
CO 450/650: Combinatorial Optimization

Rui Gong

December 20, 2021

1

mailto:r6gong@uwaterloo.ca

Fall 2024 Rui Gong Acknowledgements

Acknowledgements
These notes are based on the CO450/650 lectures given by Professor Ricardo Fukasawa in Fall
2021 at the University of Waterloo.

Fall 2024 Rui Gong Contents

Contents
1 Minimum Cost Spanning Trees 4

1.1 Minimum Spanning Tree Problem . 4
1.2 Kruskal’s Algorithm . 6
1.3 Correctness via LP . 7

1.3.1 Integer Programming Formulation . 7
1.3.2 LP relaxation: . 8
1.3.3 Greedy and Max Cost Forest . 9
1.3.4 Kruskal for Maximum Cost Forest . 10

2 Matroids 11
2.1 Matroid 1 . 11
2.2 Matroid 2 . 13
2.3 Matroid 3 . 16

2.3.1 Circuit characterization . 16
2.4 Matroid 4 . 18
2.5 Polymatroids . 18
2.6 Matroid Construction . 21

3 Matchings 24
3.1 Matchings 1 . 24
3.2 Matching 2 . 26
3.3 Matching 3 . 28
3.4 Matching 4 . 30
3.5 Matching 5 . 32
3.6 Matching 6 . 35

4 Weighted Matching 36
4.1 Weighted Matching 1 . 36

Fall 2024 Rui Gong Minimum Cost Spanning Trees

1 Minimum Cost Spanning Trees
What’s a spanning tree?

Definition 1.1

Given a graph G = (V,E), a subgraph T is a spanning tree of G if:

• V (T) = V (G)

• T is connected

• T is acyclic (contains no cycle)

Theorem 1.2

Let G = (V,E) be connected graph, T be a subgraph of G, with V (T) = V , then the
following are equivalent (TFAE)

• T is a spanning tree of G.

• T is minimally connected (T will be disconnected if any edge is dropped).

• T is maximally acyclic (Add any edge between vertices of T makes it cyclic).

• ∀u, v ∈ V , there exists a unique u− v path in T (call it Tu,v).

Theorem 1.3

A graph G = (V,E) is connected if and only if ∀A ⊆ V with ∅ ≠ A ̸= V , we have δ(A) ̸= ∅
(δ(A) := {e ∈ E : |e ∩ A|= 1}, the set of edges with exactly one edge in A).

1.1 Minimum Spanning Tree Problem
Input:

• Connected graph G = (V,E).

• Costs Ce,∀e ∈ E.

Output: A spanning tree T of G of minimum cost C(T) :=
∑

e∈E(t) Ce.

Fall 2024 Rui Gong Minimum Cost Spanning Trees

Theorem 1.4

Let G = (V,E), connected, C : E 7→ R, T is a spanning tree of G, then TFAE:

a) T is a MST (minimum spanning tree).

b) ∀uv ∈ E \ E(T), all edges e on Tu,v have Ce ⩽ Cuv.

c) ∀e ∈ E(T), let T1, T2 be the two connected components obtained from T when re-
moving e. then e is a min cost edge in δ(T1) (of G).

Proof.

• a) =⇒ b). Suppose ∃uv ∈ E \ E(T) and e ∈ Tu,v such that Ce > Cuv, consider
T ′ = T + uv − e. Since we don’t change delete any vertices, V (T ′) = V (T) = V (G). If
we write Tu,v = u, v1, . . . , vn, v and say vi, vi+1 are the ends of e. Then, for any two vertices
of G, if they are not on Tu,v, they are still connected. If at least one of them is on Tu,v, say
k2 is on Tu,v, WLOG, say the unique path is k1, . . . , u, . . . , k2, if e is not in the path, we are
good, if it is, then we take k1, . . . , u, v, . . . , k2 on T ′. Hence, T ′ is connected. That is, T ′ is
connected and |E(T ′)|= |E(T)|= |V |−1, so by theorem 2, we know T ′ is a spanning tree
of G. And since Cuv < Ce, C(T ′) < C(T), T is not a MST, contradiction, so no such uv
exists.

• b) =⇒ c). Suppose ∃e ∈ T, uv ∈ δ(T1) such that Cuv < Ce. First, uv /∈ E(T),
otherwise, since v ∈ T2 and T1, T2 are connected, so there is a cycle including uv and e in T ,
contradiction. Also, e ∈ Tuv, because we have u ∈ T1, and v ∈ T2, and T1, T2 are separated
by e, so any path from T1 to T2 will include e. Then this contradicts to b), contradiction, no
such e exists, c) is true.

• c) =⇒ a). Let T satisfy c). Let T ∗ be a MST with largest k := |E(T) ∩ E(T ∗)|.
If k = n− 1 = |V |−1, we are done.
Else, there is e ∈ E(T) \ E(T ∗) (note T is also a spanning tree). Let T1, T2 be connected
component of T − e, there exists e∗ ∈ E(T ∗) ∩ δ(T1).
First e∗ /∈ E(T) because otherwise, we have e and e∗ connecting T1 and T2 in T (note
e ̸= e∗).
Also, T ′ = T ∗ − e∗ + e is also a spanning tree, because all vertices stay connected and the
number of edges stay the same (as above proof).
By c), Ce ⩽ Ce∗ , so C(T) ⩽ C(T ∗). So T ′ is a MST, and |E(T) ∩ E(T ′)|= k + 1 > k,
contradiction. So k = n− 1, T = T ∗ which is a MST.

Fall 2024 Rui Gong Minimum Cost Spanning Trees

1.2 Kruskal’s Algorithm

Algorithm 1 Kruskal’s Algorithm for MST

Input: G be a connected graph, n = |V |, m = |E|
H = (V, ∅)
while H is not a spanning tree do

Find the cheapest edge whose endpoints are in different components of H
H ← H + e

end while

We also have an equivalent version:

Algorithm 2 Equivalent
Sort edges so that Ce1 ⩽ . . . ⩽ Cem .
for i = 1, . . . ,m do

if endpoints u, v of ei are in different components of H then
H ← H + ei

end if
end for

Implementation:

• Keep array comp, with comp[v]← v,∀v ∈ V initially.

• The if step in algorithm 2 can be done by checking if comp[u] == comp[v], for e = uv.
O(1).

• When the assignment step in alg2 is executed, go through comp[t],∀t ∈ V , if comp[t] ==
comp[v], set comp[t] = comp[u]. That is, make sure u, v and the vertices they are connected
to are in the same component. O(n).

• Sort step O(m logm).

• For loop step O(m) in total.

Overall, we have O(m logm)+O(mn) = O(mn), which is a polynomial time. At the end, H will
be a spanning tree.

Q: Can alg1 get stuck?

• The e we need to find always exists. Since H is not a spanning tree, either it is not connected,
or it has a cycle in it. However, if H has a cycle, the last edge added to that cycle will not be
added because its two endpoints are already in H . Hence, H is disconnected, so we can find
an edge connecting different components of H .

• Everytime H ← H + e is executed, two different components are connected, so the num-
ber of different connected components of H minus 1. Also, since H is acyclic before the
assignment, and e connects two different components, there is no cycle.

Fall 2024 Rui Gong Minimum Cost Spanning Trees

• Every iteration, the number of components minus 1, and we have n components at the be-
ginning, so we do O(n) iterations, during the time, we keep the H acyclic.

Q: Does it return a MST?
Suppose not, there exists uv ∈ E \ E(H) and e ∈ Huv with Cuv < Ce by theorem4, so Cuv will
be considered before Ce in the first step of alg2. When Cuv is being tested in alg2’s third step,
there is no path from u to v, so they are in different components, so uv will be added to H , not e,
contradiction.

1.3 Correctness via LP
• Show techniques that can be used in other settings

• Lead to ”good” approaches for more challenging problems

1.3.1 Integer Programming Formulation

• Let xe ∈ {0, 1} to indicate if edge e is in the MST

• Spanning tree: acylic, n− 1 edges (n := |v|)

min
∑
e∈E

cexe c
Tx

s.t. x(E) = n− 1 ,where x(F) :=
∑
e∈F

xe

x(F) ⩽ n− κ(F), ∀F ⊆ E

x ∈ {0, 1}E

For Acyclic:
Consider F ⊆ E. How many edges of F can a spanning tree have?
Let κ(F) be the number of connected components of (V, F), then our answer is n − κ(F). Since
if we consider every connected components of (V, F), we can find a spanning tree in it and have
at most the number of vertices in that component minus one edges. So, sum over all components,
we have n− k(F) at most without forming a cycle.
Note: If F = {e}, then κ(F) = n − 1, so x(F) ⩽ n − κ(F) becomes xe ⩽ 1, so our problem
becomes

min
∑
e∈E

cexe

s.t. x(E) = n− 1

x(F) ⩽ n− κ(F),∀F ⊆ E

x ⩾ 0, x ∈ ZE

Fall 2024 Rui Gong Minimum Cost Spanning Trees

1.3.2 LP relaxation:

(PST), ζ
∗
PST

:= min
∑
e∈E

cexe

s.t. x(E) = n− 1

x(F) ⩽ n− κ(F),∀F ⊆ E

x ⩾ 0

It has optimal solutions. Since G is connected, it has feasible solutions (just find a spanning tree)
and its feasible regions is bounded, so it has optimal solutions.

