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1 Introduction
For X ∈ Rn×n, Tr(X) denotes the trace of X ,

Tr(x) :=
n∑
i=1

Xii

For X,S ∈ Rn×n, a commonly used inner-product is :

〈X,S〉 := Tr(XTS)

=
n∑
i=1

n∑
j=1

XijSij

= Tr(SXT )

Using the above, we deduce: for every nonsingular matrix P ∈ Rn×n,

Tr(PXP−1) = Tr(XP−1P ) = Tr(X),∀X ∈ Rn×n

Given X ∈ Rn×n, the roots λ1, λ2, . . . , λn (exactly n) of the polynomial equation

det(X − λI) = 0

are the eigenvalues of X
We denotes by Sn, the space of n-by-n symmetric matrices:

Sn :=
{
X ∈ Rn×n : X = XT

}
For every X ∈ Sn, every eigenvalue of X is real. We usually order them:

λ1(X) > λ2(X) > . . . > λn(X)

Sometimes, we consider λ : Sn → Rn.
Diag : Rn → Sn,

Diag(x) :=


x1

x2 0
. . .

0 xn


diag : Sn → Rn,

diag(X) :=


X11

X22
...

Xnn
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Theorem 1: Spectral Decomposition Theorem

For every X ∈ Sn, ∃Q ∈ Rn×n, orthogonal (QTQ = I) such that

X = QDiag(λ(X))QT

In the above, columns ofQ are eigenvectors ofX . E.g., j ∈ {1, 2, . . . , n},X = QDiag(λ(X))QT .
Then,

X(Qej) = QDiag(λ(X))QTQ︸ ︷︷ ︸
=I

ej = λj(X)(Qej)

Definition 2

X ∈ Sn is called positive semidefinite if hTXh > 0, ∀h ∈ Rn. X ∈ Sn is called
positive definite if hTXh > 0, ∀h ∈ Rn \ {0}.
We denote the set of p.s.d. matrices in Sn, by Sn+

Example

X :=

4 1 1
1 5 1
1 1 2

 , S :=

2 8 0
8 4 1
0 1 5


Let h ∈ R3 be arbitrary. Then

hTXh = hT

1
1
1

 [1 1 1
]

+

3 0 0
0 4 0
0 0 1

h

=

(
3∑
j=1

hj

)2

+ 3h21 + 4h22 + h23 > 0, ∀h ∈ R3

Therefore, X is positive semidefinite. In fact, it is positive definite.

What about S? Consider h :=

 1
−1
0

,

hTSh =
[
1 −1 0

] −6
4
−1

 = −10 > 0

Therefore, S is not positive semidefinite.
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Theorem 3: Cholesky Decomposition Theorem

Let X ∈ Sn. Then,

1. X is p.s.d. iff ∃B ∈ Rn×n, lower triangular such that X = BBT

2. X is p.d. iff ∃B ∈ Rn×n, lower triangular and nonsingular such that X = BBT

Proposition 4

Let X ∈ Sn. Then TFAE:

1. X is p.s.d.

2. λ(X) > 0, which is the same as saying every eigenvalue of X is non-negative.

3. ∃µ ∈ Rn
+ (non-negative vector) and h(1), h(2), . . . , h(n) ∈ Rn such that

X =
n∑
i=1

µih
(i)
(
h(i)
)T

4. ∃B ∈ Rn×n such that X = BBT

5. For every nonempty J ⊆ {1, 2, . . . , n}, det(XJ) > 0, where XJ := {[Xij] : i, j ∈ J}

6. For every S ∈ Sn+, Tr(XS) > 0

What are Semidefinite Programming Problems?
Let’s recall Linear Programming problems first. a ∈ Rn, α ∈ R are given; x ∈ Rn is our variable
vector. Then, a linear constraint is

n∑
j=1

ajxj


>

=

6

α

LP is the problem of optimizing (minimizing or maximizing) an affine function of finitely many
real valued variables subject to finitely many linear constraints.

SDP is the problem of optimizing (minimizing or maximizing) an affine function of fintiely many
matrix variables with real entries, subsject to finitely many linear constraints and some symmetry
and positive semidefiniteness constraints on these matrix variables.
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To appreciate the power of the generalization from LP to SDP, it is useful to note

LP
x1, x2, . . . , xk ∈ R
x2 > 0

2x1 − x2 + x3 > 10

←→ SDP
X(i) ∈ Rmi×ni , i ∈ {1, . . . , k}
m2 = n2, X

(2) ∈ Sn2 , λ(X(2)) > 0

(A1x1 + A2x2 + A3x3 − 10I)

is p.s.d. whereA1, A2, A3 ∈ Sn are given (part of data)

LP
min cTx

Ax = b

x > 0


←→ SDP, C ∈ Sn

inf Tr(CX)

Tr(AiX) = bi,∀i ∈ {1, 2, . . . ,m}
X ∈ Sn1

+ ⊕ Sn2
+ ⊕ . . .⊕ Snk

+


where Sn1

+ ⊕ Sn2
+ ⊕ . . .⊕ Snk

+ is the set of all (n1 + . . .+ nk)× (n1 + . . .+ nk) matrices where the
digonal is made of matrices in Sn1

+ , . . . ,S
nk
+

n1 × n1 0
n2 × n2

. . .

0 nk × nk



More on the power of SDP in mathematical modeling:
Suppose in your application, the variable are v(1), v(2), . . . , v(n) ∈ Rn, and your objective function
and the constraints involve only affine functions of 〈v(i), v(j)〉, i, j ∈ {1, 2, . . . , n}. Then, we can
express such a nonlinear and nonconvex optimization problem as an SDP.
Define a new matrix variable X := V V T ∈ Sn+ where V T := [v(1), v(2), . . . , v(n)] ∈ Rn×n

Then Xij = 〈v(i), v(j)〉,∀i, j ∈ {1, 2, . . . , n} and we can rewrite the original optimization problem
using only X variable as an SDP.
E.g.:

2〈v(1), v(3)〉 − 〈v(1), v(2)〉 6 64~w�
2X13 −X12 6 64, X ∈ Sn+

We denote the set of n-by-n symmetric positive definite matrices by Sn++
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Lemma 5: Schur Complement Lemma

Let X ∈ Sn, T ∈ Sm++. Then,

M :=

[
T UT

U X

]
∈ Sm+n

+ ⇐⇒ (X − UT−1UT ) ∈ Sn+

Moreover, M ∈ Sm+n
++ ⇐⇒ (X − UT−1UT ) ∈ Sn++

Proof. Suppose X ∈ Sn and T ∈ Sm++. Then,

M =

[
T UT

U X

]
=

[
I 0

UT−1 I

]
︸ ︷︷ ︸

:=L

[
T 0
0 X − UT−1UT

] [
I T−1UT

0 I

]
︸ ︷︷ ︸

=LT

Then, ∀h ∈ Rm+n,

hTMh = (LTh)T
[
T 0
0 X − UT−1UT

]
(LTh)

Since L is nonosingular (det(L) = 1), M ∈ Sm+n
+ ⇐⇒ T ∈ Sm+ and (X − UT−1UT ) ∈ Sn+.

Similarly M ∈ Sm+n
++ ⇐⇒ T ∈ Sm+ and (X − UT−1UT ) ∈ Sn++

For A,B ∈ Sn, we will also use the notation A < B to mean (A − B) ∈ Sn+ and the notation
A � B to mean (A−B) ∈ Sn++. A very special case of the above lemma (m = 1, T = 1):[

1 xT

xT X

]
< 0 ⇐⇒ X − xxT < 0[

1 xT

x X

]
� 0 ⇐⇒ X − xxT � 0

Semidefinite Programming Problems in Standard Equality Form and their Duals:
Given C ∈ Sn, b ∈ Rm and a linear transformation A : Sn → Rm, we define

(P ) inf 〈C,X〉
s.t. : A(X) = b

X < 0

and its dual

(D) sup bTy

s.t. A∗(y) + S = C

S < 0

where A∗ : Rm → Sn is the adjoint of A:

〈A∗(y), X〉 := yTA(X),∀X ∈ Sn,∀y ∈ Rm

8



In more explicit form: for every linear transformation A : Sn → Rm, ∃A1, A2, . . . , Am ∈ Sn such
that

[A(X)]i = 〈Ai, X〉 = Tr(AiX),∀i ∈ {1, 2, . . . ,m}
and thus, A∗(y) =

∑m
i=1 yiAi. Therefore,

(P ) inf Tr(CX)

s.t. T r(AiX) = bi, i ∈ {1, 2, . . . ,m}
X < 0

(D) sup bTy

s.t.

m∑
i=1

yiAi + S = C

S < 0

Example

C :=

[
3 1
1 3

]
, A1 :=

[
1 0
0 1

]
, A2 :=

[
1 −1
−1 5

]
, b :=

[
1
2

]
Then,

(P ) inf Tr(CX) = 3X11 + 2X21 + 3X22

s.t. T r(A1X) = X11 +X22 = 1

Tr(A2X) = X11 − 2X21 + 5X22 = 2

X ∈ S2
+

and

(D) sup y1 + 2y2

s.t.

[
y1 + y2 −y2
−y2 y1 + 5y2

]
+ S =

[
3 1
1 3

]
S ∈ S2

+

Theorem 6: Weak Duality Relation – SDP

Let X be feasible in (P ) and (y, S) be feasible in (D). Then 〈C,X〉 − bTy = 〈X,S〉 > 0.

Proof. Suppose X , (y, S) are feasible in (P ) and (D) respectively. Then,

〈C,X〉 − bTy = 〈A∗(y) + S,X〉 − bTy by A∗(y) + S = C

= 〈S,X〉+ 〈A∗(y), X〉 − bTy
= 〈X,S〉+ yTA(X)− bTy
= 〈X,S〉 > 0 by A(X) = b,X < 0, S < 0,Proposition 4(f)
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Corollary 7

1. If (P ) is unbounded, then (D) is infeasible.

2. If (D) is unbounded, then (P ) is infeasible.

3. If for feasible solutions X of (P ) and (y, S) of (D), we have 〈X,S〉 = 0 then X is
optimal in (P ) and (y, S) is optimal in (D),

Note: Dual of (D) is ”equivalent” to (P ). So, SDP duality is an involution. To prove this (and
rigorously define ”equivalent”), we can put (D) into the form of (P ), apply the definition of dual,
and then simplify to obtain (P ).
Alternatively, we may assume, ∃X̂ ∈ Sn and ŷ ∈ Rm, Ŝ ∈ Sn such that

A(X̂) = b, A∗(ŷ) + Ŝ = C,Null(A) = {X ∈ Sn : A(X) = 0} =: L

Then, the feasible region of (P ) is
(
L+ {X̂}

)
∩ Sn+.

L⊥ := {S ∈ Sn : 〈X,S〉 = 0,∀X ∈ L}

Note that Range(A∗) = L⊥. Therfore, y ∈ Rm, S ∈ Sn satisfy A∗(y) + S = C if and only if
(S − Ŝ) ∈ L⊥. Thus, S ∈ Sn is a part of a feasible solution of (D) if and only if

S ∈
(
L⊥ + {Ŝ}

)
∩ Sn+

Objective function of (P ) for X satisfying A(X) = b :

〈C,X〉 = 〈A∗(ŷ) + Ŝ, X〉 = bT ŷ︸︷︷︸
constnat

+〈Ŝ, X〉

So,
(P ) inf

{
〈Ŝ, X〉 : X ∈

(
L+ {X̂}

)
∩ Sn+

}
Objective function value of (D) for (y, S) : A∗(y) + S = C is

bTy = A(X̂)Ty = 〈X̂,A∗(y)〉 = 〈X̂, C − S〉 = 〈C, X̂〉︸ ︷︷ ︸
constant

−〈X̂, S〉

Therefore, (D) is ”equivalent” to

inf
{
〈X̂, S〉 : S ∈

(
L⊥ + {Ŝ}

)
∩ Sn+

}
Another attractive standard form for SDPs:
Let linear transformation A : Sn → Sk, C ∈ Sn, B ∈ Sk be given. If

(P ) inf 〈C,X〉
A(x) < B

X < 0
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, then its dual is equivalent to

sup 〈B, Y 〉
A∗(Y ) 4 C

Y < 0

Let X ∈ Sn+. Define its symmetric positive semidefinite square root by applying the spectral
Decomposition theorem to X , X = QDiag(λ(X))QT and then

X
1
2 := Q [Diag(λ(X))]

1
2 QT

Proposition 8

Let X,S ∈ Sn+. Then 〈X,S〉 = 0 if and only if XS = 0.

Proof.

• (⇐= ) is straight forward, since Tr(0) = 0

• ( =⇒ ) Suppose X,S ∈ Sn+, 〈X,S〉 = 0. Then

0 = Tr(XS) = Tr(X
1
2SX

1
2︸ ︷︷ ︸

<0

) since S < 0, X
1
2 ∈ Sn

Thus, by Prop.4(b), λ(X
1
2SX

1
2 ) > 0, by the above, these eigenvalues add up to zero

(trace is the sum of eigenvalues). Therefore, λ(X
1
2SX

1
2 ) = 0 and 0 = X

1
2SX

1
2 =(

X
1
2S

1
2

)(
X

1
2S

1
2

)T
. Hence, X

1
2S

1
2 = 0. Finally, XS = X

1
2

(
X

1
2S

1
2

)
S

1
2 = 0

Proposition 9

1. Sn++ = int(Sn+)

2. Let X ∈ Sn. Then TFAE

(a) X is positive definite

(b) λ(X) > 0

(c) ∃µ ∈ Rn
++ and h(1), h(2), . . . , h(n) ∈ Rn linearly independent s.t.

X =
n∑
i=1

µih
(i)(h(i))T

(d) ∃B ∈ Rn×n nonsingular s.t. X = BBT

(e) ∀Jk := {1, 2, . . . , k}, k ∈ {1, 2, . . . , n}, det(XJk) > 0

(f) ∀S ∈ Sn+ \ {0}, 〈X,S〉 > 0

(g) X < 0 and rank(X) = n

11



Example

Let X ∈ R6, X :=

x1 x2 x3
x2 x4 x5
x3 x5 x6

.

Then by Prop.6 part(e), X ∈ S3
++ if and only if

x1 > 0

x1x4 − x22 > 0

x1x4x6 + 2x2x3x5 − x23x4 − x1x25 − x6x22 > 0

12



2 Duality Theory
Duality theory is very useful in many aspects of optimization including applications, effective
utilization of algorithms, the design and analysis of efficient and robust algorithms, and The devel-
opment and powerful utilization of the theory. For example,

• We can generate (using the Weak Duality Relation) concise and robust evidence/proof that
our feasible solutions are optimal or near-optimal.

• We can derive optimality conditions which help design efficient, robust algorithms, including
stopping criteria for such algorithms

• We can perform sensitivity and what-if analysis

• Depending on the application, optimal and near-optimal solutions provide information and
insights based on our primal optimal solutions (e.g. shadow prices, fair distribution or pricing
of resources, outlier defection, infeasibility detection)

• etc

Some notions of duality:

Dual Cone: Given K ⊆ Rd,

K∗ :=
{
s ∈ Rd, 〈x, s〉 > 0,∀x ∈ K

}
Example

1. K := Rd
+, under the usual Euclidean inner-product,

K∗ =
{
s ∈ Rd, xT s > 0, ∀x ∈ Rd

+

}
= Rd

+

2. K := Sn+, under the trace inner-product,

K∗ =
{
S ∈ Sn : Tr(XS) > 0,∀X ∈ Sn+

}
= Sn+

3. Exercise: Let

K :=

{(
t
x

)
∈ R⊕ Rn :

n∑
j=1

|xj|6 t

}
What is the dual cone of K, under Euclidean inner product?

Polar Set: Given K ⊆ Rd,

Ko :=
{
s ∈ Rd : 〈x, s〉 6 1,∀x ∈ K

}
13



Note: if K is a cone, then Ko = −K∗
Legendre-Fenchel conjugate of a function
Given f : Rd → R ∪ {+∞},

f∗(S) := sup{−〈s, x〉 − f(x) : x ∈ Rd}

Example

f : Sn → R ∪ {+∞},

f(X) :=

{
− ln det(X), if X ∈ Sn++

+∞, otherwise

f∗(S) = sup{−Tr(SX)− f(X) : X ∈ Sn}

=

{
− ln det(S)− n, if S ∈ Sn++

+∞, otherwise

If S /∈ Sn++ we can find {X(k)} ⊂ Sn++ such that Tr(SX(k)) →constant and f(X(k)) →
−∞.
If S ∈ Sn++, then −f ′(X) = S ⇐⇒ X−1 = S ⇐⇒ X = S−1.

Theorem 10: Hyperplane Separation Theorem for Closed Convex Sets

Let G ⊂ Rd be a nonempty, closed convex set. Suppose 0 /∈ G. Then ∃a ∈ Rd \ {0} and
α ∈ R+ such that

G ⊆ {x ∈ Rd : aTx > α}

14



Corollary 11

Let G1, G2 ⊂ Rd be disjoint, nonempty closed convex sets. If G1 or G2 is bounded then
∃a ∈ Rd \ {0} such that

inf{aTx : x ∈ G1} > sup{aTx : x ∈ G2}

If both sets G1, G2 are allowed to be unbounded, we cannot guarantee the strict inequality
above.

