f(x) + uTy + vT z +

1

2
ρyTy +

1

2
σzT z

}
= f(x) + vTh(x) +

σ

2
||h(x)||22+

m∑
i=1

inf
yi>gi(x)

{
uiyi +

1

2
ρy2i

}
︸ ︷︷ ︸

φρ(ui,gi(x))
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Theorem 76

Suppose

xu
v

 satisfies the second-order sufficiency conditions for being a strict local min-

imzier for (P ). Suppose strict complementarity holds at

xu
v

. Then, ∃ρ > 0 and σ > 0

such that ∀ρ > ρ, σ > σ, x is a strict local minimizer of lρ,σ(·, u, v). Furthermore,
(
u
v

)
is a

global maximizer of lρ,σ(x, ·, ·)
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3.1.4 Algorithm from Augmented Lagrangians

There are many ways to design algorithms based on Augmented Lagrangians.
Let us put (P ) into an equality form using new variables ξi, i ∈ {1, 2, , . . . ,m}

inf f(x)

s.t. gi(k) + ξ2i = 0, i ∈ {1, 2, . . . ,m}
hi(x) = 0, i ∈ {1, 2, . . . , p}

lρ

([
x
ξ

]
,

[
u
v

])
= f(x) + uTg(x) +

m∑
i=1

uiξ
2
i + vTh(x) +

ρ

2
||. . . ||22

Let

Lρ(x, u, v) := inf
ξ∈Rm

{
lρ

([
x
ξ

]
,

[
u
v

])}
= f(x) +

1

2
ρ

[
g(x) +

u

ρ

]T
+

[
g(x) +

u

ρ

]
− 1

2ρ
uTu+ vTh(x) +

1

2
ρ||h(X)||22

where, for w ∈ Rm, [w]+ ∈ Rm is defined by for each j ∈ {1, 2, . . . ,m}, max{0, wj}.
When Lρ is differentiable in x,

∇xLρ(x, u, v) = ∇f(x) +∇g(x)[u+ g(x)]+ +∇h(x)[v + ρh(x)]

Algorithm Choose x(0), u(0), v(0), ρ0 > 0; k := 0
At iteration k, DO:

x(k+1) := argmin
x∈Rn

{Lρk(x, u(k), v(k))}

u(k+1) := [u(k) + ρkg(x(k+1))]+

v(k+1) := v(k) + ρkh(x(k+1))

Update ρk to ρk+1

How do we choose ρk

• Preset strategy (e.g. ρk := βk, where β > 1 constant)

• Adaptive (if g(x(k)) is ”approx. 6 0” and h(x) ≈ 0 then keep ρk the same; otherwise,
increase ρk)

Now, let us consider (P ) in pure inequality form.
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Theorem 77: Bertsekas[1982]

(P ){inf f(x); g(x) 6 0}. Suppose x ∈ Rn is a local minmizer for (P ); f, g ∈ C2 and
∇2f,∇2gi(i ∈ {1, 2, . . . ,m}) ∈ Lip in a neighborhood of x. Further assume second-order
sufficiency conditions hold at x with Lagrange multipliers u > 0,∇gJ(x) has full column

rank, strict complementarity holds at
(
x
u

)
.

Then, ∀U ⊂ Rm bounded, ∃ρ > 0 such that ρ > ρ implies Lρ(·, u) for u ∈ U has a local
minimizer x(u, ρ) and ∃ a constant M > 0 such that

||x(u, ρ)− x|| 6 M

ρ
||u− u||,

||[u+ ρg(x(u, ρ))]+ − u|| 6
M

ρ
||u− u||

Therefore, if we choose ρ > M then we get at least Q-linear convergence of u(k)s, and at
least R-linear convergence of x(k)s.
If ρk → +∞ fast, we get Q-superlinear convergence of u(k)s
If f, gi are convex, then we get global convergence.

3.1.5 Method of Multipliers

Given A ∈ Rp×n, b ∈ Rp, consider

(P ) :
inf f(x)

Ax = b

lρ(x, v) = f(x) + vT

h(x)︷ ︸︸ ︷
(Ax− b) +

ρ

2
||Ax− b||22

Algorithm:Choose x(0) ∈ Rn, v(0) ∈ Rp, ρ0 > 0.
At iteration k, DO 

x(k+1) := argmin
x∈Rn

lρk(x, v
(k))

v(k+1) := v(k) + ρk(Ax
(k+1) − b)

Update ρk to ρk+1


Suppose f is C1. Then, KKT conditions:

Ax = b← primal Feasibility

∇f(x) + ATv = 0← dual feasibility
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x(k+1) = argmin
x∈Rn

lρk(x, v
(k))

⇒ ∇xlρk(x
(k+1), v(k)) = 0 = ∇f(x(k+1)) + AT [v(k) +

”dual step size”︷︸︸︷
ρk (Ax(k+1) − b)]︸ ︷︷ ︸
v(k+1)

⇔ ∇f(x(k+1)) + ATv(k+1) = 0

⇒ At the end of each iteration, x(k), v(k) satisfy dual feasibility. Algorithm strives to achieve primal feasibility

3.1.6 Alternating Direction Method of Multiplier(ADMM)

We will again illustrate the algorithm for a special form of (P ). Let fi : Rni → R be C1 functions.
A1 ∈ Rp×n, A2 ∈ Rp×n2 , b ∈ Rp be given

(P ) :
inf f1(x) + f2(ξ)