Proof Idea:

• Any spanning tree T corresponds to a feasible solution to (PST) =⇒ c(T) ⩾ ζ∗PST
.

• Shows that spanning tree produced by Kruskal is optimal for (PST) (using Complementary
Slackness).

min cTx

s.t. x(E) = n− 1

x(F) ⩽ n− κ(F),∀F ⊆ E

x ⩾ 0

note that n− 1 = n− κ(E). Then we find the dual

Dual (DST):

max
∑
F⊆E

(n− κ(F))yF

s.t.
∑
F :e∈F

yF ⩽ ce, ∀e ∈ E

yF ⩽ 0,∀F ⊂ E

yE is free.

Let E = {e1, . . . , em}, with ce1 ⩽ ce2 ⩽ . . . ⩽ cem . Let Ei = {e1, . . . , ei},

• yEi
= cei − cei+1

⩽ 0,∀i = 1, . . . ,m− 1

• yE = cem , yF = 0,∀ other F.

Now, we want to show that y is feasible for (DST) and all constraints are satisfied at equality
(except the yF ⩽ 0 ones). For each ei ∈ E, we know ei ∈ Ei, . . . , Em and some other non-Ei edge
subsets. Hence, ∑

F :ei∈F

yF =
m∑
j=i

yEj
+

∑
F ̸=Ej ,j⩾i:ei∈F

yF

= cei − cem + cem + 0

= cei

Fall 2024 Rui Gong Minimum Cost Spanning Trees

So the Complementary Slackness condition for Dual constraints are satisfied, we only need to
check either yi = 0 or xEi

constraint is tight.

Now, let x be the incidence vector of tree T constructed by Krustal. Note: x(Ei) =
∑

e∈Ei
xe =

|E(T) ∩ Ei|.

• Ti = (V,Ei ∩ E(T)) is a maximally acyclic subgraph of Hi = (V,Ei). Suppose not, then
we can add an edge ek of Ei \ E(T) to Ti, and it’s still acyclic. This edge ek connects two
component of Ti, otherwise, since ek /∈ E(T), its endpoints are in the same component in T ,
so there is a path between its endpoints in Ek ∩ E(T) ⊆ Ei ∩ E(T), contradiction. Since it
connects two components of Ti, it will added be to T at kth iteration, so it will be in E(T),
contradiction.

• As argued before, n− κ(Ei) is the largest number of edges we can choose from Ei without
forming a cycle in Hi = (V,Ei), that is, by previous point, n−κ(Ei) = |Ei∩E(T)|= x(Ei).

• Now we argue the Complementary Slackness conditions are satisfied. For each F ⊆ E, if
F ∈ {E1, . . . , Em}, then by the previous point, the equality is tight; otherwise, yF = 0. For
each e ∈ E, we showed that all constraints of the dual problem are tight. So x, y are optimal
for PST , DST respectively.

• Hence, cTx = c(T) = ζ∗PST
by Complementary Slackness Theorem.

Consequence of Proof:

• ζ∗PST
= c(T ∗), where T ∗ is MST.

• Solving the above LP can give us an integral solution (under mild assumptions), which rarely
happens.

Alternative Formulation for PST :

ζ∗PST
:= min cTx

s.t. x(E) = n− 1

x(E(S)) ⩽ |S|−1,∀∅ ⊊ S ⊊ V

x ⩾ 0

where E(S) = {e ∈ E : |e ∩ S|= 2}.

1.3.3 Greedy and Max Cost Forest

• MST Algorithms are greedy (best decision based only on local structure).

• Ex: Max weight independent set. Given G = (V,E), S ⊆ V is an independent set if
∀u, v ∈ S, uv /∈ E. Then given Cv, ∀v ∈ V , find independent set S, which maximize
c(S) :=

∑
v∈S cv.

Fall 2024 Rui Gong Minimum Cost Spanning Trees

Maximum Forest Problem:
Given G = (V,E), a forest is a subgraph (V, F) with F ⊆ E that is acyclic. (We refer to a forest
by its set of edges). Then we want

Given G = (V,E), ce,∀e ∈ E, find a forest F maximizing c(F) :=
∑

e∈F ce.

USE MST:

• Compute MST with respect to c′e = −ce.

• Delete from MST all edges with ce ⩽ 0.

Remark. If G is not connected, add edges to it with cost −M , where M > 0 is large.

• The above algorithm will compute a max cost forest: Consider any two components of the
computed forest. By the definition of MST algorithm, the edge deleted from the computed
spanning tree has the smallest cost in the edges between the two components (w.r.t. −ce),
so all edges between this two components have negative costs. Also, for any edges e not
connecting two components of the forest, if it has a positive cost, then it will be added to the
computed spanning tree, hence a contradiction. Similar for the case when an edge is between
two vertices of a component of the forest.

• We should have M greater than the largest absolute value of the negative ce, so that when we
are computing the MST, the ”added” edges will never be selected.

1.3.4 Kruskal for Maximum Cost Forest

Algorithm 3
H = (V, ∅).
while ∃e : ce > 0, with endpoints in different connected components of H do

e = highest cost edge whose endpoints are in different components of H .
H ← H + e

end while
return H

To solve MST (alternatively):

• Add −M to ce,∀e such that ce −M < 0

• Solve maximum cost forest w.r.t. c′e = −(ce −M)

If G is connect, and with all costs c′e > 0, the above algorithm will find a spanning tree with the
largest cost w.r.t. c′e, that is, a spanning tree with the smallest cost w.r.t ce.

Fall 2024 Rui Gong Matroids

2 Matroids
Look at edge setes of forests, i.e. instead of finding H = (V, F), we just refer to F .

Algorithm 4 Generic Greedy

F ← ∅.
while ∃e : F ∪ {e} ∈ I and ce > 0 do

choose such e with largest ce;
F ← F ∪ {e}

end while
return F

where I here represents the set of all forests.

2.1 Matroid 1
Definition 2.1: Matroids

Let S be a ground set. Let I ⊆ 2S (the set of all subsets of S). M = (S, I) is called a
Matroid if it satisfies the following:

(M1) ∅ ∈ I

(M2) If F ∈ I , F ′ ⊆ F , then F ′ ∈ I .

(M3) For all A ⊆ S, every inclusionwise maximal element of I that is contained in A
(definition of the basis of A) has the same cardinality. That is, B ∈ I is a subset of A
and no other subsets of A in I is a strict superset of B, then B is a basis of A.

Fall 2024 Rui Gong Matroids

Example 2.2

• Let G = (V,E). Set S = E, I = { all forest}. We get a Graphical/Forest Matroid.

• Let S = {1, . . . , n}. Let r ∈ {0, . . . , n}, I = set of all subsets of S with at most r
elements. We have

U r
n = (S, I) =⇒ Uniform matroid of rank r

Q1: Is U r
n a matroid?

(M1) |ϕ|= 0 ⩽ r

(M2) If A ∈ I and B ⊆ A, then |B|⩽ |A|⩽ r =⇒ B ∈ I .

(M3) If there are two basis B1, B2 of A and |B1|< |B2|⩽ min{r, |A|}, then let e ∈
B2 \B1. Then B1 ∪ {e} ⊆ A and |B1 ∪ {e}|⩽ |B2|⩽ min{r, |A|}. So B1 is not
a basis, contradiction.

• Let N be an m × n matrix of real numbers. Let S = {1, . . . , n}. I = {A ⊆ S :
columns indexed by A are linearly independent.}. We call this a Linear Matroid.

e.g.:

N =

2 0 0 1 0 0
0 1 0 0 3 0
0 0 1 0 2 0


, then I = {∅, {1}, . . . , {5}, {1, 2}, {1, 3}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, . . .}.

(M1) ∅ ∈ I .

(M2) If a set of vectors is linearly independent, then any subset of it is also linearly
independent.

(M3) Follows from linear algebra. (Note: basis of a vector space transalte to basis of
A).

Fall 2024 Rui Gong Matroids

Example 2.3

1

3

2

4

Let S = V , I = {A ⊆ V : A is a stable set}.

(M1) ∅ ∈ I

(M2) A subset of a stable set is also stable set.

(M3) Maximal (inclusionwise) subsets of S: {1, 4}, {2, 3} which has the same cardinality.
So is this example a matroid? NO!.
A = {1, 2, 3}, then both {1}, {2, 3} are the maximal subsets of A that are in I but
they have different cardinality.

Definition 2.4: nomenclature of matroids

• Elements of I are called independent sets.

• Minimal dependent sets are called circuit (in the forest sense, cycle are circuits).

• If M = (S, I) satisfies (M1), (M2), it’s called an independence system.

• The rank of A: r(A) := max{|B|: B ⊆ A,B ∈ I}

• The basis of M = the basis of S.

• r(S) is the rank of M (matroid or independent system).