Theorem 12

Let G ⊂ Rd be a nonempty convex set. Suppose 0 /∈ G. Then, ∃a ∈ Rd \ {0} such that

G ⊆ {x ∈ Rd : aTx > 0}

Corollary 13

Let G1, G2 ⊂ Rd be nonempty, disjoint convex sets. Then ∃a ∈ Rd \ {0} such that

inf{aTx : x ∈ G1} > sup{aTx : x ∈ G2}

15



Recall,

(P ) inf Tr(CX)

s.t. A(X) = b

X < 0

(D) sup bTy

s.t. A∗(y) + S = C

S < 0

Definition 14

We say that (P ) satisfies the slater condition , or (P ) has a slater point, if ∃X ∈ Sn++ such
that A(X) = b. (D) satisfies the slater condition, or (D) has a Slater point if ∃y ∈ Rm and
S ∈ Sn++ such that

A∗(y) + S = C

Theorem 15: A Strong Duality Theorem

Suppose (D) has a Slater point and the objective value of (D) is bounded from above. Then
(P ) attains its optimal value and the optimum values of (P ) and (D) are the same.

Proof. Suppose ∃y ∈ Rm, S ∈ Sn++ such that A∗(y) + S = C. Further assume ∃γ ∈ R such that
bTy 6 γ for all feasible solutions (y, S) of (D).
Let z∗ := sup{bTy : A∗(y) + S = C, S < 0}. We may assume b 6= 0. (If b = 0, then X = 0 is a
feasible solution of (P ); thus, X, (y, S)) are optimal in (P ) and (D) respectively, by Corollary 7
par(C), and we are done).
Next, we utilize Corollary 13. Let

G1 := Sn++, G2 :=
{
S ∈ Sn : S = C −A∗(y), bTy > z∗ for some y ∈ Rm

}
G1 and G2 are convex, G1 6= ∅. We can check G2 6= ∅ (for example, using the Fundamental
Theorem of LP). Also, G1 ∩ G2 = ∅ (if not, ∃ỹ ∈ Rm s.t. A∗(ỹ) ≺ C and bT ỹ > z∗; letting
ŷ := ỹ + εb for some ε > 0 small enough yields A∗(ŷ) ≺ C and bT ŷ = bT ỹ︸︷︷︸

>z∗

+ ε‖b‖22︸ ︷︷ ︸
>0

> z∗, a

contradiction).
Therefore, Corollary 13 applies to G1, G2. Thus, ∃X̃ ∈ Sn \ {0} such that

inf
{
〈X̃, S〉 : S ∈ Sn++

}
> sup

{
〈X̃, S〉 : S ∈ G2

}
Since G2 6= ∅, the LHS is bounded from below. Since Sn++ is a cone, 〈X̃, S〉 > 0, ∀S ∈ Sn++

(otherwise, the LHS would be −∞). Furthermore, 〈X̃, S〉 > 0, ∀S ∈ cl(Sn++) = Sn+. Hence,
by proposition 4, part (f), X̃ ∈ Sn+. We already proved LHS > 0. Since we can take a sequence
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{S(k)} ⊂ Sn++ such that S(k) → 0, LHS = 0. Therefore,

0 > 〈X̃, C〉 − 〈X̃,A∗(y)〉 for every y ∈ Rm s.t. bTy > z∗

⇐⇒ A(X̃)Ty > 〈C, X̃〉 for every y ∈ Rm s.t. bTy > z∗

Thus, A(X̃)Ty is bounded from below on the set
{
y ∈ Rm : bTy > z∗

}
. LP duality theorem im-

plies A(X̃) = αb for some α ∈ R+. If α = 0, we get A(X̃) = 0 and 0 > 〈C, X̃〉 = 〈A∗(y) +
S, X̃〉 = A(X̃)︸ ︷︷ ︸

=0

y

︸ ︷︷ ︸
=0

+ 〈S, X̃〉︸ ︷︷ ︸
>0, prop6(f)

> 0, a contradiction. Hence, α > 0. Define X̂ := 1
α
X̃ ∈ Sn+, we

have A(X̂) = b and A(X̂)Ty > 〈C, X̂〉 for all y ∈ Rm s.t. bTy > z∗. Therefore, 〈C, X̂〉 6 z∗

and by the Weak Duality Relation (theorem 6), X̂ is optimal in (P ) and optimal objective values
of (P ) and (D) are the same.

Since we estabilished that the dual of (D) is equivalent to (P ), we have

Corollary 16

If (D) has a feasible solution and (P ) has a Slater point, then (D) attains its optimal objec-
tive value, and the optimal objective values of (P ) and (D) coincide.

Corollary 17

If (P ) and (D) both have Slater points, then both (P ) and (D) attain their optimal objective
values and these objective ’ values are the same

Remark. The above theorem and its proof generalize to conic convex optimization setting where
we may pick our standard form as

(P ) inf 〈c, x〉
A(x) = b

B(x) > d

x ∈ K
(D) sup 〈b, y〉+ 〈d, u〉

A∗(y) + B∗(u) + s = c

u > 0

s ∈ K∗

where c ∈ Rn, b ∈ Rm1 , d ∈ Rm2 ,A : Rn → Rm1 ,B : Rn → Rm2 , A,B are linear transformations
and A,B, b, c, d are all given; K ⊆ Rn is a closed convex cone.
For this more general set up we can use the following ”restricted” notion of Slater point: x ∈ Rn

is a Slater point for (P ) if x ∈ int(K) and A(x) = b,B(x) > d. (We do not require that
x ∈ int {x ∈ Rn : B(x) > d} = {x ∈ Rn : B(x > d)})
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”Restricted” Slater Point (interiosity condition restricted to the nonpolyhedral constraints) for (D)
is (y, u, s) ∈ Rm1 ⊕ Rm2 ⊕ Rn such that

A∗(y) + B∗(u) + s = c, u > 0, s ∈ int(K∗)

How useful are these duality theorems of SDP (Weak Duality Relation and the Strong Duality Theorem)?
Very useful!
In many applications (engineering, big data, machine learning, statistics, computer science, other
areas of mathematics, ...) we construct a mathematical model that might be twoo hard or impossi-
ble to solve exactly:

(P ) inf f(x) s.t. x ∈ Φ

We can construct and SDP relaxation (the ”=” is by the assumption of Strong Duality Theorem)

(P ) inf f(x), x ∈ Φ > inf 〈C,X〉, A(X) = b, X < 0︸ ︷︷ ︸
SDP

= sup bTy, A∗(y) + S = C, S < 0︸ ︷︷ ︸
SDD

Suppose we have a fast algorithm (heuristic) which provides feasible solutions to (P ) that usually
have good objective function values. We run the heuristic and obtain x̂ ∈ Φ, we also solve (SDD)
approximately and obtain a feasible solution (y, s) of (SDD). Then,

f(x̂) > v > bTy

where v is the unknown optimal value of (P ), then bTy is closed to the optimal value of (SDP) and
(SDD).

Pitfalls in SDP Duality:
In the statement of our Strong Duality Theorem (Theorem 15) the assumptions cannot be removed
(without changing the rest of the statement). Consider, for example, the statement of Corollary 16
and the following SDP instance.
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Example 18

m := 1, n := 2, C :=

(
1 0
0 0

)
, A1 :=

(
0 1
1 0

)
, b := 2

(P ) inf Tr(CX) = X11

s.t. T r(A1X) = b ⇐⇒ 2X21 = 2

X < 0

(D) sup 2y

s.t.

[
1 −y
−y 0

]
< 0

which is

(P ) inf X11

s.t.

(
X11 1
1 X22

)
< 0

(D) sup 2y

s.t.

(
1 −y
−y 0

)
< 0

(P ) has a Slater point X :=

(
2 1
1 2

)
, and (D) has a feasible solution y := 0. Thus,

Corollary 16 applies.
(D) attains its optimal value and the optimal objective values of (P ) and (D) are the same.
Feasible region of (D) is a singleton {0}. Therefore, y = 0 is the unique optimal solution
of (D). Feasible region of (P ):{(

X11 1
1 X22

)
: X11 > 0, X11X22 > 1

}
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Example: 18 continued

Hence the optimal obj. value of (P ) is nonnegative.
Consider the following family of feasible solutions of (P ).

X(ε) :=

(
ε 1
1 1

ε

)
, ε > 0

As ε ↘ 0, Tr(CX(ε)) ↘ 0; however, there is no feasible solution of (P ) with objective
value zero. Therefore, optimal obj. value of (P ) is zero but it is not attained.
What went wrong with (P )?
Even thought the feasible region of (P ) is a closed set (this is al-

ways true: intersection of closed sets), its projection onto
(
R
0

)
is not:

Note that the statement of Theorem 15 does note directly apply to this (P ) and (D). indeed,
(D) does not have a Slater point and (P ) does not have an optimal solution.

Things can get worse:
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Example 19

Consider m := 2, n := 3, C :=

0 1 0
1 0 0
0 0 0

,

A1 :=

0 0 0
0 1 0
0 0 0

 , A2 :=

 0 −1 0
−1 0 0
0 0 2

 , b :=

[
0

2γ

]

where γ ∈ R++.

(P ) inf 0

s.t.

X11 0 X31

0 0 0
X31 0 γ

 < 0

Optimal value of (P ) is zero, ∀γ ∈ R++ attained by X(γ) :=

0 0 0
0 0 0
0 0 γ


(D) sup 2γy2

s.t.

 0 1 + y2 0
1 + y2 −y1 0

0 0 −2y2

 < 0

y2 = −1, y :=

[
0
1

]
is an optimal solution of (D) with objective value −2γ.

Both optimal values zero for (P ), and −2γ for (D) are attained. However, there is a duality
gap of −2γ.
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Pitfalls in SDP Duality (continued):
In the special case of Linear Programming problems, if (P ) and (D) have feasible solutions then
they both have optimal solutions and for every pair of optimal solutions x of (P ) , (y, s) of (D)
complementarity holds: xjsj = 0, ∀j. Moreover, ∃ an optimal pair x̂ of (P ) and (ŷ, ŝ) of (D) for
which strict complementarity holds: x̂+ ŝ > 0.
In the general set up of (SDP ), we proved that if (P ) and (D) have Slater points, then they both
have optimal solutions and for every pair of optimal solutions X of (P ) and (y, S) of (D) com-
plementarity holds: XS = SX = 0. However, as you are showing in Assignment 1 4(c), strict
complementarity may fail to hold for some SDPs, even if both (P ) and (D) have Slater points.

Why do we care about strict complementarity?
Very useful and/or necessary for:

1. identifying the set of optimal solutions for (P ) and (D)

2. detecting infeasibility, unboundedness

3. establishing optimality conditions

4. robustness and fast local convergence of various algorithms for SDP

5. estabilishing sensitivity analysis, what-if analysis, stability results, error bounds

6. etc

Sort of good news:
Fix positive integers n > m > 1. Consider the set of data (A, b, c) ∈ L(Sn,Rm) ⊕ Rm ⊕ Rn for
which (P ) has a feasible solution. Among the elements of this set of data, ”almost” every instance
has a Slater point. Similarly, if we focus on the set of data (A, b, c) for which both (P ) and (D)
have feasible solutions, then for ”almost” every such instance (P ) and (D) both have Slater points
and they have a strictly complementary pair of optimal solutions. For a more rigorous statement,
see Theorem 2.20 (of the textbook).
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Certifying Infeasibility and Unboundedness in SDPs

Example 20

(P ) inf Tr

[(
0 1
1 0

)
X

]
: Tr

[(
1 0
0 0

)
X

]
= 1, X < 0

(D) sup y :

(
y 0
0 0

)
4

(
0 1
1 0

)
. Equivalently

(P ) inf 2X21 s.t.

(
1 X21

X21 X22

)
< 0

(D) sup y s.t.

(
−y 1
1 0

)
< 0 =⇒ (D) is infeasible.

Consider X(α) :=

(
1 α
α α2

)
,∀α ∈ R. X(α) is feasible in (P ), ∀α ∈ R and the objective

function value 2[X(α)]21 = 2α → −∞ as α → −∞. Therefore, (P ) is unbounded. All
seems well here, (P ) is unbounded =⇒ (D) is infeasible.

Do we have certificate of unboundedness for (P ) (equivalently, a certificate of infeasibility for
(D)) similar to those for LPs?(Generalization of Farkas’ Lemma?)
Recall, for every A ∈ Rm×n, c ∈ Rn, exactly one of the following systems has a solutions:

1. ATy 6 c

2. Ad = 0, d > 0, cTd < 0

Since in Example 20, (D) is infeasible, can we find D ∈ S2
+ such that A(D) = 0, and Tr(CD) <

0?
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(D) is infeasible since
(
−y 1
1 0

)
< 0 cannot hold no matter what y ∈ R is. However, (D) is

”almost feasible”.

Definition 21

Let A : Sn → Rm be a linear transformation and C ∈ Sn. Then, we say that A∗(y) 4 C
is almost feasible if for every ε > 0, ∃C ′ ∈ Sn such that ‖C − C ′‖< ε and A∗(y) 4 C ′ is
feasible.

Note:A∗(y) 4 C is feasible =⇒ A∗(y) 4 C is almost feasible.

Theorem 22

Let A : Sn → Rm be linear and C ∈ Sn. Then

1. If ∃D ∈ Sn+ such that A(D) = 0, T r(CD) < 0 then @y ∈ Rm such that A∗(y) 4 C;

2. If @D ∈ Sn+ such that A(D) = 0, T r(CD) < 0 then A∗(y) 4 C is almost feasible.

Theorem 23

∃D ∈ Sn+ such thatA(D) = 0, T r(CD) < 0 if and only ifA∗(y) 4 C is not almost feasible.

Proof.

• ⇐= Theorem 22

• =⇒ Suppose there exists such D. We may assume Tr(CD) = −1 (replace D by
1

|Tr(CD)|D). Then for every C ′ ∈ Sn such that ‖C − C ′‖F< 1
‖D‖F

, A∗(y) 4 C ′ is infea-
sible ( if A∗(y) 4 C ′, then 〈D,A∗(y)〉 6 Tr(C ′D) =⇒ 0 = yTA(D) 6 Tr(CD) −
Tr[(C − C ′)D] 6 −1 + ‖C − C ′‖F‖D‖F< 0 a contradiction). Therefore, {A∗(y) 4 C} is
not almost feasible.

Linear Programming SDP
ATy 6 c is infeasible A∗(y) 4 C is not almost feasible

iff iff
∃d ∈ Rn such that ∃D ∈ Sn such that

Ad = 0 A(D) = 0
d > 0 D < 0
cTd < 0 Tr(CD) < 0

Another way to deal with possible dualitty gaps, dual attainment issues, infeasibility and unbound-
edness certificates, is to keep the statements of theorems analogous to the LP special case but
change the definition of the dual.
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Slater Condition, Facial Reduction, Extended Lagrange-Slater Dual

Definition 24

Let K ⊆ Rd be a closed convex cone. A convex conve G ⊆ K is a face of K if for every
pair u, v ∈ K such that (u+ v) ∈ G, we have u ∈ G, v ∈ G.

For example, let K := R3
+. Then, G :=

{
x ∈ R3

+ : x3 = 0
}

is a face of K.

A face G of K is exposed, if ∃a ∈ Rd \ {0}, such that

G = {x ∈ K : 〈a, x〉 = 0} and K ⊆
{
x ∈ Rd : 〈a, x〉 6 0

}
.

Note:a ∈ −K∗.
A face G of K is a proper face of K if

{0} ⊂ G ⊂ K

Theorem 25

(a) Every nonempty face of Sn+ is characterized by a unique subspace L ⊆ Rn such that

G =
{
X ∈ Sn+ : Null(X) ⊇ L

}
, relint(G) =

{
X ∈ Sn+ : Null(X) = L

}
(b) Every proper face of Sn+ is exposed.

(c) Sn+ is projectionally exposed. That is, every nonempty face G of Sn+ can be expressed
as

G = (I −Q)Sn+(I −Q)

where Q ∈ Sn is the projecction onto the unique subspace L defining G.

