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1 Poisson Process

1.1 Poisson Approximation to Binomial
Given a Poisson random variable Y ∼ Poisson(λ) with probability density function(pdf)

Pr[Y = k] =
e−λλk

k!
,∀k ∈ N0 = {0, 1 . . .}.

The probablity of a binomial random variable being k is(
n

k

)
pk(1− p)n−k.

Theorem 1.1. Given p → 0, np → λ, we have that(
n

k

)
pk(1− p)n−k → e−λλk

k!
.

Proof. (
n

k

)
pk(1− p)n−k =

(
n

k

)(np
n

)k (
1− np

n

)n−k

=
n!

k! (n− k)!

(np
n

)k (
1− np

n

)n (
1− np

n

)−k

=
1

k!

n(n− 1) . . . (n− k + 1)

nk︸ ︷︷ ︸
→1

(np)k︸ ︷︷ ︸
→λk

(
1− np

n

)n
︸ ︷︷ ︸

→e−λ

(
1− np

n

)−k

︸ ︷︷ ︸
→1

→ 1

k!
λke−λ.

With that, we consider three different binomial random variables:

Xn ∼ Binomial(n, pn), pn → 0, npn → λ > 0, as n → ∞.

Zp ∼ Binomial(n(p), p), p → 0, n(p)p → λ > 0, as p → 0.

Nx ∼ Binomial(n(x), p(x)), p(x) → 0, n(x) → λ > 0, as x.

For example, if Xn ∼ Binomial(n, 2/n), then we expect(
n

k

)
pk(1− p)n−k → e−22k

k!

1.2 Total Variance Distance
Let X1, . . . , Xn be n independent Bernoulli random variables, where E[Xi] = pi.

Given S =
∑

Xi and T ∼ Poisson(λ =
∑

pi), how close are these two distributions? Or,
how to measure the closedness?
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Definition 1.2. Given two random variables X, Y , (which shares the sample space), we have the
total variance distance defined as

dTV (X, Y ) = sup
A

|Pr[X ∈ A]− Pr[Y ∈ A]|

where A is a Borel set defined with respect to the sample space σ-algebra.

Example 1.3. Given two distributions

0 1 2 3
Pr[X = k] 5/10 3/10 1/10 1/10
Pr[Y = k] 2/10 1/10 1/10 6/10

Table 1: Discrete Distribution Distance

If A = {0, 1}, then

|Pr[X ∈ A]− Pr[Y ∈ A]| = 3/10 + 2/10 = 1/2.

If A = {3},
|Pr[X ∈ A]− Pr[Y ∈ A]| = |1/10− 6/10| = 1/2.

Lemma 1.4. If X, Y take values in a countable set E,

dTV (X, Y ) =
∑
i∈E

(Pr[X = i]− Pr[Y = i])+

=
∑
i∈E

(Pr[Y = i]− Pr[X = i])+

=
1

2

∑
i∈E

|Pr[Y = i]− Pr[X = i]|

Proposition 1.5. Given two random variables, we have

dTV (X, Y ) ≤ Pr[X ̸= Y ]

Proof. For any A,

|Pr[X ∈ A]− Pr[Y ∈ A]|
=|Pr[X ∈ A, Y ∈ A] + Pr[X ∈ A, Y /∈ A]− Pr[Y ∈ A,X ∈ A]− Pr[Y ∈ A,X /∈ A]|
=|Pr[X ∈ A, Y /∈ A]− Pr[Y ∈ A,X /∈ A]|
≤max {Pr[X ∈ A, Y /∈ A],Pr[Y ∈ A,X /∈ A]} ≤ Pr[X ̸= Y ].

Let X1, . . . , Xn be independent Bernoulli random variables with E[Xi] = pi. Let S :=
∑

Xi,
and T ∼ Poisson(λ := p1 + . . . + pn). Then E[S] = E[

∑
Xi] =

∑
E[Xi] =

∑
pi = λ.
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Let Y1, . . . , Yn be independent Poissson random variables with E[Yi] = pi. Then T =
∑

Yi ∼
Poisson(λ). We also have

[S ̸= T ] ⊆ [X1 ̸= Y1︸ ︷︷ ︸
B1

] ∪ [X2 ̸= Y2] ∪ . . . [Xn ̸= Yn]

And hence

Pr[S ̸= T ] ≤ Pr[B1 ∪ . . . ∪Bn]

≤ Pr[B1] + . . .+ Pr[Bn]

≤ p21 + . . .+ p2n

where Pr[Xi = Yi] = 1 − p + pe−p,Pr[Xi ̸= Yi] = p − pe−p ≤ p(1 − (1 − p + p2/2!+ . . .) =
p(p− p2/2!+ . . .) ≤ p2.

Hence,

dTV (S, T ) ≤ Pr[S ̸= T ] ≤
n∑

i=1

p2i .

Consider X1 ∼ Bernoulli(p1 = 1/5), X2 ∼ Bernoulli(p2 = 1/6), X3 ∼ Bernoulli(p3 = 1/10),
S = X1 +X2 +X3 and T ∼ Poisson(λ = 7

15
). Then if estimate T by S, for example,

Pr[S is an odd number] ≈ Pr[T is an odd number]

the probability of getting an error is at most

(1/5)2 + (1/6)2 + (1/10)2

by letting A be the set of odd numbers.

1.3 Probablity Axioms
Consider the sample space Ω, the set of events F and the probablity P , where

Ω : sample spaces - set of all outcomes
F : all events
P : F → [0, 1]

. Then we can write a random variable X1 as:

X1 : Ω → R

and an event as
B1 = [X1 ̸= Y1] = [w ∈ Ω|X1(w) ̸= Y1(w)].

Definition 1.6. Event Axioms:

E.1 Ω ∈ F
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E.2 A ∈ F =⇒ AC ∈ F

E.3 A1, A2, . . . ∈ F =⇒ A1 ∪ A2 ∪ . . . ∈ F

Definition 1.7. Probability Axioms:

P.1 A ∈ F =⇒ P (A) ≥ 0

P.2 Countable additivity. A1, A2, . . . being disjoint events, then P (A1∪A2∪. . .) =
∑

i=1 P (Ai).

P.3 P (Ω) = 1.

Example 1.8. X = (Ω,F) → R, and let B be a Borel set. Then we can write {X = 3} = {w ∈
Ω : X(w) = 3} ∈ F . Similarly, P (X ∈ B) ∈ F .

Ω = {a, b, c}, F = {∅,Ω, {a}, {b, c}}. Given X(a) = 1, X(b) = 2, X(c) = 3, we have

[X = 3] = [w ∈ Ω : X(w) = 3] = [c]

which is not in the event, so X is not a random variable. If X(b) = 3, then X is a random variable.