• ρ(A) := min{|B|: B is a basis of A}. Note:

M is a matroid ⇐⇒ ρ(A) = r(A),∀A ⊆ S

2.2 Matroid 2
Maximum Weight independent Set (for independent systems):
Given M = (S, I) independence system, ce ∈ R+ (I can always delete the ones with ce < 0, so
assume ce ⩾ 0), for all e ∈ S, find A ∈ I maximizing c(A) :=

∑
e∈ACe.

Fall 2024 Rui Gong Matroids

F ← ∅
while ∃e : F ∪ {e} ∈ I and ce > 0 do:

Choose such e with largest ce;
F ← F ∪ {e}

end while
return F

Theorem 2.5: Rado, Edmonds

Let M be a matroid, c ∈ RS
+. Then greedy algorithm above finds Maximum Weight Inde-

pendent Set.

Proof. Later

Theorem 2.6: Rado, Edmonds

Let M = (S, I) be an independence system. Then greedy finds an optimal independent set
∀c ∈ RS

+ if and only if M is a matroid.

Proof.

• (⇐=) By Theorem 9 above.

• (=⇒) Suppose M is not a matroid. Let A ⊆ S, A1 and A2 be bases of A with |A1|< |A2|.
Let

ce =


v1, ∀e ∈ A1

v2, ∀e ∈ A2 \ A1

0, ∀e /∈ A1 ∪ A2

Choose v1 > 0 and v1 > v2 > |A1|
|A2|v1. Then since all other elements have cost zero, the

greedy algorithm only considers the elements in A1 ∪ A2. Since v1 > v2, the algorithm will
select A1 first, since A1 is a basis of A, the algorithm can’t add more elements to it, so it
stops and output A1. Then A2 has cost v1|A1 ∩ A2|+v2|A2 \ A1|⩾ v2|A2|> v1|A1|. So the
greedy algorithm does not ouput an optimal solution when all c ∈ RS

+, contradiction.

Theorem 2.7: Jenkyns 176

Let (S, I) be an independent system. Let grS,I be the total weight of the independent set
formed by the greedy algorithm and optS,I be the optimal solution weight. Then

grS,I ⩾ q(S, I)optS,I

where q(S, I) = minA⊆S,r(A)̸=0
ρ(A)
r(A)

(rank quotient).

Fall 2024 Rui Gong Matroids

Proof. Let S = {e1, . . . , en} : ce1 ⩾ . . . ⩾ cen . Let Sj := {e1, . . . , ej} and S0; = ∅. Let G ∈ I be
solution obtained by greedy, σ ∈ I be the optimal solution and Gj = G ∩ Sj; σj = σ ∩ Sj .

c(G) =
∑
j∈G

cj =
n∑

j=1

cej(|Gj|−|Gj−1|) =
n∑

j=1

|Gj|(cej − cej+1︸ ︷︷ ︸
∆j⩾0

)

note that if ej ∈ G, then |Gj|−|Gj−1|= 1, otherwise, |Gj|−|Gj−1|= 0 and cen+1 := 0.
Greedy computes a maximum independent subset of Sj implies Gj is a basis of Sj implies

c(G) =
n∑

j=1

|Gj|∆j

⩾
n∑

j=1

ρ(Sj)∆j

⩾
n∑

j=1

q(S, I)r(Sj)∆j

⩾
n∑

j=1

q(S, I)|σj|∆j

= q(S, I)
n∑

j=1

|σj|(cej − cej+1
)

= q(S, I)
n∑

j=1

cej(|σj|−|σj−1|)

= q(S, I)
∑
j∈σ

cj

= q(S, I)c(σ)

Hence, by Jenkyn’s results, we have if M is a matroid, greedy gets an optimal solution. And
Theorem 9 is proved by it.
How fast is Greedy? Hence a total O(|S|) times executed.

F ← ∅ O(1)
while ∃e : F ∪ {e} ∈ I︸ ︷︷ ︸

can be checked in time Poly(|S|)?

and ce > 0 do:

Choose such e with largest ce; O(|S|)
F ← F ∪ {e} O(1)

end while
return F O(1)

Fall 2024 Rui Gong Matroids

2.3 Matroid 3
Theorem 2.8

Let M = (S, I) independent system. Then (M3) ⇐⇒ (M3′) : ∀X, Y ∈ I, |X|>
|Y |,∃x ∈ X \ Y : Y ∪ {x} ∈ I .

Proof.

• (M3′) =⇒ (M3) trivial.

• (M3) =⇒ (M3′). Let X, Y ∈ I and |X|> |Y |. Consider A = X ∪ Y . Then Y is
not a basis of A because by (M3), and |X|> |Y |, we have |Y |< r(A). Then there exists
x ∈ A \ Y = X \ Y : Y ∪ {x} ∈ I .

Example 2.9

Let G = (V,E),W ⊆ V a stable set. Let kv ∈ Z+,∀v ∈ W,S = E, I = {F ⊆ E :
|δ(v) ∩ F |⩽ kv,∀v ∈ W}. Clearly (M1), (M2) hold.
(M3′) Let X, Y ⊆ E, X, Y ∈ I , |X|> |Y |. Let WY = {v ∈ W : |δ(v) ∩ Y |= kv}. Also,
2|X|=

∑
v∈V |X ∩ δ(v)|. then

2|X| =
∑
v∈WY

|X ∩ δ(v)|︸ ︷︷ ︸
⩽kv

+
∑

v∈W\WY

|X ∩ δ(v)|+
∑

v∈V \W

|X ∩ δ(v)|

2|Y | =
∑
v∈WY

|Y ∩ δ(v)|︸ ︷︷ ︸
=kv

+
∑

v∈W\WY

|Y ∩ δ(v)|+
∑

v∈V \W

|Y ∩ δ(v)|

Since |X|> |Y |, there exists x ∈ X \ Y : x ∈ δ(v) only for some v /∈ WY . Otherwise, all
x ∈ X are either in Y or incident to WY , then |X| is the number of edges in X incident to
WY and the rest. While the rest part of X are all in Y but not incident to WY which are in
the set of edges in Y but not incident to WY , and the number of edges in X incident to WY

is less than or equal to number of edges in Y incident to WY . Mathematically, say KX is
subset of X such that x ∈ KX ⇐⇒ x ∈ δ(v) for some v ∈ WY . KY is the subset such that
y ∈ KY ⇐⇒ y ∈ δ(v) for some v ∈ WY . And |KX |⩽ |KY | by the definition of WY . Then,
X \KX ⊆ Y \KY . Hence, |X|⩽ |Y |, contraction. Then Y ∪ {x} satisfies the condition.

2.3.1 Circuit characterization

Theorem 2.10: Circuit

If instead of describing I , you are given the set of circuits (min. dependent set) (C) of M ,
then A ∈ I ⇐⇒ ∄c ∈ C : c ⊆ A.

Proof.

Fall 2024 Rui Gong Matroids

• =⇒ : by (M2), any subset of A should be in I , so it has no subset in C.

• ⇐= : Suppose A is not in I , then its dependent, keep deleting elements from A till it’s in C,
then we have a subset of A which is in C, contradiction.

Example 2.11

S = {1, 2, 3, 4}, C = {{4}, {1, 2, 3}}, I = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}.

Q: When is C ⊆ 2S the set of circuits of a matroid?

Theorem 2.12

Let M = (S, I) be a matroid. Then ∀A ∈ I , ∀e ∈ S, A ∪ {e} contains at most 1 circuit.

Proof. Let A be smallest set so that

• A ∈ I

• ∃e : A ∪ {e} has two distinct circuits C1, C2.

Note e ∈ C1 ∩ C2, otherwise, A has a circuit then it can’t be in I .
By the choice of A, we have A ∪ {e} = C1 ∪ C2 (otherwise there exists u ∈ A \ (C1 ∪ C2), then
A \ {u} is a smaller set satisfying the properties above).
Since C1 ⊈ C2, C2 ⊈ C1 (if C1 ⊂ C2, then C2 is not a circuit), let e1 ∈ C1 \ C2 and e2 ∈ C2 \ C1.
Consider A′ = (C1 ∪ C2) \ {e1, e2}, if A′ has a circuit C, then

• C ̸= C1, C ̸= C2 because C ∩ {e1, e2} = ∅.

• Since e1 /∈ C2, C2 ⊆ {A \ e1} ∪ {e}, similarly, C is also a subset of it.

• Then A \ {e1, e2} will be a set satisfying the properties, contradicts to the minimality of A,
so A′ has no circuit, so A′ ∈ L.

so A,A′ are bases of C1 ∪ C2, with |A′|< |A| which contradicts to M being a matroid.

Theorem 2.13

Let C ⊆ 2S . Then C is the set of circuits of a matroid iff

(C1) ∅ /∈ C

(C2) If C1, C2 ∈ C, C1 ⊆ C2, then C1 = C2.

(C3) If C1, C2 ∈ C, C1 ̸= C2 and e ∈ C1 ∩ C2, then there exists C ∈ C with C ⊆
(C1 ∪ C2) \ {e}.