A1x+ A2ξ = b

lρk

([
x
ξ

]
, v

)
= f1(x) + f2(ξ) + vT (A1x+ A2ξ − b) +

ρk
2
||A1x+ A2ξ − b||22

Algorithm: Choose x(0) ∈ Rn1 , ξ(0) ∈ Rn2 , v(0) ∈ Rp, ρ0 > 0.
At iteration k, DO 

x(k+1) := argmin
x∈Rn1

lρk

([
x

ξ(k)

]
, v(k)

)

ξ(k+1) := argmin
ξ∈Rn2

lρk

([
x(k+1)

ξ

]
, v(k)

)
v(k+1) := v(k) + ρk(A1x

(k+1) + A2ξ
(k+1) − b)

Update ρk to ρk+1
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In our illustrations of the ADMM algorithm, we had a continuous optimization problem which was
separable with respect to x and ξ:

f1(x) + f2(ξ)

Of course, this approach easily extends to objective functions:

f(x) =
L∑
l=1

fl(xl)

which separate into L > 2 subfunctions.
There is a more general framework which unifies algorithms inspired by Augmented Lagrangians, ADMM,
Dauglas-Rachford splitting methods, operator splitting methods, Dykstra;s alternating projections,

Spingarn’s method of partial inverses, Bregman iterations: Proximal Point Method(s)
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3.2 Projection and Different Methods
3.2.1 Proximal Operator

Let f : Rn → R ∪ {+∞}. Suppose

epi(f) =

{(
µ
x

)
∈ R⊕ Rn : f(x) 6 µ

}
is closed and convex.
Proximal operator of f is proxf : Rn → Rn,

proxf (z) := argmin
x∈Rn

{
f(x) +

1

2
||x− z||22

}
Consider the continuous optimization problem:{

inf f(x)

s.t. x ∈ S

, where S ⊆ Rn is a convex set, and f : Rn → R ∪ {+∞} is a convex function.
Indicator function of S:

δ(x|S) :=

{
0, if x ∈ S
+∞, otherwise

Define f̃ : Rn → R ∪ {+∞} such that

f̃(x) := f(x) + δ(x|S)

Then f̃ is convex and (P ) is equivalent to the unconstrained convex optimization problem

(P̃ ) inf
x∈Rn

f̃(x)
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We do not even need f̃ to be C1.
h ∈ Rn is a subgradient of f̃ at x ∈ Rn if

f̃(x) > f̃(x) + hT (x− x),∀x ∈ Rn

∂f̃(x)︸ ︷︷ ︸
subdifferential of f̃ at x

:= {h ∈ Rn : h is a subgradient of f̃ at x}

(P ) is equivalent to: find x̃ ∈ Rn such that

0 ∈ ∂f̃(x̃)

Algorithm(Proximal point alg.)
Choose x(0) ∈ Rn, λ ∈ R++.At iteration k, DO{

x(k+1) := proxλf (x
(k))

k := k + 1

In fact, proxλf (·) = (I + λ∂f)−1︸ ︷︷ ︸
Resolvent operator

(·). The interpretation of Resolvent operator connects proximal

point algorithms to Fixed Point Theory (More on this in CO463/663).
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3.2.2 Closest Points and Projections

Theorem 78: Kolmogorov Criteria

Let S ⊆ Rn be a nonempty closed convex set, and let z ∈ Rn. Then the closest point
proj(z|S) exists and is unique and it satisfies

(z − proj(z|S))T (x− proj(z|S)) 6 0,∀x ∈ S

Proof. See the proof of Corallary 111 in co255 Lecture notes.

proj(z|S) is the unique optimal solution of

inf{||x− z||22: x ∈ S}

A very useful charaterization of the closest point (projection) applies to the case when S is a convex
cone.

S∗︸︷︷︸
dual cone of S

:= {s ∈ Rn : xT s > 0, ∀x ∈ S}

Theorem 79: Moreau Decomposition

Let S ⊆ Rn be a nonempty closed convex cone and z ∈ Rn. Then, z = proj(z|S) if and
only if z ∈ S and ∃y ∈ S∗ such that z = z − y and zTy = 0

In the above, y = proj(−z|S∗)
Therefore, ∀z ∈ Rn can be expressed as

z = proj(z|S)− proj(−z|S∗)

Recall, ∀z ∈ Rn,
z = [z]+ − [−z]+
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3.2.3 A Stochastic Descent Algorithm

Let A ∈ Rm×n, b ∈ Rm be given. We want to find x ∈ Rn such that Ax 6 b.

Ax 6 b⇔ 〈ai, x〉 6 bi,∀i ∈ {1, 2, . . . ,m}

Choose x(0). At iteration k, DO
Choose i ∈ {1, 2, . . . ,m} uniformly, randomly
x(k+1) := closest point in {x ∈ Rn : 〈ai, x〉 6 bi} to x(k)

k := k + 1

S := {x ∈ Rn : Ax 6 b}
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Nov 12,2020 Note that

x(k+1) = x(k) −
[
〈
ai, x

(k)
〉
− bi]+

||ai||2
ai

i.e., x(k+1) = x(k) if x(k) lies in the half space {x ∈ Rn : 〈ai, x〉 6 bi}; otherwise, x(k+1) is the
orthogonal projection of x(k) on the hyperplane {x ∈ Rn : 〈ai, x〉 = bi}. We multiply both sides
of ith inequality by 1

||ai||2 . Thus, we may assume ||ai||2= 1,∀i.
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Since ||ai||2= 1, ∀i ∈ {1, 2, . . . ,m}, we have ||A||2F= m.