Given X ∼ Exp(λ), Y ∼ Exp(µ) and X ⊥ Y , then

P (X > s, Y −X > t|X < Y )

=P (X > s|X < Y )P (Y −X > t|X < Y )

λn → λ =⇒ (1 + λn

n
)n → eλ. f(h) = o(h) =⇒ f(h)/h → 0 as h → 0.

Fix x, a function f is differentiable at x iff there exists a number f ′(x) such that

f(x+ h) = f(x) + hf ′(x) + o(h)

f(x+ h)− f(x)

h
= f ′(x) + o(h)/h, h → 0

For example, if we want to show n log(1 + λn

n
) → λ. Take hn = λn/n, x = 1.

n log(1 + hn) = nhn + nO(hn) = nhn +
λn

hn

O(hn)

where log(1 + h) = log(1) + h + o(h). Then as n → ∞, we have hn → 0, nhn → λ, n log(1 +
λn/n) → λ.

Definition 1.9. Suppose X is nonnegative, integer-valued random variable Pr[X = k] = pk for
k = 0, 1, 2, . . ., then the probability-generating function is defined as:

G(s) := E[sX ] =
∞∑
k=0

pks
k = p0 + p1s+ p2s

2 + . . .

and G(s) < ∞ for |s|< R.
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Then we have

G′(s) =
∞∑
k=0

kpks
k−1 = E[XsX−1]

G′(1) = E[X]

G′′(s) =
∞∑
k=0

k(k − 1)pks
k−2 = E[X(X − 1)sX−2]

G′′(1) = E[X(X − 1)] = E[X2 −X] = E[X2]− E[X]

E[X2] = G′′(1) +G′(1)

var(X) = G′′(1) +G′(1)− [G′(1)]2 = E[X2]− E[X]2

G(0) = p0, G
′(0) = p1,

G′′(0)

2
= p2.

Let X, Y be independent nonnegative, integer-value random variables.

T =X + Y

E[sT ] =E[sX+Y ] = E[sXsY ] = E[sX ]E[sY ]

Example 1.10. Let X1, . . . , Xn be i.i.d. Bernoulli random variable.

T =X1 + . . .+Xn

E[sT ] =E[sX1+...+Xn ] = (E[sX ])n = (1− p+ ps)n

E[sX1 ] =s0(1− p) + sp

Let Xn ∼ Binomial(n, pn), pn → 0, npn → λ, n → ∞.

Gn(s) = E[sXn ]

= (1− pn + pns)
n

=
(
1− npn

n
+

npns

n

)n
=

(
1− npn(1− s)

n

)n

→ e−λ(1−s)

as n → ∞.
X ∼ Poisson(λ),

G(s) = E[sX ] =
∞∑
k=0

sk Pr[x = k] =
∞∑
k=0

sk
e−λλk

λ!
= e−λeλs = e−λ(1−s).

1.4 Cumulative Distribution Function (c.d.f.)
Definition 1.11. Given a random variable X , its cumulative distribution function (c.d.f.) is defined
as

F (t) := Pr[X ≤ t],− inf < t < inf .
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Given a Borel set A, we have
F (A) = Pr[X ∈ A]

For example, Pr[X ∈ (a, b]] = F (b)− F (a).

Definition 1.12 (Convergence in distribution). Let Xn be a sequence of random variables, X be a
random variable. Let Fn be the cdf of Xn and F be the cdf of X . We can Xn converges to X in
distribution (written as Xn

D
=⇒ X , or Xn → X), if

Fn(t) → F (t),∀t ∈ C(F )( the continuous domain of F )] or
E[h(Xn)] → E[h(X)],∀ bounded continuous function h

Definition 1.13. We say Xn converges to X in (total) variation if dTV (Xn, X) → 0 as n → ∞.

Example 1.14. Let Xn be constant random variable 1/n and X = 0. For every n, we have

dTV (Xn, X) = sup
A

|Fn(A)− FX(A)|

and P (Xn = 0) = 0, P (X = 0) = 1, so Xn does not converge to X in variation.
Given that C(FX) = (−∞, 0) ∪ (0,∞), we have for every t ∈ C(FX), and for all large n,{

Fn(t) = 1, if t ∈ (0,∞)

Fn(t) = 0, if t ∈ (−∞, 0)

Hence, Fn(t) converges to FX(t) for every t ∈ C(F ), so Xn
D
=⇒ X .

Example 1.15. If you have an n-sided die labelled 1/n, 2/n, . . . , n/n. Then notice that

Xn
D
=⇒ U ∼ Uniform(0, 1)

because if we consider any t ∈ (0, 1), FU(t) = t, and Fn(t) =
k
n

where k/n ≤ t < (k + 1)/n. As
n → ∞, k/n converges to t.

Again Xn does not converge to X in variation. Let Q be the set of rational numbers. Pr[X ∈
Q] = 0 because Q has measure zero, but Pr[Xn ∈ Q] = 1. Hence dTV (Xn, X) = 1 for every n.

1.4.1 Geometric Distribution to Exponential, the Memoryless variables

Let Tn ∼ Geo(pn), then Pr[Tn = k] = (1− pn)
k−1pn, k = 1, 2, . . ., Pr[Tn > k] = (1− pn)

k, and
Pr[Tn > k + j|Tn > k] = Pr[Tn > j]. Also, E[Tn] = 1/pn.

And let X ∼ Exp(λ), fx(t) = λe−λt, t ≥ 0, Pr[X > t] = e−λt,Pr[X > t + s|X > t] =
Pr[X > s], E[X] = 1/λ.

We will show
Tn

n

D→ X ∼ Exp(λ).

First, let Fn be the c.d.f. of Tn and FX be the c.d.f. of X . We need to show that Fn(t) → FX(T )
for all t ∈ C(X).
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Proof.

1− Fn(t) = Pr

[
Tn

n
> t

]
= Pr[Tn > nt] = Pr[Tn > ⌊nt⌋]

= (1− npn
n

)⌊nt⌋ = (1− λn

n
)⌊nt⌋ → e−λt

where λn := npn → λ as n → ∞, and the convergence to e−λt is by squeeze theorem.

1.5 Point Process
Consider N ∼ Poisson(λ) and let X1, . . . , XN be i.i.d. Bernoulli(p). Define Y =

∑N
i=1 Xi. If for

each of its count of N , it has p chances to be 1 and (1 − p) to be 0, then we can split N into two
Poisson distributions

Y ∼ Poisson(λp)

Z ∼ Poisson(λ(1− p))

where Z := N − Y and we have Z ⊥ Y (seen that in homework 1).

Definition 1.16. A point process on [0,∞) is a mapping, assigning each Borel set J ⊆ [0,∞), a
nonnegative extended integer valuesd r.v. N(J) = NJ , so that if J1, J2, . . . , are disjoint, then

N(∪iJi) =
∑
i

N(Ji)

A counting process associated with N (family of random variables), N(t) = Nt for t ≥ 0
where N(t) = N((0, t]) for t > 0. By convention, the sample paths are right continuous.