The above theorem implies that every proper face of Sn+ is linearly isomorphic to Sk+ for some
k ∈ {1, 2, . . . , n− 1}.
So, G is a proper face of Sn+ iff ∃k ∈ {1, 2, . . . , n− 1} and Q ∈ Rn×n orthogonal such that

G =

{
Q

[
X 0
0 0

]
QT : X ∈ Sk+

}
Given (A, b, c) suppose we find the minimal face (with respect to set inclusion) G of Sn+ which
contains the feasible region of (P ).
Then our problem (P ) is equivalent to

(P̃ ) inf Tr(CX)

A(X) = b

X ∈ G
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Let Q ∈ Rn×n be orthogonal such that G =

{
Q

[
X 0
0 0

]
QT : X ∈ Sk+

}
Define C ∈ Sk, A : Sk → Rm using Q. Then (P̃ ) is equivalent to

(P ) inf Tr(CX)

A(X) = b

X ∈ Sk+

(P ) satisfies the Slater condition!
To find the minimal face of Sn+ containing the feasible region of (P ) is no easier than finding a
solution to (P ) in the worst case. However, the following result is useful:

Lemma 26

LetA : Sn → Rm be linear and b ∈ Rm. Then exactly one of the following two systems has
a solution

(I) A(X) = b, X ∈ Sn++

(II) A∗(y) ∈ Sn+ \ {0}, bTy = 0

Lemma 26 says: either (P ) has a Slater point or, we ccan find a supporting Hyperplane {X ∈ Sn :
Tr(SX) = 0} of Sn+ whichi contains the feasible region of (P ). Here, if u ∈ Rm is a solution of
system (II), we can choose S := A∗(u).
Recursive application of the above idea and Lemma 26 eventually results in an SDP like (P ) above
which does satisfy the Slater condition.
Note that with each application of Lemma 26 k in Sk+ goes down by at least 1, so n applications of
Lemma 26 suffices.
This process is sometimes called facial reduction.
A related, alternative approach is to write down a modified dual problem directly (instead of doing
the computations required to find u above, possibly n times).
Suppose the problem we want to solve is

(D) sup bTy A∗(y) 4 C

Define its Extended Lagrange-Slater Dual as

(ELSD) inf Tr(C(U +W ))

s.t. A(U +W ) = b

W ∈ Wn

U < 0

whereWn ⊆ Sn a linear subspace defined using A and C, n(m + 1) linear equations and n p.s.d
matrix inequalities (” < ”) on 2n-by-2n matrices.
Detailed description ofWn is Given in the textbook on page 42 (before Theorem 2.28).
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Theorem 27

If (D) has a finite optimal value, then the optimal values of (D) and (ELSD) are the same
and (ELSD) attains its optimal value.

Theorem 28

LetA : Sn → Rm linear, C ∈ Sn. Then, exactly one of the following systems has a solution.

1. A∗(y) 4 C

2. A(U +W ) = 0, W ∈ Wn, U < 0, T r(C(U +W )) = −1

Theorem 29

In the real number computation model, the problem of deciding SDP feasibility is in NP ∩
co−NP

Open Problems:

1. Does there exist a more efficient representation of the subspaceWn in (ELSD)?

2. Is SDP feasibility in NP in the Turing machine model?

3. ...

In many application of SDP , our SDP is not an exact formulation but a relaxation of a much
harder problem. So,
When does the Slater Condition hold in SDP relaxations?
Given c ∈ Rn, our hard optimization problem is

inf cTx, s.t. x ∈ F

, where F ⊂ Rn a difficult nonconvex set.
We can also consider

inf cTx+ xTCx, s.t. x ∈ F

, where C ∈ Sn is also given.

Homogeneous Equality Form:
Suppose ∃A : Sn+1 → Rm linear, such that

F =

{
x ∈ Rn : A

(
1 xT

x xxT

)
= 0

}

Which sets F can be represented in Homogeneous Equality Form?
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Proposition 30

Every system of finitely many multivariate polynomial equations and inequalities can be put
into Homogeneous Equality Form.

Proof ideas:
First, show that we can handle systems of multivariate quadratic equations and quadratic inequali-
ties.
Multivariate Quadratic Equations
Given Q ∈ Sn, q ∈ Rn, γ ∈ R,

0 =xTQx+ 2qTx+ γ

⇐⇒ Tr

[(
γ qT

q Q

)(
1 xT

x xxT

)]
= 0

=γ + qTx+ Tr(qxT ) + Tr(QxxT )

=γ + qTx+ Tr(xT q) + Tr(xTQx)

=γ + 2qTx+ xTQx

Multivariate Quadratic Inequalities
Given Q ∈ Sn, q ∈ Rn, γ ∈ R,

xTQx+ 2qTx+ γ 6 0
iff

xTQx+ 2qTx+ γ + s̃2 = 0
iff

Tr

γ qT 0
q Q 0
0 0T 1

1 xT s̃
x xxT s̃x
s̃ s̃xT s̃2

 = 0

Note the right matrix in the Tr[·] is [1 xT s̃]T [1 xT s̃].
Higher degree multivariate polynomials
Ex: 2x41 + x1x

3
2 + x23 − 5 = 0

⇐⇒


2x24 + x5x6 + x23 − 5 = 0

x21 − x4 = 0

x1x2 − x5 = 0

x22 − x6 = 0

and

F =

{
x ∈ Rn : A

(
1 xT

x xxT

)
= 0

}
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SDP relaxation:

P̂ :=

{(
1 xT

x X

)
∈ Sn+1 : A

(
1 xT

x X

)
= 0,

(
1 xT

x X

)
< 0

}
inf Tr

[(
0 1

2
cT

1
2
c 0

)(
1 xT

x X

)]
s.t. A

(
1 xT

x X

)
= 0,

(
1 xT

x X

)
< 0

Theorem 31

If conv(F ) is full dimensional, then the Slater condition holds for the SDP relaxation above.

Proof. Suppose conv(F ) is full-dimensional. Then ∃v(1), v(2), . . . , v(n+1) ∈ F that are affinely

independent . ⇐⇒
(

1
v(1)

)
,

(
1
v(2)

)
, . . . ,

(
1

v(n+1)

)
are linearly independent. Consider X :=

1
n+1

∑n+1
i=1

(
1
v(i)

)(
1 v(i)

T
)

. By Proposition 9, part (c), X ∈ Sn+1
++ . Moreover,

X ∈ conv
{(

1 xT

x xxT

)
∈ Sn+1 : x ∈ F

}
⊆ P̂

Therefore, X is a Slater point for the SDP relaxation.

Given c ∈ Rn, our hard optimization problem is

inf cTx s.t. x ∈ F

, where F ⊂ Rn a difficult nonconvex set.
If dim(conv(F )) = n, then a very large class of SDP relaxations for the above-mentioned difficult
nonconvex optimiztion problem will have Slater points.
What if dim(conv(F )) 6 n− 1?
We first determine the affine hull of F (the smallest affine space containing F , equivalently, the
intersection of all affine spaces containing F ).
Suppose dim(conv(F )) = d 6 n − 1. Then, we find L ∈ Rd×n, l ∈ Rn such that rank(L) = d
and x ∈ F =⇒ x = l + LTy for some y ∈ Rd.
Define a linear transformation L : Sn+1 → Sd+1,

L(Z) :=

(
1 lT

0 L

)
Z

(
1 0T

l LT

)
.

Its adjoint L∗ : Sd+1 → Sn+1 is given by

L∗(W ) =

(
1 0T

l LT

)
W

(
1 lT

0 LT

)
.

Define A : Sd+1 → Rm,
A(W ) := A(L∗(W )).
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Then,

F =

{
l + LTy : A

(
1 yT

y yyT

)
= 0, y ∈ Rd

}
which leads to the SDP relaxation

P̂L :=

{(
1 yT

y Y

)
∈ Sd+1 : A

(
1 yT

yT Y

)
= 0,

(
1 yT

y Y

)
< 0

}
Theorem 32

P̂L ∩ Sd+1
++ 6= ∅

That is, we can always guarantee the Slater condition holds in a wide class of SDP relaxations,
provided we can identify the affine hull of F . Moreover, in many cases we decrease the size of the
SDP.
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3 Solving SDP Problems

3.1 Ellipsoid& Ellipsoid Method
E ⊂ Rd is an ellipsoid if ∃c ∈ Rd (centre) and A ∈ Sd++ (shape & size) such that

E =
{
x ∈ Rd : (x− c)TA−1(x− c) 6 1

}
=: E(A, c)

Note:

E(A, c) =
{
x ∈ Rd : ‖A−

1
2 (x− c)‖226 1

}
=
{
A

1
2 z + c : ‖z‖226 1, z ∈ Rd

}
= c+ A

1
2Bd(0, 1) the B is unit ball in Rd centred at the origin

So, ellipsoids are simple convex sets in that they are affine images (under symmetric positive
defintie maps plus a shift) of Euclidean unit balls.
Many attributes of ellipsoids are easy to handle

vol(E(A, c)) =
√

det(A)vol(Bd(0, 1)),

longest axis of E(A, c) corresponds to an eigenvector of A determining λ1(A); shortest axis of
E(A, c) corresponds to an eigenvector of A determining λd(A).
However, ellipsoids are versatile enough to approximate any given convex set well:

Theorem 33

For every compact convex set in Rd with nonempty interior, there exists a unique mini-
mal volume ellipsoid containing that set. Moreover, shrinking that min. volume ellipsoid
(around its centre) by a factor of at most d gives an ellipsoid contained in the convex set.
(Löwner-John Theorem, John Theorem, Löwner-John ellipsoid).

The factor d in the statement above is tight: use as the convex set, d-dimensional simplex.
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Ellipsoid Method does not require an explicit description of the feasible region, it suffices to have
a weak separation oracle.
Let G ⊂ Rd be a convex set. Given δ > 0, δ-relaxation of G is

relax(G, δ) :=
{
u ∈ Rd : ‖u− x‖26 δ for some x ∈ G

}
which is convex by definition

A weak separation oracle for G takes as input x ∈ Qd, δ ∈ Q++ and it outputs:

• ”x ∈ relax(G, δ)” OR

• a ∈ Qd such that ‖a‖∞= 1 and

〈a, x〉 > 〈a, x〉 − δ, ∀x ∈ relax(G, δ)

3.1.1 Ellipsoid Method for finding a feasible solution

Input: A ∈ Sd++, c ∈ Rd such that E(A, c) ⊇ G (where G ⊂ Rd is a convex set, we want to
compute x ∈ G), ε ∈ Q++.
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Proposition 34

Algorithm:

1. Call the separation oracle: ”is c ∈ G?”

• if c ∈ G, STOP

• else retrieve a ∈ Qd, ‖a‖∞ separating c from G.

2. • If vol(E(A, c)) < ε, STOP (vol(G) < ε)

• else Ẽ := {x ∈ E(A, c) : 〈a, x〉 6 〈a, c〉}.

3. Compute the minimum volume ellipsoid E(A, c) (A, c are updated) containing Ẽ; go
to step1.
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Lemma 35

Let A+ ∈ Sd++, c+ ∈ Rd such that E(A+, c+) is the minimum volume ellipsoid containing

Ẽ = {x ∈ E(A, c) : 〈a, x〉 6 〈a, c〉} .

Then

c+ = c− 1

(d+ 1)
√
aTAa

Aa, A+ =
d2

d2 − 1

[
A− 2

(d+ 1)aTAa
AaaTA

]
Moreover,

ln

(
vol(E(A+, c+))

vol(E(A, c))

)
6 − 1

2d

The last lemma tells us that

• every iteration of Algorithm 34 can be implemented efficiently, and

• the volume of the current ellipsoid decreases ”significantly enough”.

Theorem 36

Let G ⊂ Rd be a convex set such that

(i) We have access to a weak separation oracle for G,

(ii) G ⊆ Bd(0, R), R ∈ Q++ is given.

Then, for every given ε ∈ Q++, after O(d2 ln(R/ε)) iterations of Algorithm 34, we either
compute x ∈ relax(G, ε) or prove that vol(G) 6 ε.

We can extend Algorithm 34 to handle convex optimization problems of form:

inf f(x) s.t. x ∈ G

where f : Rd → R is a convex function. Just like set G, accessing f via an oracle will suffice.
A subgradient oracle for f takes as input x ∈ Rd, returns f(x) and h ∈ Rd such that

f(x) > f(x) + hT (x− x),∀x ∈ Rd
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Theorem 37

Let G ⊂ Rn be a convex set and f : Rd → R be a convex function such that

(i) ∃ a weak separataion oracle for G,

(ii) ∃ a subgradient oracle for f ,

(iii) r and R ∈ Q++ are given such that Bd(x̃, r) ⊆ G ⊆ Bd(0, R) for some not given
x̃ ∈ Rd.

Then after O (d2 [ln(R/r) + ln(µ0/ε)]) iterations of an ellipsoid method, we obtain x ∈ G
such that

f(x) 6 inf{f(x) : x ∈ G}+ ε

In the above,
µ0 := ε+ sup

x∈Bd(0,R)

{f(x)} − inf
x∈Bd(0,R)

{f(x)}

Wow! This is nice and applies to all convex optimization problems, including SDPs.
Suppose (P ) and (D) have Slater points X, (y, S) respectively. Then, we can replace (P ) by (P̃ ).

(P̃ ) inf 〈C,X〉
s.t. A(X) = b

〈S,X〉 6 2〈X,S〉
X < 0

Theorem 38

(a) The SDPs (P ) and (P̃ ) have optimal solutions.

(b) The optimal solution sets of (P ) and (P̃ ) are the same.

(c) Let G ⊂ Sn+ denote the feasible solution set for (P̃ ). Then G is compact and convex.
Moreover,

BG(X,λn(X)) ⊆ G ⊆ BG

(
0,

2〈X,S〉
λn(S)

)
where BG denotes the Euclidean ball in aff [G].

(d) max{〈C,X〉 : X ∈ G} −min{〈C,X〉 : X ∈ G} 6 4n‖C‖2〈X,S〉
λn(S)

Theorem 38 and the reformulation of (P ) as (P̃ ) (significantly aided by the given Slater points X ,
(y, S)), show that we can apply Theorem 37 to SDPs.
Thare are many other approaches for utilizing algorithms like Ellipsoid Method and resulsts like
Theorem 37 for SDPs.
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3.2 Primal-Dual Interior-Point Methods
Consider algorithms which start withX(0) � 0, y(0) ∈ Rm, S(0) � 0, and generate

{
(X(k), y(k), S(k)) : k ∈ Z+

}
such that X(k) � 0, S(k) � 0,∀k ∈ Z++.
Assuming (P ) and (D) have optimal solutions and their optimal values are the same, we wnat

• ‖A(X(k))− b‖→ 0 with (X(k) � 0) Primal Feasibility.

• ‖A∗(y(k)) + S(k)‖→ 0 with (S(k) � 0) Dual Feasibility.

• 〈X(k), S(k)〉 → 0 with (X(k) � 0, S(k) � 0) Complementarity Slackness

For simplicity of presentation, we will assume A(X(0)) = b,A∗(y0) + S(0) = C and that A is
surjective. Define f : Sn → R ∪ {∞} by

f(X) :=

{
− ln(det(X)), if X ∈ Sn++

+∞, otherwise

Note: For every sequence
{
X(k)

}
⊂ Sn++ such that X(k) → X ∈ bd(Sn+),

f(X(k))→ +∞

So, we can use f to reformulate our problem (P ).

Proposition 39

The above defined function f is strictly convex on Sn++. Moreover, for every X ∈ PDn and
H ∈ Sn, we have

〈f ′(X), H〉 = −Tr(X−1H)

〈f ′′(X)H,H〉 = Tr(X−1HX−1H) = Tr

[(
X−

1
2HX−

1
2

)2]
f ′′′(X)[H,H,H] = −2Tr

[(
X−

1
2HX−

1
2

)3]

3.2.1 Central Path

For each µ > 0, we define

(Pµ) inf
1

µ
〈C,X〉+ f(X) s.t A(X) = b

Necessary and sufficient optimality conditions for (Pµ) (under the Slater point assumptions for
(P )&(D)):

A(X) = b,X � 0
−A∗(y)−X−1 + 1

µ
C = 0
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y ← µy, S := µX−1. Then, necessary and sufficient conditions for optimality (for (Pµ)) become

A(X) = b,X � 0
A∗(y) + S = C
S = µX−1

For each µ > 0, the unique solution (X(µ), y(µ), S(µ)) defines the primal-dual central path:

{(X(µ), y(µ), S(µ)) ∈ Sn ⊕ Rm ⊕ Sn : µ > 0}

Theorem 40

Suppose (P ) and (D) have Slater points and A is surjective. Then, for every µ > 0, (Pµ)
has a unique optimal solution X(µ). Moreover, the following system

A(X) = b,X � 0
A∗(y) + S = C
S = µX−1

has a unique solution (X(µ), y(µ), S(µ)).

The above system also characterizes the unique otpimal solution of (Dµ) sup
{

1
µ
bTy + f(S) : A∗(y) + S = C

}
.

Consider the solutions (X(µ), y(µ), S(µ)) for µ > 0, and focus on

S(µ) = µ[X(µ)]−1 =⇒ 〈X(µ), S(µ)〉 = 〈X(µ), µ[X(µ)]−1〉 = µTr(I) = nµ

So, as µ↘ 0, 〈X(µ), S(µ)〉 ↘ 0.

To derive path-following algorithms, one can use Newton’s Method and its variants locally on the
system of (nonlinear) equations:
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A(X) = b, A(X) = b,
A∗(y) + S = C, or, A∗(y) + S = C,

S = µX−1, X = µS−1

or on some equivalent system with the conditions X(k) � 0, S(k) � 0 enforced by the step size
selection rules.
Given a pair of Slater points X,S for (P ) and (D) respectively, we can easily measure how close
(X,S) is to the central path.
One way would be µ(X,S) := Tr(XS)/n and consider

‖S − µ(X,S)X−1‖.