Theorem 80: Hoffman[1952]

Let A ∈ Rm×n. Then there exists a constant LA such that ∀b ∈ Rm for which {x ∈ Rn :
Ax 6 b} 6= ∅, and ∀x̃ ∈ Rn,

Min
x:Ax6b

||x− x̃||26 LA||[Ax̃− b]+||2

i.e.
dist(x̃, S) 6 LA ∗ dist(b− Ax̃,Rm

+ )

, LA is sometimes called the Lipschitz bound of A.

These type of results are also called ”error bounds” in the literature. Generalizations to various
classes of convex optimization problem exist.

Theorem 81: Leventhal-Lewis[2010]

Suppose S 6= φ. Then the above algorithm converges linearly in expectation. In particular,
∀k ∈ Z+

E
[
(dist(x(k+1), S))2|x(k)

]
) 6 (1− 1

m ∗ L2
A

)(dist(x(k), S))2

Proof. Suppose S 6= φ, let k ∈ Z+, i ∈ {1, 2, . . . ,m}. Note[
dist(x(k+1), S)

]2
= ||x(k+1) − proj(x(k+1)|S)||22

, and
||x(k+1) − proj(x(k)|S)︸ ︷︷ ︸

some point in S

||22> ||x(k+1) − proj(x(k+1)|S)︸ ︷︷ ︸
closest point to x(k+1) in S

||22

Thus, [
dist(x(k+1), S)

]2
6 ||x(k+1) − proj(x(k)|S))||22
= ||x(k) − [

〈
ai, x

(k)
〉
− bi]+ai − proj(x(k)|S)||22[

dist(x(k+1), S)
]2

6||x(k) − proj(x(k)|S))||22+[
〈
ai, x

(k)
〉
− bi]2+

− 2[
〈
ai, x

(k)
〉
− bi]+

〈
ai, x

(k) − proj(x(k)|S)
〉

6[dist(x(k),S)]2 − [
〈
ai, x

(k)
〉
− bi]2+

=⇒︸ ︷︷ ︸
Taking expectation over all i ∈ {1, 2, . . . ,m}

E
[
(dist(x(k+1), S))2|x(k)

]
6 [dist(x(k)|S)]2 − 1

m
||[Ax(k) − b]+||22

Note:
〈
ai, x

(k) − proj(x(k)|S)
〉

=
〈
ai, x

(k)
〉
− bi −

(〈
ai, proj(x

(k)|S)
〉
− bi

)
Now, we apply Theorem 80 to the second term in the RHS to get

− 1

m
||[Ax(k) − b]+||226 −

1

m ∗ L2
A

dist(x(k)|S)2
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Therefore,

E
[
(dist(x(k+1), S))2|x(k)

]
6 (1− 1

m ∗ L2
A

)(dist(x(k),S))2

The underlying algorithm has its roots in the algorithm of Kaczmarz from 1930’s (for solving
systems of linear equations).
We doscissed Randomized Kaczmarz algorithm for systems of linear inequalities.
In the above algorithm and its analysis we illustrated some of the fundamental ingredients for
Stochastic Gradient Descent(SGD) applied to inf

x∈Rn
f(x) :=

∑m
i=1 fi(x).

In (SGD) we randomly choose i ∈ {1, 2, . . . ,m},

x(k+1) := x(k) − αk∇fi(x(k))

Note that in our Randomized Kaczmarz Algorithm we used the probability distribution: pi = 1
m
∀i.

If we hadn’t normalized ||ai||2= 1,∀i, we should have chosen instead: pi =
||ai||22
||A||2F

,∀i
Convergence speed may be very very slow on many instances. Why should we use it? (More like,
when should we use it?)

• Very very large instances(big data)

• Highly parallelizable (if ∃ enough separability)

• Easy to code, easy to modify

• Easy to analyze

• Can try to strengthen by utilizing second-order info.
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3.2.4 Sequential Quadratic Programming(SQP)

(P ) =

inf f(x)

s.t. g(x) 6 0

h(x) = 0

Given current iterate x(k) (not necessary feasible) and estimates u(k), v(k) of Lagrange multipliers
(dual variables), and Bk ≈ ∇2

xxl(x
(u), u(k), v(k)), construct an approxiamting

(QP )k inf f(x(k)) +
〈
∇f(x(k)), d

〉
+

1

2
dTBkd

g(x(k)) +∇g(x(k))Td 6 0

h(x(k)) +∇h(x(k))Td = 0

d ∈ Rn

Start with x(0), u(0), v(0), B0.
At iteration k, solve (QP )k for d ∈ Rn to determine the search direction, or the step.
How do we update u(k), v(k), Bk?
How do we make sure we make progress towards satisfying all the constraints?
We can merge many ideas here to design SQP based algorithms.
Let d ∈ Rn be an optimal solution of (QP )k. We may update by x(k+1) := x(k) + d or x(k+1) :=
x(k) + αd and determine α by a line search using a ”merit function” or a ”potential function”. E.g.

φµ(x) := f(x) + µ||[g(x)]+||+µ||h(x)||

for µ > 0; or we may use a Trust-Region approach.
We may update Bk using a Quasi-Newton type approach, where

y(k) := ∇xl(x
(k+1), u(k+1), v(k+1))−∇xl(x

(k), u(k+1), v(k+1))

We may update u(k) → u(k+1), v(k) → v(k+1) as in the Augmented Lagrangian based algorithms (or
in some other way which still takes into consideration individual entries of g(x(k+1)) and h(xk+1))

3.2.5 Penalty and Barrier Methods, Modern Interio-Point Methods

In many of the approaches we discussed during the recent lectures, we used Lagrange multipliers
or dual variables or ”penalties” to ”move” the constraints into the objective function of (P ) and
”convert” the constrained continuous optimization problem at hand to an unconstrained optimiza-
tion problem.
Suppose (P ) is a convex optimization problem. Then under some mild assumptions, we can ex-
press (P ) in the following conic form:

(CP ) :=


inf 〈c, x〉
s.t. Ax = b

x ∈ K
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where K ⊂ Rn is closed convex cone with nonempty interior, A ∈ Rm×n, b ∈ Rm,c ∈ Rn are all
given.