Proof.

Fall 2024 Rui Gong Matroids

• (=⇒): (C1), (C2) are trivial to prove. Suppose (C3) not true, then A := (C1∪C2)\{e} ∈ I
by ∄c ∈ C such that C ⊆ A. This implies A ∪ {e} has two distinct circuits, contradicts to
the previous theorem.

• Define I = {A ⊆ S : ∄C ∈ C with C ⊆ A}. Let M = (S, I), then (M1), (M2) clearly
hold.
Suppose (M3) is false, let A1, A2 be the bases of A ⊆ S with |A1|< |A2|, choose A1, A2 with
largest |A1∩A2|. Let e ∈ A1\A2 (it exists because A1 ⊈ A2) and A2∪{e} contains a circuit
C. If A2∪{e} contains C ′ ̸= C (note e ∈ C∩C ′), then (C3) =⇒ A2 contains a circuit, but
A2 ∈ I . Hence C is a unique circuit in A2∪{e}. Let f ∈ C\A1 =⇒ (A2 ∪ {e}) \ {f}︸ ︷︷ ︸

A3

∈ I ,

but |A3 ∩ A1|> |A2 ∩ A1|, |A3|= |A2|> |A1|, contradiction. Note: we can make A3 a basis
by adding elements, but the inequalities above still hold.

2.4 Matroid 4
Theorem 2.14: Bases characterization

Instead of giving I , we are given B, the set of bases of M , then A ∈ I ⇐⇒ A ⊆ B, for
some B ∈ B.

Theorem 2.15

Let B ⊆ 2S . B is the set of bases of a matroid (S, I) if and only if

(B1) B ̸= ∅

(B2) ∀B1, B2 ∈ B, x ∈ B1 \B2, there exists y ∈ B2 \B1 such that (B1 \ {x}) ∪ {y} ∈ B.

Theorem 2.16

Let B ⊆ 2S . B is the set of bases of a matroid (S, I) if and only if

(B1) B ̸= ∅

(B2) ∀B1, B2 ∈ B, y ∈ B2 \B1, there exists x ∈ B1 \B2 such that (B1 \ {x}) ∪ {y} ∈ B.

2.5 Polymatroids
Let M = (S, I) be a matroid, c ∈ RS

+. Let x ∈ RS be decision variables.

(PM)

max cTx

s.t. x(A) ⩽ r(A),∀A ⊆ S

x ⩾ 0

Fall 2024 Rui Gong Matroids

Note: If J ∈ I , then xJ (incidence vector) is feasible for (PM).

Theorem 2.17

Let M = (S, I) be a matroid, and let G be the solution returned by the greedy algorithm.
Then xG is optimal for (PM).

Definition 2.18

A function f : 2S 7→ R is called submodular if ∀A,B ⊆ S,

f(A) + f(B) ⩾ f(A ∩B) + f(A ∪B)

Proposition 2.19

Let M = (S, I). Then r(A) is submodular.

Proof. Let A,B ⊆ S. Let J∩ be a basis of A ∩ B (i.e. |J∩|= r(A ∩ B)). Extend J∩ to a basis JB
of B (i.e. |JB|= r(B)) (by keep adding elements of B to J∩ until we get a maximal independent
set contained in B). Similarly, extend JB to a basis J∪ of A ∪ B (i.e. |J∪|= r(A ∪ B)). Let
J ′ = J∪ \ (JB \ J∩)

• Since J ′ ⊆ J∪, we have J ′ ∈ I .

• Suppose there exists v ∈ J ′ \ A, then v ∈ J∪ \ A and v /∈ JB \ J∩. Since v /∈ A, we have
v /∈ J∩. so v /∈ JB, and v ∈ B. Since J∪ is a basis, JB ∪ {v} ∈ I , then JB is not a basis of
B, contradiction. So J ′ ⊆ A.

Thus:

r(A) + r(B) ⩾ |J ′|+|JB|= |J∪ − (|JB|−|J∩|) + |JB|= |J∪|+|J∩|= r(A ∪B) + r(A ∩B)

Definition 2.20

Let f : 2S 7→ R+ be submodular, then{
x ∈ RS : x(A)⩽f(A)

x⩾0 ,∀A ⊆ S
}

is called a Polymatroid.

Note: May assume f(∅) = 0, f is monotone (i.e. X ⊆ Y ⊆ S ⇐= f(X) ⩽ f(Y)).
Consider (where f monotone and f(∅) = 0)

(Pf)

max cTx

s.t. x(A) ⩽ f(A), ∀A ⊆ S

x ⩾ 0

Fall 2024 Rui Gong Matroids

(Df)

min
∑
A⊆S

f(A)yA

s.t.
∑
A:e∈A

yA ⩾ ce,∀e ∈ S

y ⩾ 0

Primal Greedy
S = {e1, . . . , en}, ce1 ⩾ . . . ⩾ cek ⩾ 0 ⩾ cek+1

⩾ . . . ⩾ cen . Sj = {e1, . . . , ej} and

xej =

{
f(Sj)− f(Sj−1), ∀j = 1, . . . , k

0, ∀j > k

If f(Sj) = r(Sj), for M = (S, I) matroid. Let G be a greedy solution, Gj := G ∩ Sj . If Gj−1 is a
basis of Sj−1, then when r(Sj) = r(Sj−1), we have xej = 0, so ej /∈ Gj . Then Gj = Gj−1, so Gj−1

is also a basis of Sj . When r(Sj) > r(Sj−1), xej = 1, so ej ∈ G =⇒ Gj = Gj−1∪{ej} =⇒ Gj

is a basis of Sj .

Dual Greedy

ySj
= cej − cej+1

, ∀j = 1, . . . , k − 1

ysk = cek
yA = 0, for all other A

We can show that x, y above are optimal solutions by Complementary Slackness conditions.

Corollary 2.21

Let M = (S, I), c ∈ RS , J ∈ I . Then J is an inclusionwise minimal, max weight indepen-
dent set if and only if

(a) e ∈ J =⇒ ce > 0

(b) e /∈ J, J ∪ {e} ∈ I =⇒ ce ⩽ 0

(c) e /∈ J, f ∈ J, (J ∪ {e}) \ {f} ∈ I =⇒ ce ⩽ cf .

Proof.

• =⇒ : trivial

• ⇐= : Consider (Pr), where r is the rank function of M which is monotone, submodular
and r(∅) = 0. (note J is independent, so J is feasible for Pr). Let y be the solution from
greedy. Let xJ be the characteristic vector of J . Then∑

A:ej∈A

yA = cej ,∀j ⩽ k

Fall 2024 Rui Gong Matroids

and
a) =⇒ xJej = 0,∀j > k

Thus for all j ∈ {1, . . . , n}, we have xJ
ej
= 0 OR

∑
A:ej∈A yA = cej .

Pick yA > 0. By construction, A = Sj for j ⩽ k. Note xJ(Sj) = |J ∩ Sj|= |Jj|. Suppose
|Jj|< r(Sj), then Jj is not a basis of Sj , but it’s an independent set so there exists e ∈ Sj \ J
such that Jj ∪ {e} ∈ I .

Case 1 J ∪ {e} ∈ I , then b =⇒ ce ⩽ 0, but e ∈ Sj =⇒ ce > 0, contradiction.

Case 2 J ∪ {e} /∈ I . Extend Jj ∪ {e} to a basis J ′ of J ∪ {e}. Note J is a basis of J ∪ {e}.
Hence, |J ′|= |J | by both being basis of J ∪ {e}.
Then there exists f ∈ J \Sj such that J ′ = (J ∪{e}) \ {f} ∈ I . This f exists because
e ∈ J ′ \ J , so there is f ∈ J \ J ′, and Jj ⊆ J ∩ J ′, so f /∈ Jj , which implies f /∈ Sj .
Then by c), ce ⩽ cf .
By ySj

= cej − cej+1
> 0 =⇒ cej > cej+1

and f /∈ Sj =⇒ cej+1
⩾ cf ⩾ ce, we have

cej > cej+1
⩾ cf ⩾ ce, but e ∈ Sj , so ce ⩽ cej , contradiction.

Hence, xJ(Sj) = r(Sj).

Hence, Complementary Slackness conditions hold, so xJ is optimal for (Pr) which implies J is a
maximal weight independent set. And a) implies the inclusionwise minimality.

2.6 Matroid Construction
Let M = (S, I) be a matroid.

1. Deletion: Let B ⊆ S, M \ B := (S ′, I ′) is a matroid, where S ′ := S \ B, I ′ := {A ⊆
S \B : A ∈ I}.

2. Truncation: Let k ∈ Z+, define I ′ := {A ∈ I : |A|⩽ k}. Then M ′ = (S, I ′) is a matroid.

3. Disjoint Union: Let Mi = (Si, Ii),∀i ∈ {1, . . . , k} be matroids, with Si ∩ Sj = ∅,∀i ̸= j.
Then M1 ⊕ . . . ⊕Mk = (S, I), with S = ∪ki=1Si. And I = {A ⊆ S : A ∩ Si ∈ Ii,∀i =
1, . . . , k} is a matroid.