Another way, more directly relating to f(·) is:

ψ(X,S) := n ln

(
Tr(XS)

n

)
+ f(X) + f(S)

and if X,S ∈ Sn++, then f(X) + f(S) = − ln(det(X))− ln(det(S)).

Theorem 41

For every (X,S) ∈ Sn++ ⊕ Sn++, ψ(X,S) > 0. Moreover, the equality holds iff S = µX−1

with µ := 〈X,S〉
n

.

Note:

ψ(X,S) =n ln

[
Tr(S

1
2XS

1
2 )

n

]
− ln det(S

1
2XS

1
2 )

=n ln

[(
n∑
j=1

λj

)
/n

]
− ln

(
n∏
j=1

λj

)

=n ln

(
arithmetic mean(λ1, λ2, . . . , λn)

geometrix mean(λ1, λ2, . . . , λn)

)
> 0

where λ := λ
(
S

1
2XS

1
2

)
.

We will use two attributes for judging how good a pair of Slater points (X,S) is:

(i) want small duality gap 〈X,S〉.

(ii) want to be close to the central path (small ψ(X,S)).

3.3 Primal-Dual Potential function
φq(X,S) := q ln〈X,S〉+ ψ(X,S), where q > 0
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Theorem 42

Suppose X(0), S(0) ∈ Sn++ are Slater points for (P ), (D) respectively and they sat-
isfy ψ(X(0), S(0)) 6

√
n ln(1/ε), for some ε ∈ (0, 1). If we generate a sequence{(

X(k), S(k)
)}

of feasible solutions for (P ), (D) respectively such that φ√n
(
X(k), S(k)

)
6

φ√n
(
X(k−1), S(k−1)) − δ, for every k ∈ Z++, for some absolute constant δ > 0, then for

some k = O(
√
n ln(1/ε)), we have

〈X(k), S(k)〉 6 ε〈X(0), S(0)〉, ∀k > k

We will design an algorithm that will have the

• property described in the assumptions of Theorem 42,

• primal-dual symmetry property,

• scale-invariance property.

Given the current iterate (X(k), S(k)), we will find a pair of search directions DX , DS such that for
all α ∈ R+ (step size),

(
X(k) + αDX

)
,
(
S(k) + αDS

)
satisfy A(X) = b and A∗(y) + S = C (for

some y ∈ Rm). ⇐⇒ A(DX) = 0,A∗(dy) +DS = 0 (for some dy ∈ Rm).
To achieve primal-dual symmetry and scale-invariance in an elegant way, for every pair X,S ∈
Sn++, we will find T : Sn → Sn linear such that

(i) T ∈ Aut(Sn+),

(ii) T (S) = T−1(X) =: V ,

(iii) T (X−1) = T−1(S−1) = V −1.

Then, we transform the X-space via T−1, S-space via T .

(X,S) gets mapped to (V, V ).
A(·) := A(T (·)),
C := T (C),

DX := T−1(DX),
DS := T (DS).

Then (P ), (D) become

(P ) inf〈C,X〉 s.t. A(X) = b, X ∈ T−1(Sn+) = Sn+
(D) sup bTy s.t. A

∗
(y) + S = C, S ∈ T (Sn+) = Sn+

Theorem 43

For every pair of X,S ∈ Sn++, ∃T ∈ Aut(Sn+) such that

(i) T (S) = T−1(X) =: V ,

(ii) T (X−1) = T−1(S−1) = V −1.
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Proof. Let X,S ∈ Sn++. We will find W ∈ Sn++ such that T : Sn → Sn, T (Z) := WZW satisfies
the desired condition. Note that for such aW , ∀z ∈ Sn, T (Z) ∈ Sn andZ ∈ Sn+ ⇐⇒ T (Z) ∈ Sn+.
Therefore, T ∈ Aut(Sn+).
Let us try to solve the equation T (S) = T−1(X). For our choice of T , this equation is:

WSW = W−1XW−1

⇐⇒ W 2SW 2 = X

⇐⇒ S
1
2W 2SW 2S

1
2 = S

1
2XS

1
2

⇐⇒
(
S

1
2W 2S

1
2

)2
= S

1
2XS

1
2

⇐⇒ S
1
2W 2S

1
2 =

(
S

1
2XS

1
2

) 1
2

⇐⇒ W 2 = S−
1
2

(
S

1
2XS

1
2

) 1
2
S−

1
2

We have W ∈ Sn++ such that
WSW = W−1XW−1 =: V.

and
WSW = W−1XW−1 = V ⇐⇒ W−1S−1W−1︸ ︷︷ ︸

T−1(S−1)

= WX−1W︸ ︷︷ ︸
T (X−1)

= V −1

3.4 Finding a Good Search Direction
Recall, we

(i) want small duality gap 〈X,S〉.

(ii) want to be close to the central path (small ψ(X,S) = n ln(Tr(XS)/n) + f(X) + f(S)).

Let DX , DS ∈ Sn denote the search directions.

X(α) := X + αDX

S(α) := S + αDS

}
α ∈ R++.

〈X(α), S(α)〉 = 〈X,S〉+ α[〈X,DS〉+ 〈DX , S〉] + α2 〈DX , DS〉︸ ︷︷ ︸
=0

= 〈X,S〉+ α[〈T−1(X)︸ ︷︷ ︸
=V

, T (DS)︸ ︷︷ ︸
=DS

〉+ 〈T−1(DX)︸ ︷︷ ︸
=DX

, T (S)︸ ︷︷ ︸
=V

〉]

= 〈X,S〉+ α〈V,DX +DS〉

Idea: For the largest rate of decrease in the duality gap, take DX + DS = −V (and DX as
the orthogonal projection of −V onto Null(A), DS as the orthogonal projection of −V onto
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Range(A∗)).
It remains to control the distance to the central path.

Lemma 44

Let X ∈ Sn++, D ∈ Sn such that

‖D‖X := 〈D,X−1DX−1〉
1
2 6 1.

Then,

f(X) + 〈f ′(X), D〉 6 f(X +D) 6 f(X) + 〈f ′(X), D〉+
‖D‖2X

2(1− ‖D‖X)2

Note that the assumptions of the lemma, X ∈ Sn++, D ∈ Sn, ‖D‖X6 1 imply

1 > 〈D,X−1DX−1〉
1
2 =

[
Tr(X−

1
2DX−

1
2 )2
]1/2

=
∥∥∥X− 1

2DX−
1
2

∥∥∥
F
.

This further implies 1 >
∥∥∥X− 1

2DX−
1
2

∥∥∥
2
. This is equivalent to

−I 4 X−
1
2DX−

1
2 4 I ⇐⇒ X ∓D < 0

(We applied X
1
2 ·X 1

2 ∈ Aut(Sn+) to all sides).
Focusing on the first-order part of the estimate from Lemma 44 for [f(X(α)) + f(S(α))], we
compute

〈f ′(X), DX〉+ 〈f ′(S), DS〉 = 〈−X−1, DX〉+ 〈−S−1, DS〉
=− 〈T (X−1)︸ ︷︷ ︸

=V −1

, T−1(DX)︸ ︷︷ ︸
=DX

−〈T−1(S−1)︸ ︷︷ ︸
=V −1

, T (DS)︸ ︷︷ ︸
=DS

=− 〈V −1, DX +DS〉.

So, we should set
DX +DS = K1V

−1 −K2V

, for some K1,K2 > 0.
Setting K1 := 1,K2 := n+

√
n

〈X,S〉 with a suitable choice for step size like α := λn(V )
8

yields

φ√n(X(α), S(α))− φ√n(X,S) < − 1

12
, an absolute constant, recall Theorem 42

Ũ := V −1 − n+
√
n

〈X,S〉
V,

U :=
Ũ
‖Ũ‖F

where Ũ = 0 iff n+
√
n

〈X,S〉 V = V −1 iff n+
√
n

〈V,V 〉 〈V, V 〉 = 〈V −1, V 〉 = Tr(I) = n. Therefore, ‖Ũ‖F> 0.
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3.5 A Primal-Dual Interio-Point Algorithm
Input: X(0), S(0) ∈ Sn++, ε ∈ (0, 1) such that X(0), S(0) are feasible in (P )&(D) respectively,
ψ(X(0), S(0)) 6

√
n ln(1/ε).

k := 0

While〈X(k), S(k)〉 > ε〈X(0), S(0)〉,
W 2 := (S(k))−

1
2 [(S(k))

1
2X(k)(S(k))

1
2 ]

1
2 (S(k))−

1
2

A := A(W ·W ), [Ai := WAiW,∀i]
V := WS(k)W

Ũ := V −1 − n+
√
n

〈X(k), S(k)〉
V

U := Ũ/‖Ũ‖F
Solve the linear system of equations

A(DX) = 0

A∗(dy) +DS = 0

DX +DS = U
Compute

α := arg min
{
φ√n(X(α), S(α)) : α > 0

}
X(k+1) := X(k) + αWDXW, S

(k+1) := S(k) + αW−1DSW
−1

k := k + 1

end{while}

Theorem 45

The above algorithm terminates in at most 24
√
n ln(1/ε) (O(

√
n ln(1/ε))) with X(k), S(k)

feasible in (P ), (D) respectively and satisfying

〈X(k), S(k)〉 6 ε〈X(0), S(0)〉

How about the assumption that Slate points X(0), S(0) for (P ), (D) are given?
Introduce an artificial variable ξ > 0 and construct an auxiliary SDP.

(Paux) inf ξ

s.t. A(X) + ξ(b−A(I)) = b

〈I,X〉 6M

ξ > 0

X < 0

where M is a large constant we pick, say at least M > n.
Then, (X(0), ξ0) := (I, 1) is a Slater point for (Paux).
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The dual of (Paux) is

(Daux) sup bTy +Mη

s.t. A∗(y) + ηI + S = 0

bTy − Tr(A∗(y)) 6 1

η 6 0

S < 0.

Here, (y(0), S(0), η0) := (0, I,−1) is a Slater point for (Daux).
For this pair,

ψ(. . . , . . .) = (n+ 1) ln

(
M + 1

n+ 2

)
− ln(M − n)

To find a Slater point for (P ) via (Paux), (Daux), we need to further modify (Paux) by picking
anotehr constant γ (this time, tiny) and replace the constraint ”X < 0” by ”X < γI”.
SO, if we find a solution of this modified (Paux) with ξ = 0, we have a Slater point for (P ).
If the optimal value of ξ is positive, all we can say is

{X ∈ Sn : X < γI and Tr(X) 6M}

does not contain any feasible solution of (P ).
In the case of linear programming problems with rational data (A ∈ Qm×n, b ∈ Qm, c ∈ Qn), we
can pick γ ≈ 2−L,M ≈ 2L where L is the number of bits required to express the data (A, b, c).
Write each rational number as p/q where p ∈ Z, q ∈ Z \ {0}, p and q relatively prime and express
p, q in binary.
However, we can construct instances of SDP with data only containing 0, 1 and 2 where

γ ≈ 2−2
n

(2−2
L

) and/or M ≈ 22n (22L)

Linear Programming SDP
If we have a feasible solution of (P ) Given a feasibnle solution

whose objective value is within of (P ) we can compute
2−2L of the optimum, then ”in practice” an extreme point
every extreme point of (P ) solution whose objective value

with at least as good objective is at least as good, but
value is optimal, and we there may be infinitely many
can compute an (exact) extreme point solutions of (P )

optimal solution very efficiently. that are strictly better.
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Furthermore, SDP may have a unique optimal solution that is irrational.

Example

n := 2,m := 2, A1 :=

[
1 0
0 0

]
, A2 :=

[
0 0
0 1

]
, b :=

[
2
1

]
, C :=

[
0 1
1 0

]
.

(P ) inf 2X21 s.t.

(
2 X21

X21 1

)
< 0 (D) sup 2y1 + y2 s.t.

(
−y1 1

1 −y2

)
< 0

Opt.Soln:
X :=

(
2 −

√
2

−
√

2 1

)
obj. value = −2

√
2,

y := −
(√

2/2√
2

)
, obj. value = −2

√
2

SDP-Feasibility: Given A1, A2, . . . , Am ∈ Sn ∩ Zn×n and b ∈ Zm, does there exist X ∈ Sn+ such
that 〈Ai, X〉 = bi,∀i ∈ {1, 2, . . . ,m}?
Open Problem 3: Is SDP-Feasibility is P?
In theoretical applications, Ellipsoid Method is very powerful.
Interior-point algorithms have better complexity bounds and in applications requiring high accu-
racy, if we can perform one iteration in a reasonable time, they are hard to beat.
When we can’t even perform a single iteration of and interior-point algorithm (instance is huge
and does not have easily exploitable structure), we resort to first-order algorithms (but not ellip-
soid method). We will see some of these other first-order algorithms for SDP, after we discuss
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some fundamental approximation algorithms based on SDP for some hard problems.
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4 Approximation Algorithms Based on SDP
Recall, in many applications (engineering, big data, machine learning, statistics, computer science,
other areas of mathematics, ...) we construct a mathematical model that might be too hard or
impossible to solve exactly:

(P ) sup f(x) s.t. x ∈ Φ

We can construct an SDP relaxation

{(P ) sup f(X)X ∈ Φ} 6 {sup〈C,X〉, A(X) = b, X < 0} = {inf bTy, A∗(y)−S = C S < 0}
where the equality is under the assumptions of Strong Duality Theorem.
Suppose we have a fast algorithm (heuristic) which provides feasible solutions to (P ) that usually
have good objective function values. We run the heuristic and obtain x̂ ∈ Φ, we also solve (SDD)
approximately and obtain a feasible solution (y, S) of (SDD). Then,

f(x̂) 6 v 6 bTy

where v is the unknown optimal value of (P ), and bTy close to the optimal value of (SDP )&(SDD).
Next, we focus on a hard combinatorial optimization problem MaxCut (Maximum Cut): given
an undirected graph G = (V,E) and w ∈ RE

+, find U ⊆ V such that∑
{i,j}∈δ(U)

wij is maximized,

where δ(U) := {{i, j} ∈ E : i ∈ U, j ∈ V \ U}.

Example

Suppose all weights are one.

1. U1 := {1, 2, 3} → cut of weight 6

2. U2 := {5} → cut of weight 5

3. U3 := {2, 5} → cut of weight 7

4.1 A formulation of MaxCut as a nonconvex optimization problem:
With n := |V |, let’s represent each cut (U, V \ U) by a u ∈ {−1, 1}n.

ui :=

{
1, if i ∈ U,
−1, if i /∈ U.
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Also, set wij = 0,∀{i, j} /∈ E. Then MaxCut Problem:

(P ) max
1

4

∑
i∈V

∑
j∈V

wij(1− uiuj) s.t. u ∈ {−1, 1}n

4.1.1 Another, equivalent nonconvex formultaion:

Define W ∈ Sn by Wij := wij,∀i, j.

max
1

4
〈W, eeT 〉 − 1

4
〈W,X〉 ←− linear

s.t. diag(X) = e

X < 0

rank(X) = 1

Note except the SDP constraints, we have rank(X) = 1 which is not convex.
To go between this nonconvex optimization problem and (P ), use

X ↔ uuT .

4.1.2 SDP relaxation and its dual:

(SDP ) max − 1

4
Tr(WX)

(
+

1

4
eTWe

)
s.t. diag(X) = e,

X < 0

(SDD) min eTy

(
+

1

4
eTWe

)
s.t. Diag(y)− S = −1

4
W,

S < 0

X := I, y := ηe, where η := 1
4
eTWe+ 1 yield Slater points for (SDP ) and (SDD).

4.1.3 Goemans-Williamson Approximation Algorithms and Analysis:

If we find an exact optimal solutions of (SDP ), X̂ such that rank(X̂) = 1, then we are done! (We
have an optimal solution û of (P ) and thus, of MaxCut).

X̂ =: BBT , where BT =: [v(1), v(2), . . . , v(n)], v(i) ∈ Rd, d 6 n

so we have {
X̂ij = 〈v(i), v(j)〉, ∀i, j
and 1 = X̂ii = 〈v(i), v(i)〉, ∀i
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4.1.4 Random Hyperplane Technique

Generate r ∈ Rd on the unit hyperplane randomly. Then setting U := {i ∈ V : rTv(i) > 0}
defines a cut in G.

Lemma 46

Let v(i) and r be as above. Then,

Prob
{
sign(rTv(i)) 6= sign(rTv(j))

}
=
θ

π
,

where θ := arccos〈v(i), v(j)〉.

For v ∈ Rd, sign(v) ∈ {−1, 1}d : [sign(v)]j :=

{
1, if vj > 0,

−1, if vj < 0.