K∗

Dual cone of K
:= {s ∈ Rn : 〈x, s〉 > 0,∀x ∈ K}

We define the dual of (CP ) as:

(CD) :=


sup 〈b, y〉

ATy + s = c

s ∈ K∗


Theorem 82: Weak Duality Theorem for Conic Optimization

For every x ∈ Rn that is feasible for (CP ) and for every (y, s) ∈ Rm ⊕ Rn that is feasible
for (CD), we have 〈c, x〉 > 〈b, y〉. Moreover, if 〈c, x〉 = 〈b, y〉, then x is optimal for (CP )
and (y, s) is optimal for (CD).

Proof. Let x, (y, s) be feasible solutions to (CP ), (CD) respectively. Then

〈c, x〉 − 〈b, y〉 =
〈
ATy + s, x

〉
− 〈b, y〉

=
〈
y, Ax

=b

〉
+ 〈s, x〉 − 〈b, y〉

=

〈
s
∈K∗

, x
∈K

〉
>︸︷︷︸

by defn of K∗

0

Applying the first part to x and every feasible solution (y, s) of (CD) estabilishes that (y, s) is
optimal for (CD). Applying the first part to (y, s) and every ....

Suppose F : int(K)→ R has the following properties:

• F ∈ C3

• ∀ {x(k)} ⊂ int(K) such that x(k) → x ∈ bd(K), F (x(k))→∞

• |D3F (x)[d, d, d]|6 2(D2F (x)[d, d])
3
2 ,∀x ∈ int(K),∀d ∈ Rn

• F (tx) = F (x)− θln(t),∀x ∈ int(K),∀t ∈ R++, for some θ > 1

Such an F is called a Logarithmically Homogeneous Self-concordant barrier for K.
Recall, in Theorem 43, we needed D2f ∈ Lip(L).

|D3F (x)[d1, d2, d2]|= lim
t→0

1

t

∣∣D2F (x+ td1)[d2, d2]−D2F (x)[d2, d2]
∣∣ 6 L‖d1‖‖d2‖2

In the theory of self-concordant functions, we are replacing 2-norms with local norms defined by
D2F (X).
For every µ > 0, we define

(Pµ) :=

{
inf 〈c, x〉+ µF (x)

s.t. Ax = b

}
Define F (x) :=∞,∀x ∈ Rn \ int(K)
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Some examples of LHSCBs:
LP:

K := Rn
+, θ = n, F (x) :=

{
−
∑n

j=1 ln (xj), x ∈ Rn
++

∞, otherwise

Semidefinite Programming:

K := Sn+, θ = n, F (x) :=

{
− ln det(X), x ∈ Sn++

∞, otherwise

K :=

{(
t
x

)
∈ R⊕ Rn : t > ‖x‖2

}
(Second-Oder Cone)

F (t, x) :=

{
− ln (t2 − ‖x‖22), ‖x‖2< t

∞, otherwise

Taking direct sums of Second Order Cones leads to Second-Order Cone Programming (SOCP)
problems.
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Nov 19,2020 Each of these cones is a pointed, closed convex cone. A convex set is pointed if
it does not contain whole line(s).

76



Theorem 83

If K ⊂ Rn is a pointed closed convex cone with nonempty interior, then so is its dual K∗.

• x ∈ Rn is a Slater point for (CP) if Ax = b and x ∈ int(K)

• (y, s) ∈ Rm ⊕ Rn is a Slater point for (CD) if ATy + s = c and s ∈ int(K∗)

The conditions above are the CQs for (CP) and (CD)

Theorem 84: Strong Duality Theorem for Conic Optimization

Suppose (CP) has a slater point and the objective function of (CP) is bounded from below
over its feasible region. Then, (CD) has an optimal solution and the optimal objective values
of (CP) and (CD) are the same.

Observation 85: Remark

The dual of (CD) is equivalent to (CP)

So we can swap (CP )← (CD) in Theorem 83

Corollary 86

Suppose both (CP) and (CD) have Slater points. Then, both (CP) and (CD) have optimal
solutions and the optimal objective values of (CP) and (CD) are the same.

Suppose A ∈ Rm×n has full row rank (rank(A) = m), K is a pointed closed convex cone with
nonempty interio, F is a θ-LHSCB for K; b ⊆ Rm, c ∈ Rn are given so that (CP ) and (CD) have
Slater points.
Recall the family of problems:µ > 0

(CPµ) :=

{
inf 〈c, x〉+ µF (x)

Ax = b

}

Necessary and sufficient conditions for optimality:

Central − Path :=

{
Ax = b, x ∈ int(K)

ATy − µ∇F (x) = c

}

For every µ > 0, the above system has a unique solution (x(µ), y(µ)). In fact, s(µ) := −µ∇F (x(µ))︸ ︷︷ ︸
∈int(K∗)

yields a solution (y(µ), s(µ)) of (CD).
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Observation 87: Remark

Let x ∈ int(K), F be a θ − LHSCB for K. Then ∀t > 0, F (tx) = F (x) − θln(t)