Proof.

(M1) hold

(M2) hold

(M3) Let B be a basis of A ⊆ S. Let Bi = B ∩ Si,∀i. Then Bi ∈ I, but also, it is a basis of
A ∩ Si. (otherwise, we can add α ∈ A ∩ Si to Bi, hence to B, then B is not a basis of
A). This implies |B|=

∑k
i=1|Bi|=

∑k
i=1 ri(A ∩ Si), thus all basis of A have the same

size.

Fall 2024 Rui Gong Matroids

Example: Partition Matroid: Let S = S1∪̇S2 . . . ∪̇Sk, b1, . . . , bk ∈ Z+. M = (S, I) where
I = {A ⊆ S : |A ∩ Si|⩽ bi,∀i = 1, . . . , k}. Then Mi = (Si, Ii), Ii = {J ⊆ Si : |J |⩽ bi} is
the uniform matroid. And M = M1 ⊕ . . .⊕Mk.

4. Contraction: Let B ⊆ S, let J be a basis of B. Then M/B = (S ′, I ′) where S ′ = S \ B,
I ′ = {A ⊆ S ′ : A ∪ J ∈ I}.

Proposition 2.22

If M is forest matroid of G = (V,E), B ⊆ E, then M/B is a forest matroid of G/B
(contraction in graph theory).

Theorem 2.23

M/B is a matroid independent from choice of J , and its rank fcn is rM/B(A) =
rM(A ∪B)− rM(B).

Proof. (M1), (M2) clearly hold. (M3): Let A ⊆ S ′ = S \ B, let J ′ be an M/B basis of
A =⇒ J ∪ J ′ ∈ I.

Claim. J ∪ J ′ is an M -basis of A ∪B.

Proof. Suppose not, then there is e ∈ A ∪ B \ J ∪ J ′ and J ∪ J ′ ∪ {e} ∈ I. If e ∈ B,
then J ∪ {e} ∈ I and it’s a subset of B, contradicts to J being a basis of B. If e /∈ B then
e ∈ A \ B, then (J ′ ∪ {e}) ∪ J ∈ I =⇒ J ′ ∪ {e} ∈ I ′, contradicts to J ′ being a basis of
A.

By the claim, |J ∪ J ′|= rM(A∪B) =⇒ |J |+|J ′|= rM(A∪B) =⇒ |J ′|= rM(A∪B)−
|J |= rM(A∪B)−rM(B). Thus, A ∈ I ′ if and only if |A|= rM/B(A) = rM(A∪B)−rM(B)
which doesn’t depend on J .

5. Duality: M∗ = (S, I∗), I∗ = {A ⊆ S : S \ A has a basis of M} = {A ⊆ S : rM(S \ A) =
rM(S)}. Note here the basis of M means the basis of S.
Example: M = U r

n, A ⊆ S = {1, . . . , n}, A ∈ I∗ ⇐⇒ |A|⩽ n− r =⇒ M∗ = Un−r
n .

Theorem 2.24

M∗ is a matroid with rank function r∗(A) = |A|+rM(S \ A)− rM(S).

Proof. Clearly (M1), (M2) hold. For (M3), let A ⊆ S, let J∗ an M∗-basis of A. Let J be
an M -basis of S \ A. Extend J to an M -basis J ′ of S \ J∗. By definition, we know J ′ is an
M -basis of S.

Claim. A \ J∗ ⊆ J ′

Fall 2024 Rui Gong Matroids

Proof. Suppose e ∈ (A \ J∗) \ J ′ =⇒ J ′ ⊆ S \ (J∗ ∪ {e}), and since J ′ is an M -basis of
S, J∗ ∪ {e} ∈ I∗, contradiction.

Then

|J ′|= |A \ J∗|+|J |= |A|−|J∗|+|J | ⇐⇒ |J∗|= |A|−|J ′|+|J |= |A|−rM(S) + rM(S \ A)

Fall 2024 Rui Gong Matchings

3 Matchings

3.1 Matchings 1

Definition 3.1

Given a graph G = (V,E), a subset M ⊆ E is a matching if |δ(v) ∩M |⩽ 1,∀v ∈ V ; i.e.,
every vertex incident to at most one edge in M .
Given a matching M , a vertex v is called M -covered if |δ(v) ∩ M |= 1, and it’s called
M -exposed otherwise.

Note: There are 2|M |M -covered vertices and |V |−2|M |M -exposed vertices.

• A matching is perfect if there are no M -exposed vertices.

• The size of the largest cardinality matching in G will be denoted as ν(G). (M is a perfect
matching if and only ν(G) = |V (G)|

2
.)

• Given G = (V,E), and a matching M , a path P = (v1, . . . , vk) is called M -alternating if
{vi−1, vi} ∈M ⇐⇒ {vi, vi+1} /∈M,∀i = 2, . . . , k − 1.

• An M -alternating path is called M -augmenting if v1, vk are exposed.

• Given F1, F2 ⊆ E, the symmetric difference between F1, F2 is defined as

F1△F2 = {e ∈ E : e is in exactly one of F1, F2}

Theorem 3.2

Let M be a matching of G = (V,E). Then M is a max cardinality matching if and only if
there does not exist an M -augmenting path.

Proof.

• (=⇒) Suppose there exists an M -augmenting path P = {v0, . . . , vk}. Let ei = {vi−1, vi},
∀i = 1, . . . , k. Let M ′ = M△E(P). Note since P is M -augmenting, we know v0, vk are
M -exposed, so e1, ek /∈ M , so k is odd. That is |M ′|= |(E(P) \ M) ∪ (M \ E(P))|=
|M |−|(E(P) ∩M)|+|(E(P) ∩M)|+1 = |M |+1. Suppose M ′ is not a matching. Then
there are two edges in M ′ incident to one vertex. If both edges are in M , then M is not a
matching, contradiction. Hence, at lease one of them is in M ′ \M , call it e. Then e is in
E(P)\M . If we have vivi+1evi+2vi+3. Then vivi+1 and vi+2vi+3 are not in M ′ by they are in
both M and E(P), so vi+1, vi+2 are not M ′-exposed, contradiction. If one end of e is v0 (vk),
then if v1 incident to another egde in e′, we know e′ ̸= v1v2 by v1v2 ∈ M =⇒ v1v2 /∈ M ′,
so e′ /∈ E(P), so e′ ∈ M , then v1 incidence to e′ and v1v2 in M , contradiction. Hence,
v0 is incidence to another e′ in M ′, then e′ /∈ E(P) =⇒ e′ ∈ M , but v0 is M -exposed,
contradiction. Hence, M ′ is a matching, and |M ′|> |M |, contradiction, so not such P exists.

Fall 2024 Rui Gong Matchings

• (⇐=) Suppose M ′ is a matching of G with |M ′|> |M |. Consider G′ = (V,M△M ′).
Note |δG′(v)|⩽ 2,∀v ∈ V , because if |δG′(v)|= 3 for some v ∈ V , then there are three edges
incident to it, so there are at least two edges in the same matching incident to it, contradiction.
Also |δG′(v)|⩽ 2 =⇒ G′ is a (edge) disjoint union of paths and cycles, and all of them are
alternating (w.r.t. M and M ′). Also note if C is a cycle in G′, |E(C) ∩M |= |E(C) ∩M ′|,
otherwise C is an odd cycle and there will be a vertex incident to two edges in M or M ′,
contradiction. Hence, there exists a path P with |E(P) ∩M ′|> |E(P) ∩M |, then P is the
desired M -augmenting path in G, contradiction.

• Q: Does there exist a path from a vertex u to a vertex v?
A: Use Breadth First Search.

• Q: Does there exist an M -alternating path from an M -exposed vertex u to an M -exposed
vertex v?
A: Similar, keep the path you are looking for alternating. Instead of constructing a Breadth
First Search Tree, we construct an ”alternating” trees. It can keep track of nodes at odd/even
distance from the tree root.

Tentative Algorithm:
Input: G = (V,E), M is a matching, r ∈ V is M -exposed. T ← ({r}, ∅), A(T) ← ∅, B(T) ←
{r}, where A represents the node at odd distance from the tree root, and B represents the node at
even distance from the tree root.

r

w z
A

A

B
B

B

In the tree, we use tilde lines to represent the edges in M and straight lines otherwise. Also,
we can see that each path from the root r to a node in T is an M -alternating path in G.

Case 1: If we can find vw ∈ E: v ∈ B(T),W /∈ V (T), and w is M -covered. We can extend T using
vw.
Let z ∈ V : wz ∈ M , since v is in T , v is incident to another edge in M , so z ̸= v,.
Then update V (T) ← V (T) ∪ {w, z}, B(T) ← B(T) ∪ {z}, A(T) ← A(T) ∪ {w},
E(T)← E(T) ∪ {vw,wz}.

Case 2: If we find vw ∈ E : v ∈ B(T), w /∈ V (T) and w is M -exposed, then we find an M -
augmenting path from r to w, which is P ′ = P + vw, where P is the M -alternating path
from r to v in T , M ←M△P ′.