Lemma 47

For every u ∈ [−1, 1], we have

1

π
arccos(u) >

ρ

2
(1− u),

and
1− 1

π
arccos(u) >

ρ

2
(1 + u)

where ρ ≈ 0.87856.
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Theorem 48

The expected weight of the cut generated by the Random Hyperplane Technique based on
X̂ is at least

ρ

4

∑
i∈V

∑
j∈V

wij
(
1− 〈v(i), v(j)〉

)
= ρ · opt(SDP )

Proof. Let X̂ ∈ Sn+ be an optimal solution of (SDP ).

opt(SDP ) =
1

4

∑
i

∑
j

Wij(1− X̂ij) =
1

4

∑
i

∑
j

wij(1− 〈v(i), v(j)〉).

E(RHT-cut) =
∑
i

∑
j

wij
arccos(〈v(i), v(j)〉)

2π

>
ρ

4

∑
i

∑
j

wij(1− 〈v(i), v(j)〉)

= ρ · opt(SDP )

Theorem 49

Let G = (V,E) with w ∈ QE
+ be given. Then a cut of value at least ρ ·

(optimal value of the MaxCut) can be obtained in polynomial time.

Note that we do not need an exact optimization solution of (SDP ), an approximate solution X̃ in
place of X̂ would work.
The algorithm can be ”derandomized.”
This approximation ratio is the best possible (polynomial time approximation algorithms for Max-
Cut) unless the ”Unique Games Conjecture” is false.

4.2 Maximum Satisfiability (MaxSat) Problem
• Boolean variables:x1, x2, . . . , xn ∈ {0, 1}

• Literals:xi, xi (complement of xi)

• Clauses:conjunction of a subset of literals e.g. (x3 ∨ x4 ∨ x1).

• (satisfiability) Formula: disjunction of the clauses e.g. (x3 ∨ x4 ∨ x1) ∧ (x2) ∧ (x1 ∨ x2)

4.2.1 Satisfiability Problem (SAT)

Given a formula as above, decide whether ∃ an assignment of values to the varaibles so that the
formula evalutates to ”True”.
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An Integer Programming (feasibility) formulation: Suppose the given formula isC1∧C2∧. . .∧Cm.∑
j:xj∈Ci

xj +
∑

j:xj∈Ci

(1− xj) > 1, ∀i ∈ {1, 2, . . . , n}, x ∈ {0, 1}n

MaxSat: Given a Boolean formula C1 ∧ C2 ∧ . . . ∧ Cm and weights on the clauses wi ∈ R+, i ∈
{1, 2, . . . ,m}, find an assignment of values to the variables which maximizes the total weight of
satisfied clauses.
Note: A given formula is satisfiable iff ∀w ∈ Rm

+ the corresponding MaxSat instance has the
optimal value eTw.

• K-SAT: Satisfiability problem where every clause has at most k literals.

• Max k-Sat: MaxSat problem where every clause has at most k literals.

Theorem 50

For every k > 3, k-Sat is NP -complete.
For every k > 2, Max k-Sat is NP -hard.

Max 2-Sat is closely related to MaxCut:
Let G = (V,E) be a given instance of MaxCut, assume every edge has weight one.
Make a variable xv, ∀v ∈ V ,
make a clause (xu ∨ xv),∀{u, v} ∈ E,wuv := 2,
make a clause (xv),∀v ∈ V,wv := |δ(v)|.
Then opt(Max2− Sat) = opt(MaxCut) + 2|E|.
Approximation results for MaxCut extend to Max 2-Sat. Can we extend them to more general
nonconvex optimization problems? Yes!

4.3 Quadratic Optimization over Sign Vectors
Let W ∈ Sn.

f(W ) := max
x∈{−1,1}n

xTWx = maxTr(WX) s.t.


diag(X) = e,

X < 0,

rank(X) = 1.

f(W ) := min
x∈{−1,1}n

xTWx = minTr(WX) s.t.


diag(X) = e,

X < 0,

rank(X) = 1.

SDP relaxations:

F (W ) := maxTr(WX) s.t.

{
diag(X) = e,

X < 0.
= min eTy Diag(y) < W

F (W ) := minTr(WX) s.t.

{
diag(X) = e,

X < 0.
= max eTy Diag(y) 4 W
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where the two equalities are from the Corollary of the Strong Duality Theorem (both (P ) and (D)
have Slater points).

Proposition 51

For every W ∈ Sn, we have

f(W ) = −f(−W ),

F (W ) = −F (−W ), and

F (W ) 6 f(W ) 6 f(W ) 6 F (W )

We can apply the Random Hyperplane Technique here!

Lemma 52

Let W ∈ Sn. Then

f(W ) = max ξTWξ s.t.


ξ = sign(Br)

‖BT ei‖2= 1, ∀i
‖r‖2= 1

B ∈ Rn×n, r ∈ Rn

= maxEr(ξ
TWξ) s.t.


ξ = sign(Br)

‖BT ei‖2= 1,∀i
‖r‖2= 1

B ∈ Rn×n, r ∈ Rn

Proof. First equations:” > ” is clear since ξ ∈ {−1, 1}n for every feasible solution.
” 6 ”: Let x̂ ∈ {−1, 1}n such that f(W ) = x̂TWx̂. Pick any r ∈ Rn with ‖r‖2= 1. Define
B ∈ Rn×n by

BT ei :=

{
r, if x̂i = 1

−r, if x̂i = −1.

Then ξ = x̂.
Second equation: ” > ” is clear, since we are taking an expectation of the objective value over all
possible choices for r and B.
” 6 ” Let x̂ ∈ {−1, 1}n such that f(W ) = x̂TWx̂.
Define B ∈ Rn×n by

BT ei :=

{
1√
n
x̂, if x̂i = 1

− 1√
n
x̂, if x̂i = −1.

Then,

Er
[
sign(rTBT ei) · sign(rTBT ej)

]
=

{
1, if x̂i = x̂j

−1, if x̂i 6= x̂j
= x̂ix̂j,∀i, j
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for the first equality, we used the fact that {r ∈ Bn(0, 1) : r is orthogonal to both BT ei and BT ej}
has zero (n− 1)-dimensional measure.
Therefore, Er(ξTWξ) =

∑
i

∑
jWijx̂ix̂j = x̂TWx̂ = f(W ).

Lemma 53

For every W ∈ Sn,

f(W ) = max
2

π
〈W, arcsin(X)〉

s.t. diag(X) = e

X < 0

Note that

maxxTWx, x ∈ {−1, 1}n

= maxTr(WX), s.t. diag(X) = e, X < 0, rank(X) = 1

= max
2

π
Tr(Warcsin(X)), diag(X) = e, X < 0

Proof. Since X < 0, diag(X) = e imply |Xij|6 1, the optimization problem is well-defined.
Feasible region is nonempty and compact, the objective function is continuous over the feasible
region. Therefore, the maximum is finite and is attained.
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Given W , apply Lemma 52. Then

f(W ) = max
{
Er(ξ

TWξ) : ξ = sign(Br), ‖BT ei‖2= 1,∀i, ‖r‖2= 1, B ∈ Rn×n, r ∈ Rn
}

Let B̂ ∈ Rn×n be an optimal solution of this last problem.

B̂T =: [v(1) v(2) . . . v(n)]

Then,

Er[sign(rT B̂T ei) · sign(rT B̂T ej)]

=Prob
{
sign〈r, v(i)〉 = sign〈r, v(j)〉

}
− Prob

{
sign〈r, v(i)〉 6= sign〈r, v(j)〉

}
=1− 2Prob

{
sign〈r, v(i) 6= sign〈r, v(j)〉

}
=1− 2

π
arccos〈v(i), v(j)〉 =

2

π
arcsin〈v(i), v(j)〉,∀v, j. by Lemma 46

Thus, the optimal objective value is

Er

[
[sign(B̂r)]TW [sign(B̂r)]

]
=

2

π
〈W, arcsin(B̂B̂T )〉.

Since X̃ := B̂B̂T satisfies diag(X̃) = e, X̃ < 0, we proved ” 6 ”.
” > ” Let X ∈ Sn+ be an optimal solution of max {Tr(W arcsin(X)) : diag(X) = e,X < 0}. Let
B ∈ Rn×n, X =: BB

T
. We have

2

π
Tr(W arcsin(X)) = Er

[
[sign(Br)]TW [sign(Br)]

]
Using Lemma 52, we have the desired inequality.

Lemma 54

For every X ∈ Sn+ such that |Xij|6 1,∀i, j, we have

arcsin(X) < X.

Proof.

arcsin(X) = X +
1

2 · 3
X �X �X +

1 · 3
2 · 4 · 5

X �X �X �X �X + . . .

and recall Assignment 1.
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Theorem 55

For every W ∈ Sn+, we have

f(W ) > max
2

π
〈W,X〉

s.t.

{
diag(X) = e

X < 0

∀W ∈ Sn+,
2

π
F (W ) 6 f(W ) 6 F (W )

The last theorem assume W ∈ Sn+, which includes MaxCut instances as a special case: Given
graph G = (V,E) and W ∈ RE

+, define W ∈ SV as the Laplacian of G with respect to weight w.
(See page 105 of the textbook). Note that W is diagonally dominant, hence by Gershgorin Disk
Theorem (Theorem 1.12 in the textbook), W < 0.

What if W is not PSD?

4.3.1 Arbitrary W ∈ Sn (not necessarily p.s.d)

In SDP relaxation defining F (W ) amd F (W ) we have the dual constraints [W − Diag(y)] < 0
and [Diag(y) −W ] < 0 respectively. Moreover, we can make any W ∈ Sn positive semidefinite
by adding to it a diagonal matrix.
This motivates investigating changes to f, f , F , F under diagonal perturbations.
Let y ∈ Rn be given. Then,

f(W + Diag(y)) = min
x∈{−1,1}n

{
xTWx+ xT Diag(y)x

}

= min
x∈{−1,1}n

x
TWx+

n∑
i=1

yi x
2
i︸︷︷︸

=1︸ ︷︷ ︸
constant


= min

x∈{−1,1}n
{xTWx}+ eTy

= f(W ) + eTy

Similarly, f(W + Diag(y)) = f(W ) + eTy.

F (W + Diag(y)) = min
X<0

diag(X)=e

Tr(WX) + 〈Diag(y), X〉︸ ︷︷ ︸
yT diag(X)


= F (W ) + eTy
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Similarly, F (W + Diag(y)) = F (W ) + eTy.

Theorem 56

For every W ∈ Sn, we have

F (W ) 6 f(W ) 6
2

π
F (W ) +

(
1− 2

π

)
F (W )

6

(
1− 2

π

)
F (W ) +

2

π
F (W ) 6 f(W ) 6 F (W )

Corollary 57

For every W ∈ Sn, the value v :=
(
1− 2

π

)
F (W ) + 2

π
F (W ) satisfies

f(W )− v
f(W )− f(W )

<
4

7

Proof. (for Theorem 56)
Let y ∈ Rn be an optimal solution to the dual of the SDP relaxation determining F (W ) :

F (W ) = max
{
Tr(WX) : diag(X) = e,X ∈ Sn+

}
= min

{
eTy : Diag(y) < W

}
= eTy,

and Diag(y)−W < 0.

F (W )− f(W ) = eTy + f(−W ) Defn of y, strong duality, Prop51

= f(Diag(y)−W ) Diagonal perturbation property

>
2

π
F (Diag(y)−W ) Diag(y)−W < 0, Theorem 55

=
2

π
[eTy − F (W )] Diagonal perturbation, Prop51

=
2

π
[F (W )− F (W )] Definition of y, strong duality

Therefore,

f(W ) 6
2

π
F (W ) +

(
1− 2

π

)
F (W ).

Similarly, defining ŷ ∈ Rm to be an optimal solution of the dual of the SDP describing F (W ), we
can prove

f(W ) >

(
1− 2

π

)
F (W ) +

2

π
F (W ).

The remaining inequalities are elementary.
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Now that we can handle any W ∈ Sn, this also allows us to handle linear terms in the objective
function. Suppose W ∈ Sn, w ∈ Rn are given. We have

max
x∈{−1,1}n

{
2wTx+ xTWx

}
= max

x∈{−1,1}n
x0∈{−1,1}

{
2x0w

Tx+ xTWx
}

= max
[x0 x]T∈{−1,1}n+1

{[
x0 xT

] [0 wT

w W

] [
x0
x

]}

4.4 Burer-Monteiro Approach for Solving MaxCut SDPs (and generaliza-
tion)

This is a first-order algorithm which has good practical performance in some very large-scale
instances. It involves a avery simple nonconvex reformulation.

maxTr(WX), diag(X) = e, X < 0 = (P4) maxTr(WLLT ), diag(LLT ) = e, (L ∈ Tn)

where Tn : The space of n-by-n lower triangular matrices.
Note that:

• any L ∈ Tn with no zero rows can be made feasible for (P4) by simply scaling each row by
its 2-norm.

• we can restrict L to Tn,r (lower triangular matrices that n-by-r, r < n. E.g.


l1 0
l2 ln+1
...

...
ln l2n−1

 ∈
Tn,2). This way we are automatically restricting for X := LLT , rank(X) = rank(L) 6 r.

Once we choose r, we can easily construct L(0) ∈ Tn,r such that diag(L(0)(L(0))T ) = e.
Then, in each iteration k, we compute the gradient of the objective function at L(k−1) project this
gradient so that a linearization of the constraints is satisfied:

diag
(
(L(k−1) + dL)(L(k−1) + dL)T

)
= e

Ignore the quadratic term in dL.

diag(L(k−1)dTL + dLL
(k−1)T ) = 0

So, this projected gradient determines the search direction dL. Then choose a step size α > 0 (
satisfying Armijo-Goldstein-Wolfe conditions, or similar) for the objectice function.

L(k) := L(k−1) + αdL.

Scale the rows of L(k) so that every row has 2-norm equal to one (i.e., diag(L(k)L(k)T ) = e). There
are very many first-order algorithms for solving the SDP relaxation of MaxCut problem, as well
as general SDPs. Among others, consider bundle methods, mulplicative weights based methods,
proximal point algorithms. Also consider the software: SDPNAL+
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5 Geometric Representations of Graphs via SDPs
Let G = (V,E) be an undirected graph.

Definition 58

A map u : V 7→ Rd for some nonnegative integer d, is called a
geometric representation of G.

Definition 59

A geometric representation u of G is called a unit-distance representation of G, if

‖u(i)− u(j)‖2= 1, ∀{i, j} ∈ E

Example

0

√
3
3

1

So here G := 3-cluque, d := 2. This unit distance representation is contained in a ball of
radiu

√
3
3

.
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We can also have

or we consider bi partite graphs, d := 1

v ∈ V1 0 v ∈ V2

1
2

where [V1, V2] is a bipartition of V .
Do unit distance representations exist for every graph G?

Theorem 60

Every graph G = (V,E) admits a unit distance representation in Rn−1, where n := |V |.

Proof. It suffices to prove that for every positive integer n, the clique on n vertices admits a unit
distance representation in Rn−1.
Embed the n-clique as the vertices of a simplex in Rn−1 where every edge of the simnplex is of
unit length

Our first example above has n = 3 and the 3-clique.

Geometric representations of graphs have an amazing range of applications:
Graph embeddability, graph realization, matrix completion, molecular confirmation, structural en-
gineering (tensegrity theory), dimensionality reduction, data sparsification, computer vision, data
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clustering, multi-class learning, signal processing, coding theory, communication complexity, rec-
ommender systems, outlier detection, some combinatorial packing and covering problems, ...
We can dim(G) := min d ∈ Z+, for which G admits a unit distance representation in Rd.

Theorem 61

Deciding whether dim(G) 6 2 is NP-hard.

Consider instead, computing a unit distance representation ofGwhich is contained in an Euclidean
Ball with smallest possible radius. (Recall the first example in this subsection again). Let tb(G)
dentoe the square of this minimum radiu.

Theorem 62

For every graph G = (V,E),

tb(G) = min t, s.t.


Xii 6 t, ∀i ∈ V ;

Xii +Xjj − 2Xij = 1, ∀{i, j} ∈ E;

X ∈ SV+.

Next, consider computing a unit distance representation of G contained in a hypersphere of mini-
mum radius. Let th(G) denote the square of this minimum radius.
Let discuss some of the main ingredients for a proof.

• Construct Slater points for the SDP in the theorem statement and its dual SDP. Then use a
corollary of the Strong Duality Theorem.

• Given an optimal solution X̂ of the SDP, define X̂ =: BBT (B ∈ Rn×k, k 6 n− 1) and then
BT =:

[
u(1) u(2) . . . u(n)

]
, where u(i) ∈ Rk,∀i ∈ V . Then 〈u(i), u(i)〉 = X̂ii,∀i ∈

V ,
‖u(i)− u(j)‖22= X̂ii + X̂jj − 2X̂ij,∀{i, j} ∈ E.

• Given a unit distance representation u : V 7→ Rk (k 6 n), BT =:
[
u(1) u(2) . . . u(n)

]
,

X̃ := BBT , ...

Theorem 63

For every graph G = (V,E),

th(G) = min t, s.t.


diag(X) = te,

Xii +Xjj − 2Xij = 1, ∀{i, j} ∈ E
X ∈ SV+.