Definition 1.17. A Poisson point process with intensity λ > 0 is a point process with:

a) If J1, J2, . . . , are nonoverlapping intervals, then N(J1), N(J2), . . . , are independent.

b) N(J) ∼ Poisson(λ|J |) where J is the length of the interval J .

Given a Poissson Point Process above, let 0 = T0 < T1 ≤ T2 ≤ T3 ≤ . . . be the time ith

customer arrives and τn = Tn − Tn−1. Then τ1, τ2, . . . , are i.i.d. exp(λ).

Example 1.18. Let N(t) be the number of customers arriving during (0, t] and N ∼ Poisson(5).
The probability of 0 arrivals up to time 2 is

Pr[N(2) = 0] = e−5(2) = e−10

While the probability of k arrivals up to time 2 is

Pr[N(2) = k] =
e−1010k

k!
.
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Consider

{N(5) = 7|N(2) = 1}
{N((2, 5]) = 6|N(2) = 1}
Pr[N(5)−N(2) = 6|N(2) = 1]

=Pr[N(5)−N(2) = 6]

=Pr[N((2, 5]) = 6]

=Pr[N(3) = 6]

We can also consider

Pr[T2 > 5.8|T1 = 3.7] = Pr[τ2 > 2.1|τ1 = 3.7] = e−λ(2.1)

If you look at the store a 100 min, when will the next customer arrive?
We expect 1

λ
= 1

5
hr = 12min.

Pr[T1 > t] = Pr[N(t) = 0] = e−λt, t ≥ 0

Pr[T2 > t|T1 = s] = Pr[N((s, s+ t]) = 0|T1 = s]

= Pr[N((s, s+ t]) = 0]

= e−λt

1.6 Bernoulli and Poisson
Let X1, X2, . . ., be Bernoulli Process with p ∈ (0, 1).

Question:

a) Is Pr[Xn = k|T = n] equal Pr[XT = k|T = n]? Yes.
Let A = {w ∈ Ω : Xn(w) = k}, B = {w ∈ Ω : T (w) = n}, C = {w ∈ Ω : XT (w)(w) = k}
and A∩B = {w ∈ Ω : Xn(w) = k, T (w) = n}, C∩B = {w ∈ Ω : XT (w)(w) = k, T (w) =
n}, which implies Pr[A ∩B]/Pr[B] = Pr[C ∩B]/Pr[B]

b) Is Pr[Xn = k|T = n] equal to Pr[Xn = k]? No.
e.g. T := min{n : Xn = 1}, and Pr[Xn = 1|T = n] = 1, Pr[Xn = 1] = p.
e.g. Xi ∼ Exp(λ) where X1, X2, . . . , are event times.

Pr[X2 > t|X1 = s] = Pr[N((s, s+ t]) = 0|X1 = s]

= Pr[N(s, s+ t] = 0] by independent increment
= Pr[N(X1, X1 + t] = 0|X1 = s]

But then let T := min{r : N(r, r + t] = 10}. We have

Pr[N(T, T + t) = 0|T = 3.87] = 0,Pr[N(3.87, 3.87 + t] = 0] = e−λt

Definition 1.19. Let 0 = T0 < T1 = τ1 ≤ T2 = τ1 + τ2 ≤ . . . be the occurence times of a
Poisson process which are the successive times N(t) jumps. Let τ1, τ2, . . . be the interoccurence
time, where τi := Ti − Ti−1.
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Theorem 1.20 (Interoccurence Time Theorem).

(A) Interoccurence times τ1, τ2, . . . , of a Poisson process with rate λ are i.i.d. Exp(λ)

(B) Let Y1, Y2, . . . , be i.i.d. Exp(λ).

N(t) := max

{
n :

n∑
i=1

Yi ≤ t

}
=⇒ {N(t)}t≥0 is a Poisson counting process with rate λ > 0

Example 1.21. Consider Bernoulli processes {Xm
k }k∈ N

m
with parameter pm ∈ (0, 1). Then τm1 =

Tm
1 = min{n ∈ N

m
= Xm

n = 1}. Then mτm1 ∼ Geo(pm). Let Tm
2 = min{n > Tm

1 : Xm
n = 1}

and τm2 = Tm
2 − Tm

1 , then mτm2 ∼ Geo(pm) as well. Then with the occurrence time Ti, we have a
counting process

Nm(t1) ∼ Binomial(? , pm)

Useful later: {T1 ≥ t1, T2 ≥ t2} ⇐⇒ {N(t1) ≥ 1, N(t2) ≥ 2}.

Theorem 1.22 (The law of small numbers for Bernoulli Process). Let {Xm
r }r∈N/m be a Bernoulli

Process with parameter pm indexed by multipliers of N/m. Let Nm(t) be the corresponding count-
ing process. If mpm → λ > 0, then the counting process Nm converges in distribution to the
counting process of a Poisson process with rate λ > 0 in the following sense:

∀n, 0 = t0 < t1 < . . . < tn, (N
m(t1), . . . , N

m(tn))
D→ (N(t1), . . . , N(tn))

Proof of Interoccurence Time Theorem.

a) We showed in the previous section that for a geometric r.v. with pn with npn → λ. Tn/n
D→

Exp(λ). And we have seen that the interoccurrence times of Bernoulli {Xm
k }k∈N/n are geo-

metric, ∆m
k = Nm(tk)−Nm(tk−1) ∼ Binomial(m(tk−tk−1)±1, pm) where ± considers the

rounding of m(tk−tk−1). And this converges in distribution to ∆k ∼ Poisson(λ(tk−tk−1)).
Thus the occurrence time of Nm(t) converges to N(t) in distribution. Thus, the interoc-
curence time of Xm

k , which is the interoccurence time of Nm(t), converging to Exp(λ)
implies that the interoccurence time of N(t) converges to Exp(λ).

b) With a Poisson process with rate λ, and let τi be its interoccurence times, and we know
τi

iid∼ Exp(λ). Let Yi be another sequence of i.i.d. expenentials with λ. Then since τi and Yi

have the same joint distribution, we also have(
τ1, τ1 + τ2, . . . ,

n∑
i=1

τi

)
D
=

(
Y1, Y1 + Y2, . . . ,

n∑
i=1

Yi

)

But (Y1, Y1 + Y2, . . . ,
∑n

i=1 Yi) determines the joint distribution of the occurrence time of
N(t). That is, the occurence times of N(t) are the occurence times of a Poisson distribution.
So N(t) is Poisson.
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Given B), now we can simulate Poisson with Ui
D∼ Uniform([0, 1]) and have τi = − 1

λ
log(1−

Ui). However, if the actual λ > µ and we simulate with µ, then we have

τ̃i = − 1

µ
log(1− Ui)