⇒

{
∇F (tx) = 1

t
∇F (x)

〈∇F (tx), x〉 = − θ
t

⇒ 〈−∇F (x), x〉 = θ

We have from (Central-Path),

ATy−µ∇F (x(µ)) = c⇒
〈
x(µ), ATy(µ)

〉
−µ 〈∇F (x(µ)), x(µ)〉 = 〈c, x(µ)〉 ⇔ 〈b, y(µ)〉+θµ = 〈c, x(µ)〉

We can see that as µ↘ 0, 〈a, x(µ)〉 and 〈b, y(µ)〉 converge to the optimal objective values of (CP )
and (CD)
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Say x(k) ∈ int(K) ∩ S is a very good approximation of x(µk) (where x(µk)) is the optimal
solution of (CPµk)). Let

µk+1 :=

(
1− 0.1√

θ

)
µk

so that x(k) is a good approximation of x(µk+1). Then taking one Newton step (or a similar move)
x(k+1) := x(k)+αd, x(k+1) becomes a very good approximation of x(µk+1). Continuing, we obtain
in k iterations, a feasible solution x(k) of (CP ) such that

µk =

(
1− 0.1√

θ

)k
µ0

Therefore, in O(
√
θ ln ( θµ0

ε
)) iterations, we have x feasible in (CP ) such that 〈c, x〉 is within ε of

the optimal objective value of (CP )
We can also design algorithms which utilize the dual problem (CD) more than we did.
Legendre-Fenchel Conjugate of F

F∗ : Rn → R ∪ {∞}, F∗(s) := sup
x∈Rn
{− 〈s, x〉 − F (x)}, dom(F ) := {x : F (x) <∞}

By definition, ∀x ∈ dom(F ), we have

−〈s, x〉 − F (x) 6 sup
x∈Rn
{− 〈s, x〉 − F (x)}, dom(F ) := {x : F (x) <∞},∀s ∈ Rn

Proposition 88: Fenchel-Young Inequality

For every x ∈ dom(F ) and s ∈ Rn, we have

F (x) + F∗(s) > −〈s, x〉

Theorem 89: Nesterov & Nemisovski[1994]

LetK ⊂ Rn be a pointed, closed convex cone with nonempty interior. If F is a θ−LHSCB
for K, then F∗ is a θ − LHSCB for K∗

Some Practical Issues

• We assumed having available x(0) such that Ax(0) = b, x(0) ∈ int(K). In practice, we
should be able to start from infeasible points x(0) (hence, infeasible-start algorithms). Let
e ∈ int(K), consider the auxiliary problem

(CPaux) :=


inf z

Ax+ (b− Ae)z = b

x ∈ K
z ∈ R+
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where
(
x
z

)
:=

(
e
1

)
is a feasible solution (CPaux). In fact,

(
x
z

)
∈ int(K ⊕ R+)

We may use a two-phase approach (compute a Slater point in Phase I, then initiate Phase II
to solve (CP)).
However, successful practical algorithms take a combines approach and strive to reduce both
infeasibility and µ in a controlled way.

• The updates µk+1 ← (1 − constant√
θ

)µk are too conservative in practice. We use much more
aggressive strategies to decrease µ in practical algorithms.
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Practical Issues continued:
In each iteration of an interior-point algorithm, we solve (perhaps appriximately) a linear system
of equations

(AH−1AT )dy = r, or
[
H AT

A 0

] [
dx
dy

]
=

[
r1
r2

]
where r, r1, r2 are given (easily computed), dx and dy are unknowns (leading to the seach direction
in the current iteration) and H is either ∇2F (x(k)) or [∇2F∗(s

(k))]−1 or some symmetric positive
definite matrix related to these.
Current best upper bounds on the iteration complexity of interior-point algorithms are Ω(

√
θln(1

ε
))

to obtain an ε-optimal solution.
However, in practice, infeasible-start interior-point algorithms require 10-80 iterations to obtain a
solution that is 10−9-optimal on well-posed instaces of convex optimization problems.
A meta theorem of ipm practice:
Given a well-posed instance of a convex optimization problem, if we can perform one iteration of
the ipm in a reasonable amount of time, we can solve the isntance ”””’
We can use the NEOs server for optimization
and/or cvx
and/or DDS
Leading commercial conic optimization solver MOSEK
Some interior-point algorithms can attain quadratic convergence (locally) or near-quadratic super-
linear convrgence.
What if our problem instances are so huge that we cannot even perform a single iteration of an
interior-point algorithm in a reasonable amount of time. Consider First-Order Algorithms
Aside:We also have soem techniques to address this within an ipm framework.

81

https://neos-server.org/neos/
https://cvxr.com
www.math.uwaterloo.ca/~m7karimi/DDS.html
www.mosek.com


3.3 First-Order Methods
3.3.1 Worst-Case Computational Compelxity of First-Order Methods

Suppose S = Rn, f ∈ C1 and convex with Lipshitz continuous gradients, Lipschitz constant L.
Consider the class of algorithms which generate a set of iterates with the properly that

x(k) ∈ x(0) + span
{
∇f(x(0)),∇f(x(1)), . . . ,∇f(x(k−1))

}
...(P.1)

∀k ∈ Z++

Let’s build a family of functions {fe} for which we can prove a lower bound on the number of
iterations required by any algorithms with (P.1) to compute an approximate minimizer.
Fix L > 0. Consider ∀l ∈ {1, 2 . . . , n}, f : Rn → R,

fl(x) :=
L

4

{
1

2

[
x21 +

l−1∑
i=1

(xi − xi+1)
2 + x2l

]
− x1

}
Note: fl is a quadratic function ∀l. In fact,

fl(x) =
L

8
xTAlx−

L

4
x1, Al ∈ Sn

∇2fl(x) =
L

4
Al,∀l

, where

Al =



2 −1 0 . . . 0 0

−1 2 −1 . . . 0
...