Fall 2024 Rui Gong Matchings

Hence, the tentative algorithm can be written as

Algorithm 5 Tentative Algorithm for Matchings
G = (V,E), M is a matching, r ∈ V and it’s M -exposed. T ← ({r}, ∅), A(T) ← ∅, B(T) ←
{r} (initialized T with r).
while ∃vw ∈ E : v ∈ B(T), w /∈ V (T) do:

if w is M -covered then
Use vw to extend T

else
Use vw to augment M ;
if ∃M -exposed vertex r ∈ V then

Initialize T with r
else

Stop
end if

end if
end while

return M

This does not always work (e.g. G is not connected).

3.2 Matching 2

Definition 3.3

A graph is bipartite if there exists a partition (A,B) of V such that ∀e ∈ E, |e ∩ A|=
|e ∩B|= 1.

Theorem 3.4: Hall’s Theorem

Let G = (V,E) be bipartite, with bipartition V = A∪̇B. Then there exists a matching
covering A if and only if |N(X)|⩾ |X|,∀X ⊆ A, where N(X) := {v ∈ V \ X : ∃u ∈
X with {u, v} ∈ E}.

Proof.

• (=⇒) If there exists X ⊆ A : |X|> |N(X)|, then since vertices only matched to vertices in
N(X), no matching can cover all vertices in X (there is a vertex in X having no neighbors).

• (⇐=) By induction, cases |A|= 0, |A|= 1 are trivial.
If |N(X)|−|X|> 0,∀X ⊂ A,X ̸= ∅, pick uv ∈ E with u ∈ A, v ∈ B, and consider
G′ = G \ {u, v}, bipartite with bipartition A′ = A \ {u}, B′ = B \ {v}. Now, ∀X ⊆ A′,
|NG′(X)|⩾ |NG(X)|−1 =⇒ |NG′(X)|−|X|⩾ 0,∀X ⊆ A′. By induction, there exist a
matching M ′ covering A′, then M ′ ∪ {u, v} covers A.

Fall 2024 Rui Gong Matchings

If |N(X)|= |X|, for some X ⊂ A,X ̸= ∅. By induction, there exist a matching M1 in
G[X∪N(X)] covering X . Now consider G′ = G[(A\X)∪(B\N(X))]. Note ∀Y ⊆ A\X ,

|NG′(Y)|= |NG(Y) \NG(X)|= |NG(X ∪ Y)|− |X|︸︷︷︸
=|NG(X)|

⩾ |X ∪ Y |−|X|= |Y |

Hence, there exists a matching in G′ covering A\X , combine it with M1, there is a matching
covering A.

Corollary 3.5

Let G = (V,E) be bipartite with bipartition V = A∪̇B. Then G has a perfect matching if
and only if |A|= |B| and |X|⩽ |N(X)|, ∀X ⊆ A.

Algorithm 6 Algorithm for Perfect Matchings of bipartite graphs
G = (V,E) be bipartite, initialize T with r.
while ∃vw ∈ E : v ∈ B(T), w /∈ V (T) do:

if w is M -covered then
Use vw to extend T

else
Use vw to augment M ;
if ∃M -exposed vertex r ∈ V then

Initialize T with r
else

Stop, output perfect matching M
end if

end if
end while
Output No Perfect Matchings exists. (*)

If algorithm reaches (*), then G has no perfect matching.

Proof. If the algorithm reaches (*), then

• N(B(T)) = A(T). First, A(T) ⊆ N(B(T)), and if there exist a vertex u ∈ N(B(T))\A(T)
which is a neighbor of v ∈ B(T), then u /∈ B(T), because otherwise, both u, v are at even
distance from the root, and by G being bipartite, that means both u, v are in the same partition
of G, and they are incident, contradiction.

• |B(T)|> |A(T)|. Suppose the tree has a leaf in A(T), then by our algorithm, if it’s M -
exposed, we augment M , otherwise, we extend T , so all leaves of T are in B(T). That is,
for every vertex in A(T), it has a neighbor in B(T) in the tree with one larger height from
the root, and since r ∈ B(T), we have |B(T)|> |A(T)|.

Fall 2024 Rui Gong Matchings

• By what’s above, we know |B(T)|> |N(B(T))|, by the Corollary above, G has no perfect
matching.

Definition 3.6

U ⊆ V is a vertex cover if ∀e ∈ E, |e ∩ U |⩾ 1. We let τ(G) be the size of the smallest
cardinality vertex cover. Fact: ν(G) ⩽ τ(G). Otherwise, consider the max cardinality
matching, you need at least |M | vertice to cover the M -covered vertices because for each
edge in M , you need one of the ends in the vertex cover.

Theorem 3.7: König’s Theorem

Let G be bipartite, then ν(G) = τ(G).

3.3 Matching 3
Recall ν(G) ⩽ τ(G) and equality holds for bipartite graph. Suppose A ⊆ V , let H1, . . . , Hk be
odd connected components of G \ A.
Q: How many M -exposed vertices can there be?
If Hi has no M -exposed vertices, then there exists at least on edge in M from Hi to A (becasue
there are odd number of vertices in Hi). But there are at most |A| such edges, implies there are at
least k − |A|M -exposed vertices for all matching M .
Recall: there are |V |−2|M | M -exposed vertices in any matching, which implies |V |−2|M |⩾
k − |A|,∀M . It is equivalent to |M |⩽ 1

2
(|V |−k + |A|). Then, let k = oc(G \ A) (number of odd

components of G \ A),

ν(G) ⩽
1

2
(|V |−oc(G \ A) + |A|), ∀A ⊆ V

We also note that if A is a vertex cover, then G\A is a graph with no edges, so oc(G\A) = |V |−|A|,
then the bound above becomes |A|.

Theorem 3.8: Tutte-Berge Formula

Let G = (V,E) be a graph. Then

max{|M |: M is a matching} = 1

2
min{|V |−oc(G \ A) + |A|: A ⊆ V }

Theorem 3.9: Tutte’s Matching Theorem

G has a perfect matching ⇐⇒ oc(G \ A) ⩽ |A|,∀A ⊆ V .

Proof. If oc(G) > 0, then G has no perfect matching and A = ∅ violates oc(G \ A) ⩽ |A|.

Fall 2024 Rui Gong Matchings

If oc(G) = 0, then
G has a perfect matching

⇐⇒ ν(G) =
n

2
⇐⇒ n = min{n− oc(G \ A) + |A|: A ⊆ V }
⇐⇒ min{|A|−oc(G \ A) : A ⊆ V } = 0

But for A = ∅, |A|−oc(G \ A) = 0, so 0 can be obtained, that is,

min{|A|−oc(G \ A) : A ⊆ V } = 0 ⇐⇒ oc(G \ A) ⩽ |A|,∀A ⊆ V

So Tutte’s Matching Theorem is proved by using Tutte-Berge Formula, which is what we want
to prove now. Before that, we say u ∈ V is essential if u is M -covered in EVERY maxmimum
cardinality matching M ; otherwise, it is inessential.

Proof. of Tutte-Berge Formula.
Goal:Show a matching M and A ⊆ V with exactly oc(G \ A) − |A| vertices (which is saying
oc(G\A)−|A|= |V |−2|M |). If such M,A are found, then the Tutte-Berge formula is proved. As
we have shown before, ν(G) ⩽ 1

2
(|V |−oc(G \A)+ |A|),∀A ⊆ V , so ν(G) ⩽ 1

2
min{|V |−oc(G \

A) + |A|: A ⊆ V }. When oc(G \ A)− |A|= |V |−2|M | many M -exposed vertices, we know

ν(G) ⩾ |M |= 1

2
(|V |−oc(G \ A) + |A|) ⩽ 1

2
min{|V |−oc(G \ A) + |A|: A ⊆ V }

so the Tutte-Berge Formula holds.
Now we do induction on m = |E|
Base: m = 0, let A = ∅, we are done. Now assume m ⩾ 1 and pick uv ∈ E:

Case 1: v is essential. Let G′ = G \ v, then ν(G′) < ν(G). By induction, there exists matching M ′

in G′ and A′ ⊆ V \ {v} with

|M ′|= 1

2
(n− 1− oc(G′ \ A′) + |A′|)

Let M be a matching of G with |M |= ν(G). Pick e ∈ δ(v) ∩ M (it exists by v being
essential). Then M = M \ e is a matching in G′ which implies |M |= |M |−1 ⩽ |M ′|. Now,
suppose |M |−1 < |M ′|, then |M |⩽ |M ′|, then since M ′ is also a matching in G, we have
|M |⩾ |M ′|, so |M |= |M ′|, then M ′ is a maximum cardinality matching in G without v,
so v is not essential, contradiction. Hence, |M |−1 = |M ′|. Then let A = A′ ∪ {v}, then
|A|= |A′|+1 and G \ A = G′ \ A′, so

|M |= |M ′|+1 =
1

2
(n+ 1− oc(G′ \ A′) + |A′|) = 1

2
(n− oc(G \ A) + |A|)

we are done.