D
=

λ

µ
τk

Theorem 1.23 (Generalized Thinning Theorem). Let N ∼ Poisson(λ), Xi be iid r.v. with Pr[Xi =
k] = pk, k = 1, . . . ,m and

∑m
i=1 pk = 1. And N is independent from Xi for all i. Let Nk =∑N

j=1 1{Xj=k}.
e.g:

m = 3 x1 x2 x3 x4 x5

N = 5 2 3 3 1 2

then N1 = 1, N2 = 2, N3 = 2, N1 +N2 +N3 = N .
We have that N1, . . . , Nm are independent Poisson r.v. with E[Nk] = λpk. (You can consider this
as splitting a Poisson process into m different ones with probability pk.)
And we have

Pr[N1 = j1, N2 = j2, . . . , Nm = jm] = Pr[N = j1 + . . .+ jm, N1 = j1, . . . , Nm = jm]

= Pr[N = j1 + . . .+ jm]︸ ︷︷ ︸
Poisson

Pr[N1 = j1, . . . , Nm = jm|N =
m∑
i=1

ji]︸ ︷︷ ︸
multinomial

=
e−λλj1+...+jm

(j1 + . . .+ jm)!

(
j1 + . . .+ jm
j1, . . . , jm

)
pj11 . . . pjmm

=
m∏
i=1

e−λpi(piλ)
ji

ji!

Scecond Construction Let m1,m2, . . . be iid Poisson(λ). Let U1, U2, . . . be iid Uniform(0, 1)
such that (m1,m2, . . .) independs (U1, U2, . . .). Put points at U1, . . . , Um1 if m1 > 0. Put points at
1 + Um1+1, . . . , 1 + Um2 if M2 > 0 and so on.

Claim 1.23.1. Above points form a Poisson point process (THM 7 of UChichago Notes).

Proof. 0 = t1 < t1 < . . . < tn = 1, Jk = (tk−1, tk] =⇒ pk = tk − tk−1. N(J1), . . . , N(Jn)
independent Poisson E[N(Jk)] = λpk = λ|Jk|.

Definition 1.24. Poisson point process on Rk with mean measure Λ is a point process on Rk with

1. J1, J2, . . . disjoint Borel sets in Rk; N(J1), N(J2), . . . are independent.

2. N(Jk) ∼ Poisson(Λ(Jk))

Proposition 1.25. To show a point process is a Poisson point process, it suffices to verify the
conditions above for rectangles J , Ji with sides parallel to the coordinate axes.

12



Example 1.26. Let Ti be the occurence times of a Poisson process on [0,∞) with rate λ. Let Sj

be the iid rv with CDF F . Sj , Ti are indep. Then we have J = [t1, t2] × [s1, s2]. So N(J) =
λ(t2 − t1)(s2 − s1), where J ′ ∩ J = ∅ implies N(J) independent N(J ′).

For a Poisson Point Process on R with rate λ > 0, then given t > 0, we have

Pr[N(0, t] = 0] = e−λt

Pr[N(−t, 0] = 0] = e−λt

Pr[N(−t, t] = 0] = e−2λt

Given 2 Poisson Processes on [0,∞) with N ∼ Poisson(λ), M ∼ Poisson(µ), λ > µ, how can
we comply them so N(J) ≥ M(J) for every Borel set J?

1. Superposition: Consider M as above and L ∼ Poisson(λ− µ), which are independent, then
take the superposition (a process made of all success of M,L) so we get another Poisson(λ).

2. Decomposition: With the N above, for each success of N , split it to M with probability µ/λ,
and L with (1 − µ/λ), then M and L are independent Poisson Processes and M is what’s
required.

Consider N,M with the distributions above, let T1 be the time of first success of N , then what’s
the probability that M(T1) = k? If we directly compute it, it will be

Pr[M(T1) = k] =

∫ ∞

0

Pr[M(T1) = k|T1 = s] λe−λs︸ ︷︷ ︸
Pr[T1=s]

ds

which is not that easy to compute. But we can consider N +M ∼ Poisson(λ + µ). And split its
success to N,M with probability λ

µ+λ
and µ

µ+λ
respectively. Then T1 is the time when a success is

splitted to N the first time. That is, M(T1 = k) can be considered as a geometric process with k
failure and one success, so

Pr[M(T1) = k] =

(
µ

λ+ µ

)k (
λ

λ+ µ

)
Let {N(t)}t≥0 be a counting process on [0,∞). Prove or disprove: If N(t) ∼ Poisson(λt) for

all t > 0, then N is a Poisson Process.
Let Ti be the occurence times and τi be the interoccurence times as before. Then Tn = τ1+. . .+τn.
If τi are independent Exp(λ), we know Tn ∼ Erlang(n, λ), so E[Tn] = n/λ and

Fn(t) = Pr[Tn ≤ t] = Pr[N(t) ≥ n] =
∞∑
k=n

e−λt(λt)k

k!
= 1−

n−1∑
k=0

e−λt(λt)k

k!

so if T1, T2, . . . , have the ”right” distribution, then N(t) will be Poisson(λt). What if we don’t
have the independence? Consider Ti := F−1

i (U) where Fi is the cdf of Erlang(i, λ) and U ∼
Uniform(0, 1). Then it’s not hard to see that each Ti ∼ Erlang(i, λ), however, once T1 is given,
we can compute U and hence all T2, T3, . . . are know, so the process with Ti being the occurence
time is not a Poisson.

13



limits of expectation and expectation of limits

Theorem 1.27 (Monotone Convergence Theorem). Let {Xn}n≥1 be a sequence of random vari-
ables such that for all n ≥ 1,

0 ≤ Xn ≤ Xn+1, Probably a.s.,

then
E[ lim

n→∞
Xn] = lim

n→∞
E[Xn].

Theorem 1.28 (Dominant Convergence Theorem). Let {Xn}n≥1 be a sequence of random variable
such that for all ω outside a set N of null probability there exists limn→∞ Xn(ω) and such that for
all n ≥ 1

|Xn|≤ Y, Probably a.s.,

where Y is some integrable random variable. Then

E[ lim
n→∞

Xn] = lim
n→∞

E[Xn].

Example 1.29 (”Counter Example”). Suppose we are rolling a fair dice independently. Every time
we get 6, we lose all the money, otherwise, we double the current amount. Starting with X0 = 100,
we have

Xn =

{
100 ∗ 2n, with prob (5/6)n

0, with prob 1− (5/6)n

E[Xn] = 100 ∗ (5/3)n

lim
n→∞

E[Xn] = ∞

E[ lim
n→∞

Xn] = 0

where the last equality is by limn→∞ Pr[Xn > 0] = 0 and limn→∞ Pr[Xn = 0] = 1, so Xn → 0
almost surely.