0 −1 2 . . . 0
...

...
...

... . . . ...
...

0 . . . . . . −1 2 0
0 . . . . . . . . . 0 0


< 0(� 0 if l = n)

In fact,
0 4 ∇2fl(x) 4 L.I,∀l

Theorem 90

Let n > 3 be an odd integer. Then, for every k ∈ {1, 2, . . . , n−1
2
} and for every x(0) ∈ Rn,

there eixsts a C∞ convex function f with ∇f ∈ Lip(L) such that every first-order gradient
algrotihm obeying property (P.1), we have

f(x(k))− f >
3L

32(k + 1)2
‖x(0) − x‖22

‖x(k) − x‖22 >
1

8
‖x(0) − x‖22

where x ∈ Rn is the unique minimizer of f and f := f(x)
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More preparations for proving Theorem 90:
The minimizers of our family {fl} of fucntions satisfy Alx = e1. Therefore, a minimizer of f is
defined by

xj :=

{
1− j

l+1
, if j ∈ {1, 2, . . . , l}

0, otherwise

leading to fl = fl(x) = −L
8

(
1− 1

l+1

)
Note: By perturbing fl slightly, we can make x the unique minimizer
We may assume x(0) = 0 (do the corresponding ”shift” to functions fl). Then,

‖x(0) − x‖22 =
l∑

j=1

(
1− j

l + 1

)2

= l − 2

l + 1

l(l + 1)

2
+
l(l + 1)(2l + 1)

6(l + 1)2

=
l ∗ (2l + 1)

6(l + 1)
<

2L(l + 1)

6(l + 1)
=

1

3
l

Since x(0) = 0, the affine subspace in (P.1) for our {fl} becomes

span
{
∇fl(0),∇fl(x(1)), . . . ,∇fl(x(k−1))

}
=︸︷︷︸

induction

Rk ⊕ { 0︸︷︷︸
∈Rn−l

}

Using the above ingredients, we can prove Theorem 90. Can we do better if we restrict f to a
nicer class of convex functions? (Our worst-case family {fl} was made up from convex quadratic
functions, but λmin(∇2f(x)) = 0).

Definition 91

Let µ ∈ R++. Then, f : Rn → R, f ∈ C1 is called µ-strongly convex, if ∀x, y ∈ Rn

f(y) > f(x) + 〈∇f(x), (y − x)〉+
1

2
µ‖y − x‖22

f is called strongly convex if ∃µ ∈ R++ such that f is µ-strongly convex.

Proposition 92

Let f : Rn → R be C1 and let µ ∈ R++. Then TFAE

• f is µ-strongly convex;

• ∀λ ∈ [0, 1],∀x, y ∈ Rn,

λf(x) + (1− λ)f(y) > f(λx+ (1− λ)y) +
µ

2
λ(1− λ)‖y − x‖22

• ∀x, y ∈ Rn, 〈∇f(y)−∇f(x), y − x〉 > µ‖y − x‖22
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Proposition 93

Let f : Rn → R be C2, let µ ∈ R++. Then, f is µ-strongly convex if and only if ∇2f(x) <
µI,∀ x ∈ Rn

An extension of the family {fl} of convex quadratic functions above (used in the proof of
Theorem 90) can be used to prove:

Theorem 94

Let n > 3 be an integer. Then, for every x(0) ∈ Rn and for every pair of constants L > µ > 0
there exists a C∞ function f which is µ-strongly convex, ∇f ∈ Lip(L) such that every
First-Order algorithm obeying property (P.1) generates a sequence {x(k)} satisfying:

f(x(k))− f >
µ

2

(√
L/µ− 1√
L/µ+ 1

)2k

‖x(0) − x‖22

‖x(k) − x‖22 >

(√
L/µ− 1√
L/µ+ 1

)2k

‖x(0) − x‖
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3.3.2 Optimal First-Order Methods

These typically use estimating (or auxiliary) sequences. Let x(0) ∈ Rn, choose α0 ∈ (0, 1), y(0) :=
x(0).

Iteration k :



Evaluate f(y(k)),∇f(y(k))

x(k+1) := y(k) − 1
L
∇f(y(k))

Compute αk+1 by solving α2
k+1 = (1− αk+1)αk

2 + µ
L
αk+1

Set βk := αk(1−αk)
α2
k+αk+1

y(k+1) := x(k+1) + βk
(
x(k+1) − x(k)

)
What is all this in terms of {x(k)}?

x(k+1) = (1 + βk−1)x
(k) − βk−1x(k−1) −

1

L
∇f

(
(1 + βk−1)x

(k) − βk−1x(k)
)

βk−1 =
1− αk−1

αk−1 + αk
αk−1

, αk+1 =

√√√√√µ

L
αk+1 + α2

k(1− αk+1)︸ ︷︷ ︸
∈[ µ
L
,α2
k]
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If we choose α0 :=
√
µ/L, then the algorithm simplifies: αk = α0,∀k, and βk := 1−α0

1+α0
,∀k.