Case 2: u, v both are inessential. Later.

Fall 2024 Rui Gong Matchings

Let C be an odd cycle, let G′ = G/C (contracting C). That is V ′(G) = V (G) \ V (C) ∪ {C};
E(G′) = {e ∈ E(G) : e ∩ C = ∅} ∪ {vC : ∃uv ∈ E(G), u ∈ V (C), v /∈ V (C)}. Note from this
point, we allow parallel edges. The idea is that a matching in G′ can be extend to a matching in G
with the same number of exposed vertices. The process is, let all edges in the matching of G′ be
in the matching of G, then let one vertex in C to represent the C in G′, and C has even number of
vertices left, then choose edges so they are all M -covered.

Proposition 3.10

Let G = (V,E), C an odd cycle, G′ = G/C. Let M ′ a matching in G′. Then there exists
a matching M of G such that the number of M -exposed vertices in G equals the number of
M ′-exposed vertices in G′.

Note we add |C|−1
2

new edges to M ′ to get M . Therefore, ν(G) ⩾ ν(G′) + c−1
2

, but the equality
does not necessarily hold, for example

where the left graph G has ν(G) = 3, the right one has ν(G′) = 1 and |C|−1
2

= 1. An odd cycle is
tight if ν(G) = ν(G′) + |C|−1

2
.

Now back to the proof, we pick a tight cycle C containing uv and where C is inessential in
G′ = G/C. Then there exist M ′ matching of G′, A′ ⊆ V (G′):

|M ′|= 1

2
(|V (G′)− oc(G′ \ A′) + |A′|)

If C /∈ A′, then any component of G′ \ A′ containing C will be a component of G \ A of same
pairing after extending back (that is, if the component in G′ is odd, then the component in G will
also be odd because there are even number of vertices if deleting C, and C has odd number of
vertices, same if the component in G′ is even). Hence, there are

oc(G′\A′)−|A′|= oc(G\A)−|A|= |V |−|C|+1−2|M ′|= |V |−|C|+1−2
(
|M |−|C|−1

2

)
= |V |−2|M |

many M -exposed vertices.
Q: But why does such C exist? What if C ∈ A′?

3.4 Matching 4

Lemma 3.11

Let uv ∈ E. If u, v are inessential, then there is a tight odd cycle C containing the edge uv,
such that C is inessential in G′ = G/C.

Fall 2024 Rui Gong Matchings

Proof. Let Mu,Mv be maximum cardinality matchings exposing u, v respectively. (Note1: uv /∈
Mu ∪Mv; Note 2: Mu,Mv covers v, u respectively by the maximality). Then

• Degree of u, v is 1 in Mu△Mv := F ((V, F) is a vertex disjoint union of Mu,Mv alternating
paths/cycles).

• There exists an alternating path P starting at u and the other end z is Mv-exposed. Suppose
the other end is Mu-exposed, then the path P is an M -augmenting path, contradicts to the
maximality of M in G. If z ̸= v, then vu+P is an Mv augmenting path in G, contradiction.
Hence, P is an alternating path from u to v, let C = uv+P , note C is an odd cycle because
P has even length (by v = z is Mv exposed).

– δ(C)∩Mu = ∅. Since the path is alternating, the only vertex in C not incident to a Mu

edge in C is u, but since u is Mu-exposed, δ(u) ∩Mu) = ∅.
– Mu\C is a maximum cardinality matching in G\C. Suppose not, then there is a larger

matching M ′ in G\C. And consider M ′∪{Mu∩E(C)}, it is a matching in G because
δ(C) ∩Mu = ∅. And it is larger matching in G than Mu because

|Mu|= |Mu ∩E(G \C)|+|Mu ∩E(C)|< |M ′|+|Mu ∩E(C)|= |M ′ ∪ {Mu ∩E(C)}|

contradiction. Hence, C is inessential in G′.

– Hence, Mu \ C is a maximum cardinality matching in G/C without including C, so C
is inessential in G/C. Since there are |C|−1

2
many Mu vertices in C, we know

ν(G) = |Mu|= |Mu \ C|+|Mu ∩ E(C)|= ν(G/C) +
|C|−1

2

so C is a tight odd cycle containing uv, as required.

Lemma 3.12

Let M be a matching, A ⊆ V such that |M |= 1
2
(|V |−oc(G \A) + |A|). Then all vertices in

A are essential.

Proof. Let v ∈ A. Let A′ = A \ {v}, V ′ = V \ {v}, G′ = G \ {v}. Since the components of G \A
are the same as the components of G′ \ A′, we know

oc(G \ A) = oc(G′ \ A′)

ν(G′) ⩽
1

2
(|V ′|−oc(G′ \ A′) + |A′|)

=
1

2
(|V |−1− oc(G \ A) + |A|−1)

= |M |−1

so v is essential.

Then answer our question, C ∈ A′ reaches a contradiction because C is inessential. Hence, such C
exists, and C /∈ A′.

Fall 2024 Rui Gong Matchings

3.5 Matching 5
We say an M -alternating tree T is frustrated if ∀uv ∈ E, u ∈ B(T), we have v ∈ A(T).

Proposition 3.13

If T is frustrated, then G has no perfect matching.

Proof. Since all neighbors of vertices in B(T) are in A(T), we know G \A(T) has at least |B(T)|
many odd components, because each vertex in B(T) in G \ A(T) is an odd component. Hence,

|oc(G \ A(T))|⩾ |B(T)|> |A(T)|

then by Tutte’s Matching Theorem, we know G has no perfect matching.

Let u, v ∈ B(T) such that uv ∈ E, then T +uv has a unique odd cycle C (called Blossom). Srhink
the Blossom and let G′ = G/C.

u

v

C

vC

Note:

• Edges in M \ E(C) form a matching M ′ in G′.

• Shrunken Tree T ′ is M ′-alternating in G′.

• Psuedonode vC is in the set B(T ′) for the tree T .

Note: One may need to shrink multiple times.
We say the graph obtained after shrinking (sequentially) Blossoms is a derived graph.
S(v) will represent the set of vertices that have been shrunk into v ∈ V (G′), then

∀v ∈ V (G′), S(v) =

{
v, if v ∈ V (G)

∪w∈CS(w), if v = vC , for some Blossom C

Note: |S(v)| is odd, ∀v ∈ V (G′) by definition |S(v)|= 1 or it’s a sum of odd many odd numbers.

Proposition 3.14

Let G′ be a derived graph from G, M ′ a matching of G′, T ′ an M ′-alternating frustrated
tree of G′ with all pseudonode in B(T ′), then G has no perfect matching.

Fall 2024 Rui Gong Matchings

Proof. If G has a perfect matching M , then for any Blossom C, G/C also has a perfect matching
M \C, hence, G′ will have a perfect matching, but G′ has an M ′-alternating tree,contradiction.

Proposition 3.15

Let G′ be derived graph from G, M ′ an matching of G′, T ′ an M ′-alternating tree, uv ∈
E(G′) with u, v ∈ B(T ′), C ′ unique cycle (Blossom) in T ′ + uv.
Then M ′′ = M ′ \ E(C ′) is a matching for G′′ = G′/C ′ and T ′′ = (V (T ′) \ V (C ′) ∪
{vC′}, E(T ′) \ E(C ′)) is an M ′′-alternating tree in G′′ with vC′ ∈ B(T ′′).

Algorithm 7 Blossom Algorithm for Perfect Matching
Input graph G and matching M of G
Set M ′ = M , G′ = G
Choose an M ′-exposed node r of G′ and put T = ({r}, ∅)
while there exists vw ∈ E ′ with v ∈ B(T), w /∈ A(T) do

if w /∈ V (T), w is M ′-exposed then
Use vw to augment M ′

Extend M ′ to a matching M of G
Replace M ′ by M and G′ by G
if there is no M ′-exposed node in G′ then

Return the perfect matching M ′ and stop
else

Replace T by ({r}, ∅) where r is M ′-exposed.
end if

else if w /∈ V (T), w is M ′-covered then
Use vw to extend T

else if w ∈ B(T) then
Use vw to shrink and update M ′ and T

end if
end while
return G′,M ′, T and stop; G has no perfect matching.

Theorem 3.16

Blossom algorithm does O(n) augmentation, O(n2) shrinks, O(n2) tree extensions and cor-
rectly determines if G has perfect matchings.

Proof. Each augmentation increase |M ′| by 1, implies O(n) augmentation. Between two augmen-
tation steps, shrink reduces size of G′ by at least 2 vertices implies O(n) shrinks, so total O(n2)
shirnks. Similar for tree extensions.