Moreover, th(G) = tb(G).
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These two SDPs provide exact mathematical models for their respective problems (not relaxations
or approximations). Moreover, we may use (for other applications)Xii+Xjj−2Xij = lij, {i, j} ∈
E, for any l ∈ RE

+ given.
Let us prove the following statement

For every graphG = (V,E), tb(G) 6 th(G) 6
1

2
− 1

2|v|
<

1

2
.

For every graph G, every unit distance representation of G that is contained in a hypersphere of
radius r, is also contain in an Euclidean Ball of radius r. Thus,

tb(G) 6 th(G).

Let G = (V,E), n := |V |. Then th(G) 6 th(n-clique). For every ε > 0 consider

X(ε) :=
1

2
I − εeeT , t(ε) :=

1

2
− ε. Then,

[X(ε)]ii = t(ε),∀i ∈ V and

[X(ε)]ii + [X(ε)]jj − 2[X(ε)]ij =
1

2
− ε+

1

2
− ε+ 2ε = 1,∀i 6= j.

Moreover, ∀h ∈ Rn, s.t.‖h‖2= 1,

hTX(ε)h =
1

2
‖h‖22−ε(eTh)2 >

1

2
− nε > 0,∀ε 6 1

2n
.

Therefore, [X( 1
2n

), t( 1
2n

)] is a feasible solution to the SDP in Theorem 63, for the n-clique...

5.1 Orthonormal Representations of Graph

Definition 64

Given a graph G = (V,E), v : V 7→ Rd is an orthonormal representation of G if{
‖v(i)‖2= 1, ∀i ∈ V and
〈v(i), v(j)〉 = 0, ∀{i, j} ∈ E

I.e., unrelated pairs of vertices of G are represented by orthogonal unit vector. And E :=
edges in G, which is the complement of G (G = (V,E)).
So we moved from unit distance hypersphere representation ofG to the orthonormal representation
of G by

u : V 7→ Rd hypersphere radius =
√
t, (t <

1

2
)⇒ v : V 7→ Rd+1, v(i) :=

√
2

[√
1
2
− t

u(i)

]
,∀i ∈ v
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Then ∀i ∈ V ,

‖v(i)‖22= 2

1

2
− t+ 〈u(i), u(i)〉︸ ︷︷ ︸

=t

 = 1

and, ∀{i, j} ∈ E,

〈v(i), v(j)〉 = 2

1

2
− t+ 〈u(i), u(j)〉︸ ︷︷ ︸

= 1
2
(2t−1)

 = 0

Therefore, v : V 7→ Rd+1 is an orthonormal representation of G.

We essentially proved

Theorem 65

Every graph G = (V,E) admits an orthonormal representation in Rn, where n := |V |.
Moreover, all orthonormal representations of G can be realized in Rn.

We moved from orthonormal representation of G to the unit distance hypersphere representa-
tion of G by

v : V 7→ Rd =⇒ u : V 7→ Rd, u(i) :=
1√
2
v(i),∀i ∈ V

Then, ∀{i, j} ∈ E,

‖u(i)− u(j)‖22=
1

2
+

1

2
− 0 = 1
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∀i ∈ V ,

‖u(i)‖22=
1

2
‖v(i)‖22=

1

2

Therefore, u : V 7→ Rd is a unit distance representation of G that lies on a hypersphere of radius√
2
2

.
A very important application of orthonormal representations of graphs is to the Stable Set Problem
S ⊆ V is a stable set in G if for every {i, j} ∈ E, at most one of i, j is in S.
Another common term for ”stablet set” is ”independent set”.

α(G)︸ ︷︷ ︸
stability number of G

:= max {|S|: S is a stable set in G}

STAB(G)︸ ︷︷ ︸
stable set polytope of G

:= conv
{
x ∈ {0, 1}V : x is an incidence vector of a stable set in G

}
FRAC(G)︸ ︷︷ ︸

fractional stable set
polytope of G

:=
{
x ∈ [0, 1]V : xi + xj 6 1,∀{i, j} ∈ E

}

Note:
STAB(G) = conv

(
FRAC(G) ∩ {0, 1}V

)
For every clique C in G, the clique inequality

∑
i∈C xi 6 1 is a valid inequality for STAB(G).

Let Aclq(G) denote clique-node incidence matrix of G (it has the number of cliques rows and
number of vertices columns) so each row represents if a vertex in the clique or not. Then,

CLQ(G)︸ ︷︷ ︸
clique polytope of G

:=
{
x ∈ RV

+ : Aclq(G)x 6 e
}

5.1.1 Theta Body of G, Lovász Theta Number

TH(G)︸ ︷︷ ︸
Theta Body of G

:=

x ∈ RV
+ :

|V |∑
j=1

[cTu(j)]2xj 6 1︸ ︷︷ ︸
orthonormal repr. constraint

, ∀c ∈ Rn s.t. ‖c‖22= 1 and ∀u : V 7→ Rn, ortho. repr. of G


Theorem 66

For every graph G, TH(G) is a nonempty, compact convex set such that

STAB(G) ⊆ TH(G) ⊆ CLQ(G) ⊆ FRAC(G)

Proof.

• ”CLQ(G) ⊆ FRAC(G)”
By definition, every pair {i, j} ∈ E is a clique; thus, CLQ(G) ⊆ FRAC(G) for every
graph G.
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• ”TH(G) ⊆ CLQ(G)”
Let C ⊆ V be a clique in G. pick any c ∈ Rn with ‖c‖2= 1. Define u(i) := c, ∀i ∈ C. For
all other nodes, i ∈ V \ C, choose an orthonormal system of vectors in (span{c})⊥. Then
u : V 7→ Rn is an orthonormal representation of G and hence the inequality

1 >
|V |∑
j=1

[cTu(j)]2xj =
∑
j∈G

(cT c)2xj =
∑
j∈C

xj

is valid for TH(G). Since TH(G) ⊆ RV
+, all constraints defining CLQ(G) are valid for

TH(G). Therefore, TH(G) ⊆ CLQ(G).

• Since CLQ(G) ⊆ [0, 1]V , we conclude TH(G) is bounded. Since TH(G) is defined as
the intersection of closed convex sets (intersection of the nonnegative orthant with closed
half-spaces), TH(G) is closed and convex.

• ”STAB(G) ⊆ TH(G)”
Let S ⊆ V be a stable set in G, χS ∈ {0, 1}V denote its incidence vector, u : V 7→ Rn be
any orthonormal representation of G and let c ∈ Rn satisfy ‖c‖22= 1. Then

|V |∑
j=1

[cTu(j)]2(χS)j =
∑
j∈S

[cTu(j)]2 6 ‖QT c‖22= ‖c‖22= 1

whereQ ∈ Rn×n is an orthogonal matrix defined byQ :=

u(1) u(2) . . . u(|S|)︸ ︷︷ ︸
orthonormal system

. . .︸︷︷︸
complete to an orthonormal basis

.

Since χS > 0, and it satisfies all orthonormal representation constraints forG, χS ∈ TH(G).
Since we proved that TH(G) is convex,

conv ({χS : S is a stable set in G})︸ ︷︷ ︸
=STAB(G)

⊆ TH(G)

Since 0 ∈ STAB(G), TH(G) is nonempty.

Given w ∈ RV
+,

ϑ(G,w)︸ ︷︷ ︸
Lovász Theta Function

:= max
{
ωTx : x ∈ TH(G)

}
Define W ∈ SV by

Wij :=
√
wi · wj, ∀i, j ∈ V
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Theorem 67

Let G = (V,E), w ∈ RV
+. Then, the following are equal:

(i) ϑ(G,w);

(ii) minimumu:V 7→Rn ortho. repr.c∈Rn:‖c‖2=1 maxi∈V

{
wi

[cTu(i)]2

}
;

(iii) min
{
η : diag(S) = 0, Sij = 0,∀{i, j} ∈ Ē, ηI + S < W

}
;

(iv) max
{
Tr(WX) : Xij = 0, ∀{i, j} ∈ E, Tr(X) = 1, X ∈ SV+

}
.

In the above, if wi = 0 then wi

[cTu(i)]2
:= 0.

Using the above theorem, we can prove that ϑ(G,w) can ba approximated to any precision in
polynomial time (in |V | and ln(1/ε)) via approximately solving an SDP.

Definition 68

A graph G = (V,E) is perfect if for every node induced subgraph H of G,

w(H) = χ(H)

where w(H) is the clique number of H (max. cardinality of a clique in H) and χ(H) is the
chromatic number of H (min. number of colours required to colour all vertices of H).
An odd-hole is a chordless cycle of length at least five. An odd-antihole is the complement
of an odd-hole.
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Theorem 69

Let G be a graph. Then, TFAE

(i) G is perfect;

(ii) G is perfect;

(iii) G does not contain an odd-hole or an odd-antihole;

(iv) STAB(G) = CLQ(G);

(v) STAB(G) = TH(G);

(vi) TH(G) = CLQ(G);

(vii) TH(G) is a polytope;

(viii) {Aclq(G)x 6 e, x > 0} is Totally Dual Integral(TDI);

(ix) ˆTH(G) :=
{
Y ∈ S{0}∪V+ : Y00 = 1, diag(Y ) = Y e0, Yij = 0,∀{i, j} ∈ E

}
is SDP-

TDI. (see de Carli Silva and Tuncel (2020) SIAM Journal on Discrete Mathematics)

Theorem 70

For every graph G = (V,E), the theta body of the complement of G is equal to the an-
tiblocker of the theta body of G:

[TH(G)]o ∩ RV
+ = TH(G)

Recall, [TH(G)]o =
{
s ∈ RV : xT s 6 1,∀x ∈ TH(G)

}
.
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Theorem 71

For every graph G = (V,E), we have

TH(G) =

{
x ∈ RV :

(
1
x

)
= Y e0, for some Y ∈ ˆTH(G)

}

5.1.2 Products of Graphs, Kronecker Products

Given graphs G = (V,E) and H = (W,F ),

G⊗H := (V (G⊗H), E(G⊗H))

which is called the strong product of G and H , and

V (G⊗H) := V ×W

E(G⊗H) :=

{
{(i, u), (j, v)} :

{i,j}∈E and {u,v}∈F
or {i,j}∈E and u=v
or i=j and {u,v}∈F

}
5.1.3 Stable Set Problem and Shannon Capacity

Suppose we are trying to communicate through a noisy channel. We are using an alphabet and
some letters may be confused with each other. Let G = (V,E) model this situation:

V ⇐⇒ the set of letters in the alphabet
{i, j} ∈ E iff letter i&j may be confused with each other.
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Example

What’s the maximum number of letters that can be safely used? (What is the maximum
number of letters such that no pair may be confused with each other?)
The answer is :α(G).
Now, suppose we want to know the maximum number of k-letter words (using the same
alphabet given by G) so that no pair of words may be confused with each other.
Word1 and word2 may not be confused with each other if there exists a position at which
word1 and word2 have different letters AND these different letters do not share an edge.
Gk := G⊗G . . .⊗G︸ ︷︷ ︸

k

. Then the answer is α(Gk).

Definition

Shannon Capacity of G is
H©(G) = lim

k→∞
sup[α(Gk)]

1
k

We can show, α(Gk) > [α(G)]k,∀k ∈ Z++, ∀graphs G which implies H©(G) > α(G).

Using the fact that Kronecker products of orthonormal representations for G and H give rise to
orthonormal representations for G⊗H , we can prove;

Theorem 72

For every pair of graphs G and H ,

ϑ(G⊗H) = ϑ(G)ϑ(H).

Corollary 73

For every graph G and every k ∈ Z++,

ϑ(Gk) = [ϑ(G)]k

where ϑ(G) := ϑ(G, e).
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Theorem 74

For every graph G = (V,E),

ϑ(G) = max eTXe

Xij = 0,∀{i, j} ∈ E
Tr(X) = 1

X ∈ SV+

=

min t

diag(Z) = (t− 1)e

Zij = −1,∀{i, j} ∈ E
Z ∈ SV+

Moreover, α(G) 6 H©(G) 6 ϑ(G) 6 χ(G). Finally, we have equality all the way through
if G is a perfect graph.

Let’s discuss some elements of a proof of Theorem 73. The SDPs in the statement are dual to
each other and they are specializations of the SDPs from Theorem 67 with w := e (and hence
W := eeT ). Both SDPs have Slater points.
Let S ⊆ V be a stable set in G. Then X ∈ SV defined by

X ij :=

{
1
|S| , if i and j ∈ S,
0, otherwise

yield a feasible solution of the first SDP and eTXe = |S|. Thus, α(G) 6 ϑ(G).
We also consider H© 6 ϑ(G), Note, STAB(G) ⊆ TH(G), so any incidence vector for a stable
set will be in TH(G), and the inner product of e and the incidence vector is just the cardinality of
the stable set, and it will be less than or equal to ϑ(G) (by the definition of it), so α(G) 6 θ(G),
because α(G) = aT e for some incidence vector a of a stable set.
Then,

ϑ(G) = lim(ϑ(Gk))1/k = lim sup(ϑ(Gk))1/k > lim sup(α(Gk))1/k = H©(G)

Suppose we have a colouring of G with k colours. Then, for the dual SDP, define t := k, Z ∈ SV
such that

Zij :=

{
−1, if colour(i) 6= colour(j)

(k − 1), if colour(i) = colour(j)

(Z, t) is a feasible solution of the dual SDP with objective value k. Therefore, ϑ(G) 6 χ(G).
To see that Z < 0, note that under a suitable permutation (which groups vertices in the same colour

69



class together) we have the matrix

(k − 1) . . . (k − 1) −1 . . . −1
... . . .

... −1 . . . −1
(k − 1) . . . (k − 1) −1 . . . −1

−1 . . . −1

(k − 1) . . . (k − 1)
... . . . ...

(k − 1) . . . (k − 1)

 . . . . . .

... . . . ... . . .
. . . . . .

−1 . . . −1 . . . . . .

(k − 1) . . . (k − 1)
... . . . ...

(k − 1) . . . (k − 1)





< 0

⇐⇒ 
(k − 1) −1 . . . . . . −1
−1 (k − 1) −1 . . . −1

... −1
. . . ...

...
... . . . ...

−1 −1 . . . . . . (k − 1)

 < 0, this is psd since diagonally dominant

By theorem 69, G is perfect iff G is. Thus, if G is perfect, we have α(G) = w(G) = χ(G) which
estabilishes the last statement of Theorem 74.
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6 Lift and Project Methods

Recall Theorem71, where we project ˆTH(G) ⊂ S{0}∪V into RV
+. It estabilished a representation

of the theta body of G (a compact convex set which requires infinitely many linear inequalities
to describe in Rn, n := |V |) as a projection of a spectrahedron in S1+n which is described using
O(n2) linear equations and a single positive semidefiniteness constraint.
This kind of efficiency gain in representations of convex sets can be seen in many settings, includ-
ing polyhedra.
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Can we generalize the approach to other combinatorial optimization problem? Yes!
Given a polytope P ⊂ [0, 1]d, suppose we are interested in

PI := conv(P ∩ {0, 1}d)

Examples:P := FRAC(G), PI = STAB(G).
Introduce a new variable x0 and define

K :=

{(
x0
x

)
∈ R1+d : Ax 6 x0b, 0 6 x 6 x0e

}
where P =:

{
x ∈ Rd : Ax 6 b, 0 6 x 6 e

}
.

Consider the set

M+(K) :=

{
Y ∈ S1+d

+ :
Y e0=diag(Y )

Y ei∈K,∀i∈{1,2,...,d}
Y (e0−ei)∈K,∀i∈{1,2,...,d}

}
Suppose x ∈ P ∩ {0, 1}d. Define

Y :=

[
1
x

] [
1 xT

]
=

[
1 xT

x xxT

]
.

Then, Y ∈ S1+d
+ , Y e0 = diag(Y ), Y ei = xi

[
1
x

]
∈ K,Y (e0 − ei) = (1 − xi)

[
1
x

]
∈ K, ∀i ∈

{1, 2, . . . , d}.
Therefore,

P ∩ {0, 1}d ⊆ LS+(P ) :=

{
x ∈ Rd :

(
1
x

)
= Y e0, for some Y ∈M+(K)

}
Since M+(K) is a spectrahedron, it is convex. Since LS+(P ) is a projection of a convex set,
LS+(P ) is also convex. Hence,

conv(P ∩ {0, 1}d) ⊆ LS+(P ).

Is LS+(P ) a better approximation to conv(P ∩ {0, 1}d) than P ?
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Lemma 75

Let P ⊆ [0, 1]d be a convex set. Then,

conv(P ∩ {0, 1}d) ⊆ LS+(P ) ⊆
d⋂
j=1

conv
[
(P ∩H0

j ) ∪ (P ∩H1
j )
]

where H0
j :=

{
x ∈ Rd : xj = 0

}
, H1

j :=
{
x ∈ Rd : xj = 1

}
.
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Proof. (lemma 75)
We proved the inclusion conv(P ∩ {0, 1}d) ⊆ LS+(P ) before stating the lemma. To prove the

remaining inclusion, let x ∈ LS+(P ). Then ∃Y ∈M+(K) such that Y e0 =

[
1
x

]
.