Let N be a Poisson on [0,∞) with rate λ. Let T ≥ 0 be a r.v. such that N, T are independent.
If we know the distribution of N(T ), can we determine the distribution of T ? First consider the
probability generating function (p.g.f.) of a Poisson X ∼ Poisson(λ), we have

G(s) = E[sX ] =
∞∑
k=0

sk Pr[X = k] =
∞∑
k=0

sk
e−λλk

k!
= e−λeλs = e−λ(1−s)

Or let x be nonnegative, integer-valued r.v.m the Laplace-Stieltjes Transformation of X is

L(s) = E[e−sX ] =

∫ ∞

0

e−stdF (t) =

∫ ∞

0

e−stF (dt)

note this formula prevent us from worrying about the continuity of X by F (t).
Recall the moment generating function (m.g.f.) mX(θ) = E[eθX ]. We give some examples,
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Example 1.30.

1. When Pr[T = t] = 1, we have E[e−sT ] = e−st.

2. When T ∼ Bernoulli(p),

L(s) = E[e−sT ] = (1− p) ∗ 1 + p ∗ e−s =

∫
[0,∞)

e−stdF (t)

3. T ∼ Binomial(n, p). T = X1 + . . .+Xn, where Xi are i.i.d. Bernoulli.

L(s) = E[e−sT ]

=

∫
[0,∞)

e−stdF (t)

= E[e−s(X1+...+Xn ]

= E[e−sX1 . . . e−sXn ]

= E[e−sX1 ] . . .E[e−sXn ]

= (1− p+ pe−s)n

4. Let X ∼ Exp(λ), we have

E[e−sX ] =

∫ ∞

0

e−stλe−λtdt =
λ

s+ λ
. (L.S. of Exp)

Lemma 1.31. Given a N(T ) ∼ Poisson(λ), and N being independent from T , we have LT (s) =
G(1− s/λ).

Proof.

G(z) = E[zN(T )]

= E[E[zN(T )|T ]]
= E[e−λT (1−z)]

= L(λ(1− z))

where the second last equality is by

G(z) = E[zN(T )] =
∞∑
k=0

zk
e−λT (λT )k

k!
= e−λT (1−z).

And then let s = λ(1− z), we are done.

Thus, when N(T ) ∼ Poisson(λt),

L(s) = G(1− s/λ) = e−λt(1−(1−s/λ)) = e−st

so Pr[T = t] = 1.
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Theorem 1.32 (Not gonna prove). Like p.g.f. and m.g.f., L(s) uniquely corresponds to a random
distribution.

Example 1.33. Let Pr[N(T ) = k] = ρk(1− ρ), k = 0, 1, . . .. Then

G(z) = E[zN(T )] =
∞∑
k=0

zkρk(1− ρ) =
1− ρ

1− ρz
.

L(s) = E[e−sT ] = G(1− s/λ) =
1− ρ

1− ρ(1− s/λ)

=
1− ρ

1− ρ+ ρs/λ
=

λ
ρ
(1− ρ)

λ
ρ
(1− ρ) + s

which shows that T ∼ Exp(λ
ρ
(1− ρ)) by (L.S. of Exp).
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2 Markov-Chain
Let X0, X1, . . . be discrete-time stochastic processes and let the state space be countable.

Pr[X0 = i0, . . . , Xn = in],∀n, i0, . . . , in ∈ state space.

1. Markov Property:

Pr[Xn+1 = j︸ ︷︷ ︸
future

|Xn = in︸ ︷︷ ︸
present

, . . . , X0 = i0︸ ︷︷ ︸
past

] = Pr[Xn+1 = j|Xn = in]

2. Time Homogeneity:

Pr[Xn+1 = j|Xn = i] = Pr[X1 = j|X0 = i] = Pr(i, j)

Definition 2.1. X0, X1, . . . is a discrete-time Markov chain (DTMC) if X0, X1, . . . has the two
properties above.

Example 2.2. Let X0, X1, . . . be an independent Bernoulli process with parameter p. Then the
state space is {0, 1}.

Pr[Xn+1 = j|Xn = in, . . . , X0 = i0] = Pr[Xn+1 = j]

Pr[Xn+1 = j|Xn = in] = Pr[Xn+1 = j]

Pr[Xn+1 = j|Xn = j] = Pr(j, j).

This forms a really special DTMC, basically every r.v. are i.i.d.. Its transition matrix looks like

P =

[
1− p p
1− p p

]
where the rows represent the ”from” and columns represent the ”to”. That is, [P ]ij = Pr(i, j).

Example 2.3. Let X0, X1, . . . ∼ Bernoulli(p), p ∈ (0, 1). Yn = Xn + Xn+1 ∈ {0, 1, 2}. Is
Y0, Y1, . . . a Markov Chain? No.

Pr[Y2 = 0|Y1 = 1, Y0 = 0] = 0

Pr[Y2 = 0|Y1 = 1, Y0 = 2] = 1− p

because Y0 = 0, Y1 = 1 implies that X2 = 1, X0 = X1 = 0, first probability is the probability that
X3 = −1 and the second one is the probability that X3 = 0.
What can we add to make it a DTMC?
Acquire more information. Let Zn = (Xn, Yn), then we consider

Pr[Zn+1 = (j1, j2)|Zn = (i1, i2), Zn−1 = (kn−1, ℓn−1), . . . , Z0 = (k0, ℓ0)]

And the transition matrix is

(0,0) (0,1) (1,0) (1,1)
(0,0) 1-p p 0 0
(0,1) 0 0 1-p p
(1,0) 1-p p 0 0
(1,1) 0 0 1-p p
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M/M/1 Queue Consider an M/M/1 queue, which is the queue with customers arriving ac-
cording to Poisson(λ), service time following i.i.d. exp(µ) with 1 server. The model records
the number of customers whenever a process (arrival or service) is done. Note that this process
or a point from the Poisson process does not have to ”happen”. You can treat all events as a
Poisson(λ + µ). For each point, there is a chance we have a service done, and another chance the
we have an arrival. However, since this is an event, when there is 0 customer in the system, next
point can still be a departure point, but the number of customers will stay at 0 instead of going to
−1. When there are at least one customer in the system, the server actually serves the customer
and make the number of customers minus 1.

For example, if we have X0 = 0 and the next event is finishing a service, X1 = 0, if it’s a
customer arrival, X1 = 1. This model is also called the birth and death model, basically we add
one when we have a birth and minus one when we have a death. Since the moment starts, we can
only have ”deaths” (or departures) until the first arrival. That is, given Xn = 0, the probability that
Xn+1 = 0 is the probability that

Pr[D < A] =
µ

λ+ µ

where D ∼ exp(µ) is the service time and A ∼ exp(λ) is the interoccurence time of Poisson(λ)
(i.e. the arrival time). Similarly, given Xn = 0, the probability that Xn+1 = 1 is the probability
that the customer arrives before the service time. So the transition matrix looks like µ

λ+µ
λ

λ+µ
0 . . . . . .