Fall 2024 Rui Gong Matchings

Algorithm 8 Blossom Algorithm for Maximum Cardinality Matching
Input graph G and matching M of G
Set M ′ = M , G′ = G, T = ∅
(⋆) Choose an M ′-exposed node r of G′ and put T = ({r}, ∅)
while there exists vw ∈ E ′ with v ∈ B(T), w /∈ A(T) do

if w /∈ V (T), w is M ′-exposed then
Use vw to augment M ′

Extend M ′ to a matching M of G
Replace M ′ by M and G′ by G
if there is no M ′-exposed node in G′ then

Return the perfect matching M ′ and stop
else

Replace T by ({r}, ∅) where r is M ′-exposed.
end if

else if w /∈ V (T), w is M ′-covered then
Use vw to extend T

else if w ∈ B(T) then
Use vw to shrink and update M ′ and T

end if
end while
T ← T ∪ {T}; G′ ← G′ \ V (T); M ′ ←M ′ \ E(T)
if There exists an M ′-exposeed node in G′ then

go back to (⋆)
else
return M = ∪T∈T MT

end if

Proof. Let T1, . . . , Tk be the trees in T ; M be the final matching. For each Ti, there exists only
one M -exposed vertex in Ti because each Ti is an MTi

-alternating tree, so the only M -exposed
vertex in Ti is its root, so there are k M -exposed vertices in total. Let A = ∪ki=1A(Ti). Each vertex
in B(Ti) is an odd component of G \ A because each Ti is frustrated, all neighbors of vertices in
B(Ti) are in A. Hence,

oc(G \ A) ⩾
k∑

i=1

|B(Ti)|⩾
k∑

i=1

(|A(Ti)|+1) = |A|+k

which implies

|M |= |V |−k
2

⩾
1

2
(|V |−oc(G \ A) + |A|)

so M is a maximum cardinality matching.

Fall 2024 Rui Gong Matchings

3.6 Matching 6

Definition 3.17: Gallai-Edmonds Decomposition

Let G = (V,E), B be the set of inessential vertices, C := {v ∈ V \ B : v ∈ NG(B)},
D := V \ (C ∪B). (B,C,D) is called the Gallai-Edmonds partition/decomposition of G.

Proposition 3.18

Let Ti, i = 1, . . . , k be the frustrated trees found in Blossom algorithm. Then

C = ∪k
i=1A(Ti), B = ∪k

i=1(∪v∈B(Ti)S(v)), D = V \ (B ∪ C)

Note.

• This implies all components of G[B] are odd and C is a minimizer of Tutte-Berge Formula.

• This also implies that Gallai-Edmonds decomposition can be computed in polytime.

• Implies G[D] only has even components. (every vertex in D is M -covered, and it’s not
matched to A nor B).

Proof. We saw all vertices in ∪ki=1A(Ti) are essential (by the proof of correcness of the Blossom
Algorithm, we know A is the minimizer of Tutte-Berge Formula hence all vertices in it is essential).
For all v ∈ ∪ki=1

(
∪v∈B(Ti)S(v)

)
, there exists an even M -alternating path from an M -exposed

vertex u to it. Pick such path P , and then M ′ = M△E(P) is a matching with |M ′|= |M |, and v
is M ′-exposed which implies that v is inessential.

• Consider v ∈ V \
(
∪k

i=1A(Ti) ∪
(
∪ki=1

(
∪v∈B(Ti)S(v)

)))︸ ︷︷ ︸
D′

, and consider G′ = G \ v. Since

D′ only has even components, we know oc(G′ \ C) = oc(G \ C \ v) > oc(G \ C), not D is
not connected to B, so we removing v will not increas the number of components in B, but
only D. Hence

ν(G′) ⩽
1

2
(|V |−1− oc(G′ \ C) + |C|) < 1

2
(|V |−oc(G \ C) + |C|) = ν(G)

• Hence, v is essential.

Note.

• v ∈ D′ is not adjacent to a vertex in B, otherwise, if v is M -covered, we can extend M , if
it’s M -exposed, we can augment M .

• v ∈ C is adjacent to a vertex in B by the definition of the alternating trees.

Fall 2024 Rui Gong Weighted Matching

4 Weighted Matching

4.1 Weighted Matching 1
Minimum Weight Perfect Matching
Given G = (V,E), ce ∈ R,∀e ∈ E, find a perfect matching M of G minimizing c(M) =

∑
e∈M ce.

Idea:

min
∑
e∈E

cexe

s.t. x(δ(v)) = 1,∀v ∈ V

x ⩾ 0, x ∈ ZE

and we can have the relaxation as

(PM) :min
∑
e∈E

cexe

s.t. x(δ(v)) = 1,∀v ∈ V,

x ⩾ 0

(DM) :max
∑
v∈V

yv

s.t. yu + yv ⩽ cuv,∀uv ∈ E

Note: ZPM
:= optimal value of (PM), so ZPM

⩽ c(M),∀ perfect matching M . (Notice that every
perfect matching’s indicator vector is a feasible solution for PM).
Q: Can we solve our problem by solving (PM)?

1

1

1

0

0
0

0

0

0

Every perfect matching has at least one edge with cost 1. However, the optimal value of PM is 0
because we can give 0.5 to those edges of the triangles.

Fall 2024 Rui Gong Weighted Matching

Theorem 4.1: Birkhoff

Let G = (V,E) be bipartite, c ∈ RR, then G has a perfect matching if and only if (PM)
is feasible. Moreover, if (PM) is feasible, then let M∗ be a minimum cost perfect matching,
then we have ZPM

= c(M∗).

Proof.
G has a perfect matching ⇐⇒ PM is feasible (SKIPPED)

Remaining statement: Algorithmic Proof.
Construct a matching H that corresponds to a optimal solution to (PM) using Complementary
Slackness:

• Let y be feasible for (DM).

• Let E= := {uv ∈ E : yu = yv = cuv}

• If G= := (V,E=) has a perfect matching M , then xM , y satisfy Complementary Slackness
conditions, so we are done, we know M is a minimum weighted perfect matching.

• Else, update y.

But how should we update y?
Recall at the end of the algorithm for perfect matching on G=, we will be in one of the two
situations

a) Found a perfect matching M , and it’s the min weighted perfect matching in G.

b) It finds a frustrated tree in G=.

Idea: Update y′vs to get E=
new such that

• y is still feasible for (DM).

• Current M ⊆ E=
new.

• Current E(T) ⊆ E=
new.

• At least one edge uv ∈ E \ E=
old : u ∈ B(T), v ∈ V (T) is in E=

new.

Let ϵ = min{cuv − yu − yv : u ∈ B(T), v /∈ V (T)}, and let y∗u =


yu + ϵ, ∀u ∈ B(T)

yu − ϵ, ∀u ∈ A(T)

yi, ∀u /∈ V (T)

.

• y∗ is still feasible for (PM). Since the graph is bipartite, no uv ∈ E such that u, v ∈ B(T).
If u ∈ B(T), v ∈ A(T), then y∗u + y∗v = yu + yv. If u ∈ A(T), v /∈ V (T), then y∗u + y∗v =
yu + yv − ϵ ⩽ yu + yv ⩽ cuv. If u ∈ B(T), v /∈ V (T), then

y∗u + y∗v = yu + yv + ϵ ⩽ yu + yv + cuv − (yu + yv) = cuv

If u, v /∈ V (T), then y∗u + y∗v = yu + yv.

Fall 2024 Rui Gong Weighted Matching

• M ⊆ E=
new. Consider any edge uv in E(T), then it has one end in A(T) and the other end in

B(T), so we know y∗u + y∗v = yu + yv = cuv, so uv ∈ E=
new. That is, M ⊆ E(T) ⊆ E=

new.

Algorithm 9 Min Weight Perfect Matching Algorithm for Bipartite Graphs
Let y be a feasible solution to (PM), M a matching of G=

If M is a perfect matching of G, return M and stop
Set T ← ({r}, ∅) where r is an M -exposed node of G
while not stopped do

while there exists vw ∈ E= with v ∈ B(T), w /∈ V (T) do
if w is M -exposed then

Use vw to augment M
if there is no M -exposed node in G then

Return the perfect matching and stop
else

Replace T by ({r}, ∅) where r is M -exposed
end if

else
Use vw to extend T

end if
end while
if every vw ∈ E with v ∈ B(T) has w ∈ A(T) then

Stop, G has no perfect matching
else

Let ϵ = min{cvw − yv − yw : v ∈ B(T), w /∈ V (T)}
Replace yv by yv + ϵ for v ∈ B(T), yv − ϵ for v ∈ A(T).

end if
end while

Note.

• M ⊆ E= all the time, so if we find a perfect matching, it will be a min weight one.

• Stopping points: either we find a perfect matching in G or we find a frustrated tree in G (not
G=), so there is no perfec matching.

• The loop can only run polynomially many times because for every iteration, one more egde
will be added to T , so the algorithm will terminate in polynomial time.

	Minimum Cost Spanning Trees
	Minimum Spanning Tree Problem
	Kruskal's Algorithm
	Correctness via LP
	Integer Programming Formulation
	LP relaxation:
	Greedy and Max Cost Forest
	Kruskal for Maximum Cost Forest

	Matroids
	Matroid 1
	Matroid 2
	Matroid 3
	Circuit characterization

	Matroid 4
	Polymatroids
	Matroid Construction

	Matchings
	Matchings 1
	Matching 2
	Matching 3
	Matching 4
	Matching 5
	Matching 6

	Weighted Matching
	Weighted Matching 1