By definition of M+(K),[
1
x

]
= Y e0 = Y ei︸︷︷︸

∈K∩{y∈Rd+1:yi=y0}

+ Y (e0 − ei)︸ ︷︷ ︸
∈K∩{y∈Rd+1:yi=0}

,∀i ∈ {1, 2, . . . , d}

Thus,
x ∈ conv

[
(P ∩H0

i ) ∪ (P ∩H1
i )
]
,∀i ∈ {1, 2, . . . , n}.

Therefore,

x ∈
d⋂
i=1

conv
[
(P ∩H0

i ) ∪ (P ∩H1
i )
]

Define
LSk+(P ) := LS+(LS+(. . .︸ ︷︷ ︸

k−times

(P )))

Theorem 76

Let P ⊆ [0, 1]d be a convex set. Then

P ⊇ LS+(P ) ⊇ LS2
+(P ) ⊇ . . . ⊇ LSd+(P ) = conv(P ∩ {0, 1}d)

Moreover, if for some k ∈ {0, 1, . . . , d− 1}, LSk+(P ) 6= conv(P ∩ {0, 1}d), then

LSk+(P ) ⊃ LSk+1
+ (P ).

The last theorem indicates that in principle every 0, 1 integer programming problem can be solved
by solving some convex optimization problem based on SDPs.

• Not surprising in the sense that the number of variables and number of constraints can be
huge (and we can also derive methods achieving the same goal via LP problems).

• Still interesting, because these strictly improving convex relaxations are generated automat-
ically.
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6.1 Lift-and-Project Operator LS+ applied to FRAC(G)

Recall, given a graph G = (V,E),

STAB(G)︸ ︷︷ ︸
stable set polytope of G

:= conv
{
x ∈ {0, 1}V : x is an incidence vector of a stable set in G

}
FRAC(G)︸ ︷︷ ︸

fractional stable set
polytope of G

:=
{
x ∈ [0, 1]V : xi + xj 6 1,∀{i, j} ∈ E

}

Note:
STAB(G) = conv

(
FRAC(G) ∩ {0, 1}V

)

LetH be the vertex set of an odd-cycle in G. Then the inequality∑
i∈H

xi 6
|H|−1

2

is valid for STAB(G).

OC(G) :=
{
x ∈ FRAC(G) : x satisfies all odd-cycle

constraints for G

}
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LetH be the vertex set of an odd-antihole in G. Then the inequality∑
i∈H

xi 6 2

is valid for STAB(G).

ANTI −HOLE(G) := {x ∈ FRAC(G) : x satisfies all odd-antihole
constraints for G }

If we have an odd-wheel in G with hub vertex represented by x2k+2 and rim vertices represented
by x1, x2, . . . , x2k+1 then odd-wheel inequality

kx2k+2 +
2k+1∑
i=1

xi 6 k

is valid for STAB(G).

WHEEL(G) := {x ∈ FRAC(G) : x satisfies all odd-wheel
constraints for G }
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Theorem 77

For every graph G,

STAB(G)

⊆LS+(FRAC(G))

⊆OC(G) ∩ ANTI −HOLE(G) ∩WHEEL(G) ∩ CLQ(G) ∩ TH(G)

Open Problem: Give a full, elegant, combinatorial charaterization for LS+(G),∀G.
Note: The last inclusion in the statement of Theorem 77 is sometimes strict.
While the above theorem shows the impressive power of LS+ operator on FRAC(G), on many
much easier 0, 1 integer programming problems LS+ operator and many many other lift-and-
project operators do poorly. See chapter 8 of the textbook and the references therein.

6.2 Successive Nonconvex Relaxation
We can generalize our approach to lift-and-project methods to compute the convex hull of any
compact set, hence in principle solve any optimization problem

inf f(x), x ∈ F

where f is continuous, F is compact, by solving possibly a very very large scale SDP problem.
Introduce a new variable xn+1,

inf xn+1

s.t. f(x) 6 xn+1

x ∈ F
l 6 xn+1 6 u

−→
min cTx

x ∈ F

where c := en+1, F ⊕ [l, u] −→ F

Theorem 78

Every compact set in Rd can be expressed as the feasible region of a system of quadratice
inequalities.

Proof. Let F ⊂ Rd be a compact set. Then Rd \ F is open, hence can be expressed as a union of
open Euclidean balls. Then,

F = Rd \ (Rd \ F ) = ∩
(
a collection of quadratic inequalities ‖x− x‖22> r2

)

Recall, Prop 30 is a similar result.
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Lemma 79

For every triple (Q, q, γ) ∈ Sd ⊕ Rd ⊕ R,

{x ∈ Rd : xTQx+ 2qTx+ γ 6 0}

⊆
{
x ∈ Rd : Tr

[
γ qT

q Q

] [
1 xT

x X

]
6 0,

[
1 xT

x X

]
∈ Sd+1

+

}
.

If rank
[

1 xT

x X

]
= 1, then equality holds above.

Suppose we are given a set P ⊂ Sd ⊕ Rd ⊕ R so that

F =
{
x ∈ Rd : xTQx+ 2qTx+ γ 6 0,∀(Q, q, x) ∈ P

}
Note that we may replace P by cone(P) or by the generators of cone(P) (because mulplication of
a positive real number won’t change the inequality).
Define P+ := cone(P)∩ (Sd+⊕Rd⊕R) (i,e, collect all the convex quadratic inequalities from this
decription, so a convex relaxation of F ).

Theorem 80

Let P ⊂ Sd⊕Rd⊕R be a clsoed convex cone containing (I, 0, R︸︷︷︸
>0

). Then the convex sets

{x ∈ Rd : xTQx+ 2qTx+ γ 6 0,∀(Q, q, γ) ∈ P+}

and {
x ∈ Rd : Tr

[
γ qT

q Q

] [
1 xT

x X

]
6 0,∀(Q, q, γ) ∈ P ;

[
1 xT

x X

]
∈ Sd+1

+

}
.

are identical. Moreover, in the second description we may replace P by its generators.

6.3 Successive Convex Relaxation Method
Given P ⊂ Sd ⊕ Rd ⊕ R containing (I, 0, R) for R > 0,

C0 :=
{
x ∈ Rd : xTQx+ 2qTx+ γ 6 0, ∀(Q, q, γ) ∈ P+

}
D1 :={d ∈ Rd : ‖d‖2= 1}
D2 :={ei,−ei : i ∈ {1, 2, . . . , d}}
k :=0
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At iteration k:

∀a ∈ D1, α(a) := max{aTx : x ∈ Ck}
∀b ∈ D2, β(b) := max{bTx : x ∈ Ck}
Pk := coefficient of (α− aTx)(bTx− β) 6 0

Ck+1 :=
{
x ∈ Rd : xTQx+ 2qTx+ γ 6 0,∀(Q, q, γ) ∈ (P ∪ Pk)+

}
k := k + 1

Theorem 81

With the above definition, the sequence of convex relaxations Ck of F generated by SCRM
satisfies

(a) ∀k ∈ Z+, conv(F ) ⊆ Ck+1 ⊆ Ck, moreoever,

Ck+1 = Ck ⇐⇒ Ck = conv(F );

(b)
⋂τ
k=1Ck = ∅ for some finite number τ , if F = ∅;

(c)
⋂∞
k=1Ck = conv(F )
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Theorem 82

Let F ⊆ {0, 1}d and the set C0 be defined by quadratic inequalities such that

conv(F ) ⊆ C0 ⊆ [0, 1]d.

Suppose the quadratic inequalities x2i−xi 6 0,−x2i+xi 6 0,∀i ∈ {1, 2, . . . , d} are included
in the quadratic inequality system. Let {Ck} denote the sequence of compact convex sets
generated by the SCRM. Then,

Ck = LSk+(C0),∀k ∈ Z+

Why? Recall the definition of LS+ via M+ :

M+(Ck) =


. . . Y ei, Y (e0 − ei) ∈ cone(1⊕ Ck)︸ ︷︷ ︸

K︸ ︷︷ ︸
(1)

. . .


where

(1) ≡
[s0, s

T ]Y ei > 0

[s0, s
T ]Y (e0 − ei) > 0

}
,∀i ∈ {1, 2, . . . , d},∀

[
s0
s

]
∈ K∗

Also, [
s0
s

]
∈ K∗ ⇐⇒

[
s0 sT

] [1
x

]
> 0,∀x ∈ Ck ⇐⇒ s0 > −sTx, ∀x ∈ Ck.

Our current descriptions of sets Ck are as feasible regions of semi-infinite SDPs (in this case
infinitely many constraints on a matrix variable in Sd+1).
We can take a finite subset of D1 =:

{
d ∈ Rd : ‖d‖2= 1

}
. Then, if the initial system of quadratic

inequalities is finite, eachCk will be a projection of a spectrahedron (a typical SDP feasible region).
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7 Convex Algebraic Geometry
How can I convince you that

f(x) :=830108x1 + 216x2 + x23x
2
1 − 2x33x1 − 32x1x

3
2 + 24x21x

2
2

. . .

+ x21x
6
2 + 2x23x1 − 2x33 > 2,∀x ∈ R4

What if I claim

f(x) =(x1 − 2x2 − 3)4 + x22(x3 − x1 − 1)2

+ x21x
2
2(3x1 − x2 + 4x4)

2 + 2

> 2,∀x ∈ R4

Given a polynomial f : Rn → R of degree of 2d, d ∈ Z++, let

h(x) := [1, x1, x2, . . . , xn, x
2
1, x1x2, x1x3, . . . , x

2
2, . . . , x

d
n]T ∈ RN ,

where N :=

(
n+ d
d

)
. We are interested in the set

F (f) :=
{
X ∈ SN : [h(x)]TXh(x) = f(x)

}
Theorem 83

Let z ∈ R and f be a multivariate polynomial over the reals. Then,

[f(x)− z] if SoS ⇐⇒
{
X ∈ F (f) : X < ze1e

T
1

}︸ ︷︷ ︸
A feasible region of a trivial SDP, even z not given

6= ∅

Example

f(x) := x21 + 4x22 − 4x1x2 − 6x1 + 12x2 + 12, h(x) := [1, x1, x2]
T .

sup z

s.t.

1 x1 x2( )1 12− z −3 6
x1 −3 1 −2
x2 6 −2 4
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We can extend the idea of using SoS relaxations of nonnegativity of polynomials to PoPs
(Polynomial Optimization Problems):

inf P0(x)

s.t. P1(x) > 0

P2(x) > 0

...
Pm(x) > 0

We already have seen methods to handle such optimization problems (via Reformulating the prob-
lem by quardatic polynomials). We can also treat PoPs directly. We will explain on the feasibility
version of (PoP).

Is F := {x ∈ Rn : P1(x) > 0, P2(x) > 0, . . . , Pm(x) > 0} = ∅?

Theorem 84

Let P1, P2, . . . , Pm be given multivariate polynomials over n real variables. Then,

F := {x ∈ Rn : Pi(x) > 0,∀i ∈ {1, 2, . . . ,m}} = ∅ iff
∃s0, . . . , sJ , . . . ∈ SoS(n, ∗) such that
g :=

∑
J⊆{1,2,...,m} sJ

(∏
i∈J Pi

)
= −1

where SoS(n, ∗) denotes the set of sum of squares polynomials with degree bound ∗.

IN a way, Theorem 84 is a ”common” generalization of Farkas’ Lemma and Hilbert’s Nullstellenstaz.

Theorem: Farkas’ Lemma

Let A ∈ Rm×n, b ∈ Rm be given. Then, exactly one of the following holds:

(i) ∃x ∈ Rn : Ax = b, x > 0;

(ii) ∃y ∈ Rm : ATy > 0, bTy < 0;

For this side only x ∈ Cn.

Theorem: Hilbert’s Nullstellensatz

Given multivariate polynomials P1, . . . , Pm : Cn 7→ C, exactly one of the following systems
has a solution (in Cn):

(i) Pi(x) = 0,∀i ∈ {1, 2, . . . ,m};

(ii) ∃ polynomials hi such that
m∑
i=1

hi(x)Pi(x) = −1
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Note that theorem 84 can be implemented computationally (although, in general, none of these
methods has been effective on nontrivial, large-scale instances).

Guess an upper bound on the degree of the polynomials sJ ’s, treat the coefficients of the mono-
mial of SJ ’s as variables then we have an SDP to solve.

Considering larger degree certificates sJ ’s lead to very large scale SDP problems.
Recall Theorem 83. Suppose we guessed the maximum degrees of sJ ’s as two. Suppose n = 3.
Represent coefficients of monomials of

sJ(x) := a0 + a1x1 + a2x2 + a3x3 + a4x
2
1 + a5x1x2 + a6x1x3 + a7x

2
2 + a8x2x3 + a9x

2
3 by

X :=

1 x1 x2 x3


1 a0 a1/2 a2/2 a3/2
x1 a1/2 a4 a5/2 a6/2
x2 a2/2 a5/2 a7 a8/2
x3 a3/2 a6/2 a8/2 a9

< 0

Note: sJ(x) is a degree 2, SoS if and only if X < 0.
Now if we recall the g in theorem 84, we will see that it actually requires the most of coefficients
after the summation becomes zero while we can represent the coefficient of each sJ as a positive
semidefinite matrix.
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8 Extension Complexity
Recall facets plot and theorem 71 and theorem 77.
Given a polyhedra (or a family of polyhedra), what is the smallest number of linear inequalities
necessary to represent this polyhedron as a projection of another polyhedra?
Similarly, given a closed convex set which can be expressed as the feasible region of an SDP,
what is the smallest size and number of matrix variables and p.s.d. constraints which allow us to
represent the given convex set as a projection of a spectrahedron?
Let A ∈ Rm×d, b ∈ Rm.

P := {x ∈ Rd : Ax 6 b};

suppose dim(P ) = d, P is bounded, and P has m facets, n extreme points.
Slack matrix of P is S ∈ Rm×n,

Sij := bi − 〈a(i), v(j)〉,∀i, j,

where a(i) is the ith row of A, v(j) is an extreme point of P .
Nonnegative rank of S (and P ) is the smallest ineger k such that

S = FV T , where F ∈ Rm×k
+ , V ∈ Rn×k

+

Then rank+(P ) := rank+(S) := k.

Theorem 85: Yannakakis[1991]

Let P ⊂ Rd be a polytope, k := rank+(P ). Then every lifted representation
(extended formulation) of P has at least k constraints. Moreover, there exists a lifted repre-
sentation of P with at most (k + d) constraints and (k + d) variables.

Note that in the above theorem, by ”lifted representation” or ” extended formulation” we are only
refering to polyhedral representations. So, ”number of constraints” refers to the number of linear
equations and inequalities.

Proof. Sketch
Note the every valid inequality for P is a linear consequence of facet defining inequalities for P .
Suppose all facets of P are expressed as {Ax 6 b}. Let S be the slack matrix of P and

rank+(S) = k, S = FV T , F ∈ Rm×k
+ , V ∈ Rn×k

+ .

P̂ :=

{(
x
u

)
∈ Rd ⊕ Rk : Ax+ Fu = b, u > 0

}
Claim:P =

{
x ∈ Rd :

(
x
u

)
∈ P̂ for some u ∈ RK

+

}
.

So, P̂ is a lifted representation with (k + d) variables and (m+ k) linear constraints.
We can eliminate (m−d) constraints from the description of P̂ which finishes one direction of the
proof.
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For the other direction, suppose there exists a polytope P̃ with q facets so that the projection of P̃
is P . Consider the slack matrix S̃ of P̃ , but only focus on the submatrix of S̃ whose columns cor-
respond to extreme points of P̃ projecting to extreme points of P . Every facet inducing inequality
for P comes from a valid inequality for P̃ which by our first observation is a nononegative linear
combination of facet inducing inequalities for P̃ . Collecting these facets of P̃ in a matrix F̃ , and
defining the submatrix of S̃ as Ṽ , we have S = F̃ Ṽ T which is the slack matrix of P , which shows
rank+(S) 6 q.

The smallest number of facets needed in a lifted polyhedral representation is called the extension complexity
of P , and is denoted by

xc(P ).

How about lifted SDP representations and SDP extension complexity?
Given a convex set G and a convex cone K do there exist an affine subspace V and linear subspace
W such that

G = ΠW︸︷︷︸
Projection

onto subspace
W

(K ∩ V )︸ ︷︷ ︸
Proper if

V ∩int(K)6=∅

We say that G admits a lifted representation by K.
Suppose G is a compact convex set with nonempty interior. We may assume 0 ∈ int(G). Recall
the polar

G0 := {s : 〈x, s〉 6 1,∀x ∈ G}

Slack function of G:SG : ext(G)⊕ ext(G0) 7→ R, SG(x, s) := 1− 〈x, s〉.
A K-factorization of SC is a pair of maps V : ext(G) 7→ K, F : ext(G0) 7→ K∗ such that
SG(x, y) = 〈V (x), F (s)〉,∀(x, s) ∈ ext(G)⊕ ext(G0).

Theorem 86: Gouveia,Parrilo, Thomas[2013]

If SG has a K-factorization, then G has a lifted K-representation. If G has a proper lifted
K-representation, then SG has a K-factorization.