µ
λ+µ

0 λ
λ+µ

0 . . .

0 µ
λ+µ

0 λ
λ+µ

0 . . .


where rows and columns are from 0 to infinity.

We can also consider Xn := number of customers in the system just before n-th arrival. For
example, given Xn = 0, the probability Xn+1 = 0 is µ

λ+µ
, because Xn = 0, so between n-th and

n + 1th arrival, there is at most one customer in the system, and we have the probability µ
λ+µ

to
finish the service before n+ 1-th arrival, otherwise, with probability λ

µ+λ
, we still have a customer

in the system just before n+ 1-th customer arrives.
Another way of considering this is treating the arrivals as a geometric distribution with λ

λ+µ

success rate. For example, if Xn = 1. That means between n and n + 1 arrivals, there are 2
customers in the system, and we do the geometric experiment. The probability that there is no
customer in the system when n + 1th customer arrives is the probability we ”fail” at least twice
before the ”success”. Similarly, the probability that there is one customer in the system when
n+ 1th customer arrives is the prob that we ”fail” exactly once before the first success, and so on.
So the transition matrix looks like:

µ
λ+µ

λ
λ+µ

0 . . . . . .(
µ

λ+µ

)2
µλ

(λ+µ)2
λ

λ+µ
0 . . .(

µ
λ+µ

)3 (
µ

λ+µ

)2
λ

(λ+µ)
µλ

(λ+µ)2
λ

µ+λ
. . .


M/M/1/3 Queue Consider the M/M/1/3 queue where the 3 means the capacity of the system.
Let Yn := number of customers in the system just after the n-th departure, so now the state space
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is {0, 1, 2}. Then let’s say Yn = 0, then the probability Yn+1 = 0 is the probability that there is
an arrival between n-th and n+ 1-th departures. In other words, for n+ 1-th departure to happen,
there has to be an arrival, so the probability is actually the probability that the (n+1)-th departure
happen before any arrivals except for the necessary one, which is µ

λ+µ
, similar argument applies to

other cases. So the transition matrix looks like:
µ

µ+λ
λµ

(µ+λ)2

(
λ

λ+µ

)2
µ

µ+λ
λµ

(µ+λ)2

(
λ

λ+µ

)2
0 µ

µ+λ
λ

µ+λ


2.1 Transition Matrix
Definition 2.4. A matrix P is a stochastic matrix if P (i, j) ≥ 0, and

∑
j∈S P (i, j) = 1. It is

called a doubly stochastic matrix if it is a stochastic matrix and
∑

i∈S P (i, j) = 1. It is called a
substochastic matrix if P (i, j) ≥ 0 and

∑
j∈S P (i, j) ≤ 1.

Given S = {0, 1, 2}, and a transition matrix

P =

1
2

1
2

0
1
3

1
3

1
3

0 1
4

3
4

 . (2.1)

We have the transition plot of the above matrix,

Figure 1: Transition Plot of P

Lemma 2.5. Pr[A,B,C,D] = Pr[A] Pr[B|A] Pr[C|AB] Pr[D|ABC]

Example 2.6. Given X0, X1, . . ., we have

Pr[X0 = i0, . . . , Xn = in]

=Pr[X0 = i0] Pr[X1 = i1|X0 = i0] . . .Pr[Xn = in|Xn−1 = in−1, . . . , X0 = i0]

=Pr[X0 = i0]P (i0, i1)P (i1, i2) . . . P (in−1, in)

Definition 2.7. We use measure distributions on S that are functions from S to R to describe a
distribution of a random variable. We use α, β, µ, π to describe row vectors, and use f, g, h to
describe column vectors. For example,

X0 ∼ α = (1/3, 1/2, 1/6)
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and a function

f =

f(0)
f(1)
f(2)

 =

2
5
3

 ,

then αf = E[f(X0)] ∈ R.

Example 2.8.

Pr[X2 = j|X0 = i] =
∑
k∈S

Pr[X2 = j,X1 = k|X0 = i]

=
∑
k∈S

P (i, k)P (k, j)

= P 2(i, j).

For our P in (2.1), we have P 2(1, 1) = 1
6
+ 1

9
+ 1

12
.

Lemma 2.9 (Chapman-Kolmogorov).

Pm+n(i, j) =
∑
k∈S

Pm(i, k)P n(k, j)

where Pm+n = PmP n.

Example 2.10. Pr[X4 = 1, X2 = 0, X7 = 1|X1 = 2] = P (2, 0)P 2(0, 1)P 3(1, 1).

Lemma 2.11.
X0 ∼ α =⇒ X1 ∼ αP, . . . , Xn ∼ αP n

And

Pr[X1 = j] =
∑
i

Pr[X1 = j|X0 = i] Pr[X0 = i]

=
∑
i

α(i)P (i, j)

Example 2.12.

Pr[X4 = 1|X5 = 1] =
Pr[X4 = 1, X5 = 1]

Pr[X5 = 1]
=

Pr[X5 = 1|X4 = 1]Pr[X4 = 1]

Pr[X5 = 1]
=

αP 4(1)P (1, 1)

αP 5(1)

With the properties above, we can let f be a vector and have

[Pf ]i = E[f(X1)|X0 = i]

[P nf ]i = E[f(Xn)|X0 = i]

αP nf = E[f(Xn)]

Definition 2.13. An invariant measure µ is a measure that µ = µP . For our matrix P in (2.1),
µ = (1, 3/2, 2) is an invariant measure.
A stationary distribution is an invariant measure that sums to 1. For our P in (2.1), (2/9, 3/9, 4/9)
is one.

20



2.2 Communication, Recurence and Transience
Definition 2.14. We say j is accessible from i if ∃n ≥ 0 such that P n(i, j) > 0.
We say i and j communicate (i ∼ j) if i is accessible from j and vice versa.
We say j is absorbing i if P (i, j) = 1.

Proposition 2.15. Communication is an equivalent relation being:

• reflective: i ∼ i, which is always true by letting n = 0 and hence P = I .

• symmetric: i ∼ j =⇒ j ∼ i.

• transitive: i ∼ j, j ∼ k =⇒ i ∼ k. (If there exists n with P n(i, j) > 0 and m with
Pm(j, k) > 0 then by Pm+n(i, k) ≥ Pm(i, j)P n(j, k), with m+ n steps, we might go from
i to j.

Example 2.16. For the following plot, we see that for each state, they only communicate with
themselves.

Figure 2: Self Commu States

Definition 2.17. If every two states communicate, then we say this Markov Chain is irreducible.

Definition 2.18. The period of state i is d(i) defined as the greatest common divider of {n >
0|P n(i, i) > 0}. If d(i) = 1 for every state i, then the Markov Chain is aperiodic.