Thus,{
x(k+1) := y(k) − 1

L
∇f(y(k))

y(k+1) := 2
1+α0

x(k+1) − 1−α0

1+α0
x(k)

⇔ x(k+1) :=

[
2

1 + α0

x(k) − 1− α0

1 + α0

x(k−1)
]
− 1

L
∇f

([
2

1 + α0

x(k) − 1− α0

1 + α0

x(k−1)
])

Theorem 95

Let f : Rn → R be C1 and µ-strongly convex, ∇f ∈ Lip(L), where L > µ > 0. Suppose
in the above algorithm α0 >

√
µ/L is chosen. Then, the iterates {x(k)} satisfy:

f(x(k))− f 6 min

{(
1−

√
µ/L

)k
,

4L

(2
√
L+ k

√
γ0)2

}(
f(x(0))− f +

γ0
2
‖x(0) − x‖22

)
where γ0 := α0(α0L−µ)

1−α0

If α0 =
√
µ/L, then γ0 =

√
Lµ−µ√
L/µ−1

= µ
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Can we relate the conlcusions of Theorem 94&95?

Theorem

Assume . . . then the sequence of iterates {x(k)} generated by every First-Order Algorithm
satisfy

f(x(k))− f > . . . ‖x(0) − x‖22 and ‖x(k) − x‖2> . . . ‖x(0) − x‖22

Theorem

Assume . . . then there exists a First-Order Algorithm whose iterates {x(k)} satisfy

f(x(k))− f 6 . . .
(
f(x(0))− f +

γ0
2
‖x(0) − x‖22

)
We will use the following:

Lemma 96

For every α ∈ (−1, 1),

α− α2

2(1− |α|)
6 ln(1 + α) 6 α

Let’s try to answer the questions: Given ε > 0,

1. What is the lower bound on the number of iterations required to obtain x(k) such that
f(x(k))− f 6 ε?

2. What is the upper bound on the number of iterations of the algorithm we described (Nes-
terov’s Algorithm) which guarantees that f(x(k))− f 6 ε?

Q.1 From Theorem 94: Note f(x(k))− f is not part of the iff

µ

2

(√
L/µ− 1√
L/µ+ 1

)2k

‖x(0) − x‖226 f(x(k))− f 6 ε iff

ln(µ) + 2kln

(
1−

2
√
µ

√
L+
√
µ

)
+ ln

(
‖x(0) − x‖22

)
6 ln(ε) + ln(2)

⇒ k >
(√

L/µ− 1
) [

ln(1/ε) + ln(‖x(0) − x‖22) + ln(µ)− ln(2)
]

We used lemma 96

⇒ k = Ω
[√

L/µ
(
ln(1/ε) + ln(‖x(0) − x‖22) + ln(µ)−

)]
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Q.2 From Theorem 95 (for k large enough):

f(x(k))− f 6
(

1−
√
µ/L

)k (
f(x(0))− f +

γ0
2
‖x(0) − x‖22

)
6 ε

iff ln ε > k ln
(

1−
√
µ/L

)
+ ln

f(x(0))− f︸ ︷︷ ︸
1)

+
γ0
2
‖x(0) − x‖22︸ ︷︷ ︸

2)


Can we express 1) in terms of 2)?

Lemma 97

Let f : Rn → R be C1 and convex. Suppose f has a unique minimizer x and∇f ∈ Lip(L).
Then,

f(x)− f 6 L‖x− x‖22,∀x ∈ Rn

Proof. Suppose all the asuumptions in the statement of the lemma hold. Since f is C1 and convex,

f(x) > f(x) + 〈∇f(x), x− x〉 ,∀x ∈ Rn (3.1)
⇒ ∀x ∈ Rnf(x)− f 6 ‖∇f(x)‖2‖x− x‖2 Used Cauchy-Schwarz Inequality (3.2)

∇f ∈ Lip(L)⇒ ‖∇f(x)−∇f(x)︸ ︷︷ ︸
=0

‖26 L‖x− x‖2,∀x ∈ Rn (3.3)

By (2.2), (2.3),
f(x)− f 6 L‖x− x‖22,∀x ∈ Rn

Back to answering Q.2:
To guarantee f(x(k))− f 6 ε, it suffices to ensure (we used lemma 97):

−k ln
(

1−
√
µ/L

)
> ln (1/ε) + ln

(
L+

γ0
2

)
+ ln

(
‖x(0) − x‖22

)
Thus, by Lemma 96, it suffices to ensure

k >
√
L/µ

[
ln(1/ε) + ln

(
‖x(0) − x‖22

)
+ ln(L+ γ0/2)

]
Therefore,

O
(√

L/µ
[
ln(1/ε) + ln

(
‖x(0) − x‖22

)
+ ln(L+ µ/2)

])
Assuming α0 =

√
µ/L

iterations of Nesterov’s Algorithm suffices.
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How about Nonsmooth Convex Optimization?
f : Rn → Rn, convex. Recall, subgradient of f at x ∈ Rn is h ∈ Rn such that f(x) > f(x) +
hT (x− x),∀x ∈ Rn

Theorem 98

Let f : Rn → R be a convex function. Then, x ∈ Rn is a minimizer of f iff 0 ∈ ∂f(x)

Proof. Let f : Rn → R be convex, x ∈ Rn. Then,

0 ∈ ∂f(x)⇔ f(x) > f(x), ∀x ∈ Rn

Assumptions for iteration complexity lower bound
f is convex, has a unique minimizer x, ‖x(0) − x‖26 R, f is Lipschitz on B(x,R) with Lipschitz
constant L.