Where is the result about lifted-SDP representations?
Set K := Sn+ or K := Sn1

+ ⊕ Sn2
+ ⊕ . . .⊕ Snr

+ then K∗ = K.
For combinatorial optimization applications, G is a polytope in [0, 1]d, such as STAB.
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9 An Application to Discrepancy Theory
Discrepancy Theory involves studying and quantifying regularities and irregularities in typically
discrete mathematical structures. These studies sometimes include approximations to discrete
mathematical structures by continuous structures.
Applications include those in other areas such as:
communication complexity, data analysis, design of polynomial time approximation algorithms,
computational geometry, computational complexity theory, Monte-Carlo algorithms, computa-
tional finance.
LetF be a family of subsets of {0, 1, . . . , (n−1)}. Given x ∈ {−1, 1}{0,1,...,n−1} the discrepancy of x
is

∆(x) := max
J∈F

∣∣∣∣∣∑
j∈J

xi

∣∣∣∣∣
Example

n = 5,F := {{0, 2, 4}, {1, 3}, {2, 3}} , x := [−1, 1,−1,−1, 1]T . Then,

∆(x) = max{1, 0, 2} = 2,∆(F) := min
x∈{−1,1}n

{∆(x)}

∆(F) = 1, attained by x̂ := [−1, 1, 1,−1, 1]T among others.

We want to find a sign vector x (which partitions the ground set) so that the discrepancy is mini-
mized:

∆(F) := min
x∈{−1,1}n

{∆(x)}

Consider, as an approximation to ∆(F), instead of starting with ∆(x) = maxJ∈J
∣∣∑

i∈J xi
∣∣, let’s

start with ∆2(x) :=
∑

J∈F
(∑

i∈J xi
)2, and define

∆2(F) := min
x∈{−1,1}n

{
1

|F|
∆2(x)

}
We have ∆2(F) 6 [∆(F)]2.
An integer programming formulation to compute ∆(F):

min t
−t 6

∑
i∈J xi 6 t, ∀J ∈ F

x ∈ {−1, 1}n.

Consider

min
1

|F|
∑
J∈F

(∑
i∈J

xi

)2

, x ∈ {−1, 1}n as a lower bound
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Equivalently,

min
1

|F|
∑
J∈F

(∑
i∈J

∑
j∈J

Xij

)
diag(X) = e

X ∈ Sn+
rank(X) = 1

Note in the above, we write X ↔ xxT and we know (
∑

i∈J xi)
2 =

∑
x2i + 2

∑
i<j xixj .

If we represent xi → v(i) ∈ Rn with ‖v(i)‖2= 1,X ∈ Sn+ with diag(X) = e andX = V V T , V T :=[
v(0) v(1) . . . v(n−1)

]
.

we have the SDP relaxation

• (P ) inf
{

1
|F|Tr(CX) : diag(X) = e,X < 0

}
and its dual

• (D) sup
{
eTy : Diag(y) 4 1

|F|C
}

Optimal objective value of (P ) lower bounds ∆2(F) whose square-root lower bounds the discrep-
ancy of F ,∆(F).
Primal SDP has the Slater point X := I and the dual SDP has the Slater point y := − (‖C‖2+1) e.
Therefore, by a corollary of the Strong Duality Theorem, both (P ) and (D) attain their optimal
values and these values are the same.

Theorem 87: (Roth[1964])

For every partition [N1, N2] of integers {0, 1, 2, . . . , n − 1}, there exists an arithmetic pro-
gression G := {l, l + α, l + 2α, . . . , l + kα} ⊆ {0, 1, . . . , n− 1} such that

||G ∩N1|−|G ∩N2|| >
n

1
4

20
.

We can prove this theorem, utilizing the SDP relaxation above.
We will prove something slightly stronger, that there exists an arithmetic progression of length
k := b

√
n/8c such that α ∈ {1, 2, . . . , 8k} and the conclusion of the theorem holds.

We consider progressions modulo n (we allow them to wrap around). Note,

(k − 1)8k 6 b
√
n/8− 1c

√
8n 6 n− 1.

Thus, our arithmetic progressions never wrap around more than once.
LetH denote this family of progressions.
Note, |H|= 8kn. So, our SDP relaxation is:

min
1

8kn

∑
J∈H

(∑
i∈J

∑
j∈J

Xij

)
diag(X) = e

X ∈ Sn+
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Lemma 88

The feasible region and the objective function of the above SDP are invariant under cyclic
shifts:

Xij 7→ Xi+1,j+1,

where indices are interpreted modulo n.

Using the above lemma, we can deduce ∃β ∈ Rn−1 such that an optimal solution of SDP is

X̂ :=


1 β1 β2 . . . βn−1

βn−1 1 β1 . . . βn−2
... . . . ...
... . . . ...
β1 1

 .
and by X being symmetric, we have

X̂ :=


1 β1 β2 . . . βn−1
β1 1 β1 . . . βn−2
... . . . ...
... . . . ...

βn−1 1

 .
which means βn−i = βi.
I.e., SDP has an optimal solution that is a symmetric, positive semidefinite circulant matrix with
every diagonal entry equal to 1.
Using the structure of such a special optimal solution X̂ of the SDP relaxation, we can prove that

its objective function value is at least
√
n/8−1
16

. For all large n, this yields a proof that ∆(F) > n
1
4

14
.

We worked on the primal SDP; we could have worked on dual SDP instead:
Let Aj ∈ {0, 1}n×n denote the matrix whose ith row is the characteristic vector of the arithmetic
progression with starting point i and stepsize j ∈ {1, 2, . . . , 8k}. Then,

C :=
8k∑
j=1

AjA
T
j .

Our dual SDP is

max eTy

s.t. Diag(y) 4
1

8kn
C

It turns out, if suffices to consider a very special family of dual solutions: y = ηe for η ∈ R.
We immediately have that

opt(SDP ) >
1

8kn
λn(C).

Note, C is a symmetric, positive definite circulant matrix.
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10 SDP Representability and some other applications
On the spectrum of

1. Theory of SDPs: which convex sets can be expressed as feasible regions of SDPs (perhaps
allowing auxiliary variables)?

2. Applications of SDPs: which applications can be efficiently treated via SDPs?

[No bound on XCSDP (·) is required]
Given a convex function f : Rd → R ∪ {∞}, we can formulate convex optimization problems
involving f (either in the objective function as ” inf f(x) . . . ” or in the constraints as ”f(x) 6
g(x)” where g is an affine function) via representing its epigraph,

epi(f) :=

{[
t
x

]
∈ R⊕ Rd : f(x) 6 t

}
we will focus on the latter.

Affine functions, polyhedra:
Given A ∈ Rm×d, b ∈ Rm,

{x ∈ Rd : Ax 6 b} = {x ∈ Rd : Diag(b− Ax) < 0}

Euclidean Norm:
f : Rd → R, f(x) := ‖x‖2,

epi(f) =

{[
t
x

]
∈ R⊕ Rd : ‖x‖26 t

}
=

{[
t
x

]
∈ R⊕ Rd :

[
t xT

x tI

]
< 0

}
.

Matrix 2-norm(Operator 2-norm)
f : Rm×n → R, f(x) := ‖X‖2:= maxh∈Rn:‖h‖2=1‖Xh‖2.

epi(f) = {(t,X) ∈ R⊕ Rm×n : ‖X‖26 t}

=

{
(t,X) ∈ R⊕ Rm×n :

[
tI XT

X tI

]
< 0

}
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10.1 A Homogeneous Cone and Nuclear Norm Minimization:
Consider the convex cone

cl
{

(t, U,X) ∈ R⊕ Rn×m ⊕ Sn : tX − UUT < 0, t > 0
}

=

{
(t, U,X) ∈ R⊕ Rn×m ⊕ Sn :

[
tI UT

U X

]
< 0

}

In many applications of data sparsification (finding sparse representations capturing ”important”
parts of the data), compressed sensing and machine learning, problems of minimizing the nuclear
norm of a matrix over an affine subspace (or its variants) arise.
Given X ∈ Rm×n, its nuclear norm is

‖X‖∗:= Tr
(

(XXT )
1
2

)
=

min{m,n}∑
i=1

σi(X),

where σi(X) denotes the ith singular value of X .

(P ) inf ‖X‖∗
s.t. A(X) = b

(D) sup bTy

‖A∗(y)‖26 1

The dual problem can be formulated using the operator 2-norm formulation (U := A∗(y), t := 1)
or the more general formulation (U := A∗(y), t := I,X := tI).[

tI [A∗(y)]T

A∗(y) tI

]
< 0, t = 1 ⇐⇒ ‖A∗(y)‖26 1

10.2 Maximum Eigenvalue of a Symmetric Matrix:
f : Sn → R, f(X) := λ1(X).

epi(f) = {(t,X) ∈ R⊕ Sn : λ1(X) 6 t}
= {(t,X) ∈ R⊕ Sn : tI −X < 0}

10.3 Condition number of a symmetric, positive definite matrix pencil:
Suppoe A0, A1, . . . , Am ∈ Sn are given and we want a matrix of the form (A0 +

∑m
i=1 yiAi) such

that the min. eigenvalue is at least one, and that its condition number is minimized:

inf t

s.t. I 4 A0 +
m∑
i=1

yiAi 4 tI
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10.4 Sum of k-largest eigenvalues:
f : Sn+ → R, f(X) := Kk(X) :=

∑k
i=1 λi(X).

epi(f) =
{

(t,X) ∈ R⊕ Sn+ : Kk(X) 6 t
}

=

(t,X)∈R⊕Sn+:M(t,X,η,Y ):=


(t− kη)− Tr(Y ) 0 0

0 Y 0
0 0 Y −X + ηI

<0,

for some Y ∈Sn,η∈R


Proposition 89

Let f and M(t,X, η, Y ) be as defined above. Then, (t,X) ∈ epi(f) if and only if there
exists η ∈ R and Y ∈ Sn such that M(t,X, η, Y ) < 0.

Proof.

1. ( ⇐= ) Suppose ∃η ∈ R, Y ∈ Sn such that M(t,X, η, Y ) < 0. Then, Theorem 1.20 of the
textbook (variational charaterization of eigenvalues of symmetric matrices Courant-Fischer-
Weyl Theorem) and Y −X + ηI < 0 implies

λj(Y )− λj(X) > −η,∀j ∈ {1, 2, . . . , n}

Summing up both sides of the first k inequalities, we obtain Kk(Y ) + kη > Kk(X).
Since Y < 0, we have Tr(Y ) > Kk(Y ). Combining this with Tr(Y ) + kη 6 t (from (1, 1)
block of M(t,X, η, y) < 0), we conclude

Kk(X) 6 Kk(Y ) + kη 6 Tr(Y ) + kη 6 t

We proved (t,X) ∈ epi(f).

2. ( =⇒ ) Let (t,X) ∈ epi(f). Then, X < 0 and Kk 6 t. Let η := λk(X). We have

λj(X − ηI) > 0,∀j ∈ {1, 2, . . . , k} and
λj(X − ηI) 6 0,∀j ∈ {k + 1, . . . , n}.

Let u(1), u(2), . . . , u(n) ∈ Rn be the eigenvalues of (X − ηI) corresponding to the eigenvalues
λ1(X − ηI), . . . , λn(X − ηI) respectively. Let

Y :=
k∑
j=1

λj(X − ηI)u(j)u(j)
T
, Z := Y − (X − ηI)

Note, Y < 0 and Y − (X − ηI) = Z < 0. Finally,

t− kη − Tr(Y ) = t− kλk(X)−Kk(X) + kλk(X)

= t−Kk(X) > 0

Therefore, M(t,X, η, Y ) < 0 as desired.
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We can extend the above SDP representation to handle f : Rm×n → R, f(X) :=
∑k

i=1 σi(X), epi(f) ={
(t,X) ∈ R⊕ Rm×n :

∑k
i=1 σi(X) 6 t

}
, the epigraph of sum of k-largest singular values of X .

Note that the eigenvalues of
[

0 XT

X 0

]
are the singular values of X and their negation.

10.5 Geometric Mean

f : Rn → R, f(x) := −
(∏n

j=1 xj

) 1
n
.

epi(f) =

(t,X) ∈ R⊕ Rn : −

(
n∏
j=1

xj

) 1
n

6 t.


10.6 Determinant of X ∈ Sn++

f : Sn++ → R, f(X) := [det(X)]
1
n .

epi(f) =
{

(t,X) ∈ R⊕ Sn++ : −[det(X)]
1
n 6 t

}
10.7 Determinant of X ∈ Sn+
f : Sn+ → R, f(X) := [det(X)]

1
n .

epi(f) =
{

(t,X) ∈ R⊕ Sn+ : −[det(X)]
1
n 6 t

}
We will construct an SDP-representation for the above epigraph by utilizing an SDP-representation
for the Geometric Mean application. For ξ ∈ Rn(n+1)/3 index its entries by ij, where i, j ∈
{1, 2, . . . , n} so that ξ gives a v ector representation of the entries of a lower triangular matrix

Y (ξ) :=


ξ11

ξ21 ξ22 0
... . . .
ξn1 ξn2 ξnn


Let Z(t, ξ) denote the SDP representation of the set

epi(g) :=


(
y
ξ

)
∈ R⊕ Rn(n+1)/2 : t > −

(
n∏
i=1

ξii

) 2
n

, ξii > 0,∀i


That is, Z(t, ξ) < 0 if and only if

[
t
xi

]
∈ epi(g). Define

M(t,X, ξ) :=

z(t, ξ) 0 0
0 I [Y (ξ)]T

0 Y (ξ) X
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Theorem 90

Let f and M(t,X, ξ) be as above. Then,
(
y
C

)
if and only if ∃ξ ∈ Rn(n+1)/2 with ξii > 0,∀i

such that M(t,X, ξ) < 0.

Proof.

• ⇐= Suppose ∃ξ ∈ Rn(n+1)/2 with ξii > 0,∀i and t ∈ R, X ∈ Sn+ such that M(t,Xi, ξ) <
0. Then, by the block structure of M(t,X, ξ) and Lemma 5 (Schur Complement Lemma),
we have Z(t, ξ) < 0 and X < Y (ξ)[Y (ξ)]T .

The former implies t > −
(
ξ11 ξ22 . . . ξnn

) 2
n . The latter implies det(X) > det(Y (ξ))2 =

ξ211ξ
2
22 . . . ξ

2
nn. Thus, −(det(X))

1
n 6 t, (t,X) ∈ epi(f) as desired.

• =⇒ Suppose (t,X) ∈ epi(f). Let

ξij :=

{√
λi(X) , if i = j

0 , otherwise

Then, M(t,X, ξ) < 0, as desired.

10.8 Univariate, nonnegative polynomials
Given p0, p1, . . . , pn, we have

p(t) :=
n∑
k=0

pkt
k, υn := [1, t, t2, . . . , tn] ∈ Pn.

Then, p(t) = 〈p, υn〉.

K2n :=

p ∈ P2n︸ ︷︷ ︸
p∈R2n+1

: p(t) > 0,∀t ∈ R

 .

Ẽk ∈ Sn+1 dentoes the kth cross-diagonal matrix k ∈ {0, 1, . . . , 2n}:

Ẽ0 = e1e
T
1 , Ẽ1 =


0 1 0 . . .
1 0

0
. . .

...

 , Ẽ2 =


0 0 1 0 . . .
0 1 0
1 0 0

0
. . .

...

 , . . . , Ẽ2n = ene
T
n

Theorem 91

For every positive integer n,

K2n =
{
p ∈ R2n+1 : pK = 〈Ẽk, X〉, k ∈ {0, 1, . . . , 2n}, X ∈ Sn+1

+

}
.
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Proposition 92

(K2n)∗ =

{
s ∈ R2n+1 :

2n∑
k=0

sKẼk < 0

}
.

Proposition 93

For every positive integer n,

int(K2n) =
{
p ∈ R2n+1 : p2n > 0 and p(t) > 0,∀t ∈ R

}
Theorem 94

For every positive integer n, K2n and K∗2n are pointed closed convex cones with nonempty
interiors.

Theorem 95

If p ∈ int(K2n) then the set{
X ∈ Sn+1

+ : 〈Ek, X〉 = pk,∀k ∈ {0, 1, . . . , 2n}
}

is bounded and it contains some X � 0.

Univariate polynomials that are nonnegative on R+ or on [0, 1] can be treated. Trigonometric
polynomials

p(t) :=
n∑
k=0

pk(cos t+ i︸︷︷︸
i:=
√
−1

sin t) can also be treated

More open problems:

• characterize the set of convex cones that are spectrahedral.

• characterize the set of convex sets that are spectrahedral shadows.

• find new applications of SDPs in

– approximation algorithms

– quantum computing & information

– graph theory

– combinatorics

–
...

• settle the Unique Games Conjecture
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• design faster and more robust algorithms for solving SDPs

– first-order

– second-order and higher but adaptive

– exploit sparsity and special structure better

• better understanding of the boundary structure of spectrahedra.

• applications, applications, applications. Data Science, Machine Learning, System&Control
Theory,. . .
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