Example 2.19. Given the following graph:

Figure 3: Period 1
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Consider i = 0, then

{n > 0|P n(0, 0) > 0} = {4, 7, 10, 13, . . .} =⇒ d(0) = 1

For the following graph:

Figure 4: Period 2

Consider i = 0, then

{n > 0|P n(0, 0) > 0} = {4, 6, 8, . . .} =⇒ d(0) = 2

Proposition 2.20. If i and j communicate, d(i) = d(j).

Proof. We know there exist m and n such that Pm(i, j) > 0 and P n(j, i) > 0, so Pm+n(i, i) > 0,
and m+ n is a multiplier of d(i). Let ℓ be an integer such that P ℓ(j, j) > 0. Then

Pm+n+ℓ(i, i) ≥ Pm(i, j)P ℓ(j, j)P n(j, i) > 0

so m + n + ℓ is a multiplier of d(i). Hence, we know ℓ is a multiplier of d(i) which implies
d(j) ≥ d(i). The argument for d(i) ≥ d(j) is similar, so d(i) = d(j).

Definition 2.21. T is called a stopping time if {T = n} can be determined from X0, . . . , Xn, i.e.

1T=n = gn(X0, . . . , Xn).

for some function gn.

Example 2.22. Tx = inf{n ≥ 0|Xn = x} is a stopping time. T k
x = time of kth visit of x is also a

stopping time. But Tx = inf{n ≥ 0|Xn+1 = x} is not a stopping time, because {T = n} requires
knowing Xn+1.

Let T be a stopping time, then

Pr[XT+1 = im+1, XT+2 = im+2, . . . , XT+n = im+n|T = m,Xm = im, Xm−1 = im−1, . . . , X0 = i0]

=P (im, im+1) . . . P (im+n−1, im+n)

22



and since T is a stopping time, T = m is redundant by knowing Xm, . . . , X0. This is called
Strong Markov Property. That is, the Strong Markov Property says that if we know a stopping
time T = m, then we can treat the Markov chain after T as one Markov chain Y with the same
transition matrix P but starting with Y0 = Xm.

Definition 2.23. Let T 1
x = Tx = inf{n ≥ 1|Xn = x}, T k

x = inf{n > T k−1
x |Xn = x}, k = 2, 3, . . .,

and Pr[X0 = x] = 1.

• State x is recurrent if Prx[Tx < ∞] = 1.

• State x is transient if Prx[Tx < ∞] < 1.

• State x is positive recurrent if Ex[Tx] < ∞.

• State x is null recurrent if x is recurrent and Ex[Tx] = ∞.

Example 2.24. Let Pr[X = k] = 1
k(k+1)

= 1
k
− 1

k+1
for k = 1, 2, . . .. Then

E[X] =
∞∑
k=1

k
1

k(k + 1)
=

∞∑
k=1

1

k + 1
= ∞

Pr[X ≤ n] = (1− 1

2
) + (

1

2
− 1

3
) + . . .+ (

1

n
− 1

n+ 1
) = 1− 1

n+ 1

Suppose x is recurrent. The number of times x will be revisited is represented as

Nx =
∞∑
k=0

1{Xk = x}.

Suppose state x is transient, by Strong Markov property,

Pr[T k
x < ∞] = Pr

x
[Tx < ∞]k.

Assuming X0 = x, Nx ∼ Geo(Pr[Tx = ∞]). That is, Nx stops (the number will not increase)
once we fall into the case Xn never comes to x.

Proposition 2.25. State x is recurrent if and only if Ex[Nx] = ∞.

Proof.

Ex[Nx] = Ex

∞∑
k=0

1[Xk = x]

=
∞∑
k=0

Ex[1[Xk = x]]

=
∞∑
k=0

Pr
x
[Xk = x] =

∞∑
k=0

P k(x, x)

Nx = 1 +
∞∑
k=1

1[T k
x < ∞]
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Ex[Nx] = 1 +
∞∑
k=1

E[1[T k
x < ∞]]

= 1 +
∞∑
k=1

Pr[T k
x < ∞]

= 1 +
∞∑
k=1

Pr[Tx < ∞]k

=

{
∞, if recurrent.

1
1−Pr[Tx<∞]

, transient.

Proposition 2.26. If x is recurrent and x, y communicate, then y is recurrent.

Proof. There exists k such that P k(x, y) > 0, and there exists ℓ such that P ℓ(y, x) > 0.

∞∑
n=1

P k+ℓ+n(y, y) ≥
∞∑
n=1

P ℓ(y, x)P n(x, x)P k(x, y) = ∞.

which implies that y is recurrent.

Example 2.27.

P =

0 1
6

5
6

1
6

0 5
6

1
6

5
6

0


and all states are recurrent.

Example 2.28. Consider the below Markov chain with 0 < p < 1.

Consider the probability of starting at 1 and first time visit 0 at k,

P1[T0 = k] = pk,

and we have

Φ(s) =
∞∑
k=0

pks
k

Φ(s) = qs+ psΦ2(s)
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where the second equality is by the fact that, T0 = 1 when we go from 1 to 0 directly with
probability q, otherwise, we go to 2 in the first step and then consider the steps required for us to
go from 2 to 0, which is 2 to 1 then 1 to 0. In other words, we write

Φ(s) =
∞∑
k=0

pks
k

= 0 ∗ 1 + qs+
∑
k=2

pks
k

= qs+ s
∑
k=0

pk+1s
k

= qs+ ps
∑
k=0

P2[T0 = k]sk

= qs+ psE[sX+Y ]

where pk+1 = p ∗ P2[T0 = k], and X is the random variable of number of steps from 0 to 1 and
Y is from 2 to 1 which follow the same distribution as T0 starting at 1 and are independent, so
E[sX+Y ] = E[sX ]E[sY ] = Φ2(s).
Then we can have that

Φ(s) =
1−

√
1− 4pqs2

2ps

Φ(1) =
1−

√
1− 4pq

2p
=

{
1, if p ≤ 1/2
q
p
, if p > 1/2

That is, when p > 1/2, there is a chance we never go to 0. Or we can find the expectation by

E1[T0] = lim
s→1

Φ′(s).

Definition 2.29. We call π a stationary distribution for a Markov chain with transition matrix P ,
if

π = πP,
∑

π(i) = 1.

Example 2.30.

(π(0), π(1), π(2))

0 1
6

5
6

1
6

0 5
6

1
6

5
6

0

 = (π(0), π(1), π(2))

solve to get
(π(0), π(1), π(2)) = (11/77, 31/77, 35/77)

and then
E0[T0] =

77

11
=

1

π(0)

because now we can consider it as a geometric distribution with parameter π(0), starting from
X0 = 0, you have 11/77 chance to get 0 at X1, similarly, if you get X1 ̸= 0, then you still have
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11/77 for X2 = 0 by π being stationary, and so on.
We can also consider the central limit theorem which gives:

f(x0) + . . .+ f(xn)

n+ 1
→ πf

for a function f valued on the states of the Markov chain Xi.