Remark. (P.2) at each iteration k, an algorithm inputs x(k), gets f(x(k)), h(k) ∈ ∂f(x(k)) generates
x(k+1) ∈ x(0) + span{h(0), h(1), . . . , h(k)}

Theorem 99

For every choice of integer n > 2, and integer k ∈ {0, 1, . . . , n− 1}, x(0) ∈ Rn, R > 0, L >
0, there exists a convex function f : Rn → R with a unique minimizer x ∈ B(x(0), R) such
that f is Lipschitz continuous on B(x,R) with Lipshitz constant L and

f(x(k))− f >
L R

2(2 +
√
k + 1)

for every First-Order algorithm obeying property (P.2)

Proof. Just give an idea.
Consider the family of functions

fk : Rn → R, k ∈ {1, 2, . . . , n}

defined by

fk(x) := µ1

∥∥∥∥∥∥∥
x1...
xk


∥∥∥∥∥∥∥
∞

+
µ2

2
‖x‖22

for suitable µ1, µ2 > 0
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Well,trivially, x := 0 is the unique minimizer ∀k, and the nonsmooth part of fk, even though tries
to hide some information, it does not provide enough of a challenge against fast convergence.
Next,let’s try

fk(x) := µ1 max
j∈{1,2,...,k}

{xj}+
µ2

2
‖x‖22

∀k ∈ {1, 2, . . . , n}, where µ1, µ2 > 0 to be chosen.

[x(k)]j :=

{
− µ1
µ2k
, if j ∈ {1, 2, . . . , k}

0, otherwise

is the unique minimizer of fk.

∂fk(x) = µ2x+ µ1conv{ej : j ∈ J(x)},∀k ∈ {1, 2, . . . , n}

where J(x) := {j : xj = maximum
i∈{1,2,...,k}

{xi}}

fk := fk(x(k)) = − µ2
1

µ2k
+
µ2

2
k
µ2
1

µ2
2k

2
= − µ2

1

2µ2k

Claim: fk is Lipschitz continuous on B(x(k), R),∀k ∈ {1, 2, . . . , k}
Proof of claim: Let y ∈ Rn and u ∈ ∂fk(y). Then

fk(y)− fk(x) 6 〈u, y − x〉 6 ‖u‖2‖y − x‖2,∀x ∈ Rn

Thus,
|fk(y)− fk(x)|6 ‖u‖2‖y − x‖2,∀x, y ∈ Rn

And we know that

‖u‖26 µ1

√
k + µ2‖x(k)‖2+µ2‖x− x(k)‖26

(√
k +

1√
k

)
µ1 + µ2‖x− x(k)‖2

Therefore, for every x, y ∈ B(x(k), R)

|fk(y)− fk(x)|6
[(√

k +
1√
k

)
+Rµ2

]
︸ ︷︷ ︸

Lipschitz constant

‖y − x‖2

Choosing µ1 :=
√
k+1

2+
√
k+1

L, µ2 := L
(2+
√
k+1)R

, with the above ingredients leads to a proof of Theo-
rem 99.
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3.3.3 An Optimal Subgradient Algorithm

Let S ⊆ Rn be a closed convex set. Let f : |Rn → R be a convex function. Consider the
continuous optimization problem: {

inf f(x)

s.t. x ∈ S

Assume: ∀x ∈ Rn, we can efficitently compute

proj(x|S) = argmin {‖x− y‖2: y ∈ S}

Algorithm:
Initialization: Choose x(0) ∈ S, and a sequence {αk} ⊂ R such that αk > 0,∀k ∈ Z+, αk ↘
0,
∑∞

k=0 αk =∞
At iteration k:(we have x(k))
Compute f(x(k)), d(k) ∈ ∂f(x(k)),

x(k+1) := proj

(
x(k) − αk

d(k)

‖d(k)‖2
|S
)

Theorem 100

let S ⊆ Rn be a closed convex set. Let f : Rn → R be convex and x := argmin{f(x) : x ∈
S} (a unique minimizer). Suppose ∃R > 0 such that f is Lipschitz continuous on B(x,R),
with Lipschitz constant L. Then the above algorithm generates a sequence {x(k)} satisfying

f(x(k))− f 6 L
R2 +

∑k
i=0 α

2
i

2
∑k

i=0 αi
,∀k ∈ Z+

Proof. Suppose all the assumptions in the statement of the theorem hold. Denote the distance
between the ith iterate and the minimizer by δi. δi := ‖x(i) − x‖2. Then,

δ2i+1 =

∥∥∥∥proj (x(i) − αi d(i)

‖d(i)‖2
|S
)
− x
∥∥∥∥2
2

6

∥∥∥∥x(i) − x− αi d(i)

‖d(i)‖2

∥∥∥∥2
2

By Theorem 78

= δ2i − 2αi

〈
x(i) − x, d(i)

〉
‖d(i)‖

+ α2
i

⇒δ20 +
k∑
i=0

α2
i > δ2k+1 + 2

k∑
i=0

αi

〈
x(i) − x, d(i)

〉
‖d(i)‖︸ ︷︷ ︸

We can show that this is bounded below by 2
L
(f(x(k))− f)

∑k
i=0 αi
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Suppose we want to stop after iteration K.
Then let’s choose αi := R√

K+1
,∀i ∈ {1, 2, . . . , K}. Thus,

R2 +
∑K

i=0 α
2
i

2
∑K

i=0 αi
=

2R2

2R
√
K + 1

=
R√
K + 1

⇒f(x(K))− f 6
L R√
K + 1

which meets the lower bound from Theorem 99
If we want ε = LR√

K+1
(⇔ k + 1 = L2R2

ε2
)

If L,R both O(1), this iteration complexity bound is O( 1
ε2

).
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