Example 2.31 (x-excursion chain). Let X0, X1, . . . be an irreducible Markov chain with stationary
distribution π, transition matrix P and state space S. Let’s consider words (or strings if you prefer)
that are finite, starting with x and containing only one x, call the set of all such words, Sy. Consider
random variables Yi with state space Sy, defined as

Y0 = x

Y1 = xX1

Y2 = xX1X2

Y3 = xX1X2X3

...

where we keep X0 = x. So

Pr[Y3 = xy1y2y3] = P (x, y1)P (y1, y2)P (y2, y3).

and we can build the transition matrix Q for Yi as

Q(xy1 . . . yk, xy1 . . . ykyk+1) = P (yk, yk+1)

Q(xy1 . . . yk, x) = P (yk, x)

Q(x, xy) = P (x, y)

Q(x, x) = P (x, x).

And we define F : Sy → S where F (w) is the last letter of w.

Fact 2.32. If Y0, Y1, . . . is a Markov chain with transition matrix Q and state space Sy, then
F (Y0), F (Y1), . . . is a Markov chain with state space S and transition matrix P .

Now let’s consider the stationary distribution for Y . Let ν be a stationary distribution of Yi,
then

ν = νQ

ν(w) =
∑
w′∈Sy

ν(w′)Q(w′, w),
∑
w∈Sy

ν(w) = 1

Let w = xy1 . . . yk−1ykyk+1, we have

ν(xy1 . . . yk+1) = ν(xy1 . . . yk)Q(yk, yk+1)

ν(xy1 . . . yk) = ν(x)P (x, y1)P (y1, y2) . . . P (yk−1, yk)
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Hence, ∑
w∈Sy

ν(w) = ν(x) +
∞∑
k=1

∑
y1...yk

ν(x)P (x, y1)P (y1, y2) . . . P (yk−1, yk)

= ν(x) + ν(x)
∞∑
k=1

∑
y1...yk

P (x, y1)P (y1, y2) . . . P (yk−1, yk)

= ν(x)Px(Tx > 0) + ν(x)
∞∑
k=1

Px(Tx > k)

= ν(x)
∞∑
k=0

Px(Tx > k)

= ν(x)Ex[Tx] = 1

If state x is recurrent, then we have ν(x) = 1
Ex[Tx]

, otherwise, Q does not have a stationary distri-
bution. Thus if X0, X1, . . . has a positive recurrent state x, then there exists at least one stationary
distribution ν by the fact ν(w) can be defined by ν(x) and P (x, y1), . . . , P (yk−1, yk).
If Y0 ∼ ν, and Y1, . . . ∼ ν, let π(z) =

∑
w,F (w)=z ν(w), we have π = πP and

∑
x∈S π(x) = 1.

Example 2.33. We consider a Markov chain X0, X1, . . .. For the case we start with X0 = x,
denote Px, if we start with X0 = y, denote Py. Let τ(i) be the time we have the i-th x excluding
X0, that is, τ(i) = Tx, τ(2) = T 2

x and τ(0) = 0. Define

W1 = (X0, X1, . . . , Xτ(1)−1)

W2 = (Xτ(1), . . . , Xτ(2)−1)

...

Under Px, the words W1,W2, . . . are i.i.d. Under Py, y ̸= x, the workds W1,W2, . . . are indepen-
dent, and W2,W3, . . . are identically distributed. Let Wj = (Xj,1, . . . , Xj,m(j)), then

Px(W1 = w1,W2 = w2, . . . ,Wk = wk)

=
k∏

j=1

m(j)−1∏
ℓ=1

P (xj,ℓ, xj,ℓ+1)

P (xj,m(j), x)

=
k∏

j=1

P (Wj = wj)

For Py, X1,1 = y, all other Xj,1 remains at x, so w2, w3, . . . are identically distributed.

Proposition 2.34. WLOG, assume x ̸= y, if x and y communicate, and x is positive recurrent,
then y is positive recurrent.

Proof.

∞ > Ex[Tx] = Ex[Tx|Tx > Ty]Px[Tx > Ty] + Ex[Tx|Tx < Ty]Px[Tx < Ty]
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If Px[Tx < Ty] = 0, then Ey[Ty] ≤ 2Ex[Tx] < ∞. The reason is that, we have Ty ≤ Tx, then
Ey[Ty] can be considered as Ex[T

2
y ] − Ex[Ty], but by Px[Tx < Ty] = 0, we know for if we start at

X0 = x, then T 2
y ≤ T 2

x , see the plot below

If Px[Tx < Ty] > 0, consider the plot

Similar, we have Ey[Ty] < ∞.

2.3 Stationary Distribution and Positive Reucurrence
Consider a random variable X , we can write it as X = X+ −X−, where X+ := max(X, 0) and
X− := max(−X, 0). If both E[X+],E[X−] are well-defined with value in [0,∞]. Then

µ := E[X] = E[X+]− E[X−]

unless it is ∞ − ∞. To avoid this, we can assume either X is nonnegative, or |X| integrable
(E[|X|] < ∞), or E[X−] < ∞, then we have µ < ∞ or µ is well-defined as ∞.

Theorem 2.35 (Strong Law of Large Number). Consider Sn = X1 + . . .+Xn

1. If X1, X2, . . . are pairwise i.i.d. integrable with mean µ, then
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2. Or if X1, X2, . . . are i.i.d. with E[X+] = ∞, E[X−] < ∞ with mean µ = ∞, then

Sn

n
→ µ a.s. w.p. 1

almost surely with probability 1.

When we say with almost surely with probability 1, we mean that the set

A =

{
ω ∈ Ω :

Sn(ω)

n
→ µ

}
has a probability 1 when n → ∞.

Example 2.36. Recall our ”string” example, where W1 = (X0, . . . , Xτ(1)−1), W2 = (Xτ(0), . . . , Xτ(2)−1), . . ..
Under Px (start with X0 = x), W1,W2, . . . are i.i.d., while under Py, for y ̸= x, W2,W3, . . . are
i.i.d. and W1,W2, . . . are independent. Write Wj = (Xj,1, . . . , Xj,m(j)), then

Pr
x
[W1 = w1, . . . ,Wk = wk] =

k∏
j=1

m(j)−1∏
ℓ=1

P (xj,ℓ, xj,ℓ+1)

P (xj,m(j), x).

Definition 2.37. Let f : S → R+. The additive extension to the set of finite ”words” with letters
in S is the function f+ where for w = (x1, . . . , xm),

f+(w) =
m∑
i=1

f(xi).

For any initial state y ∈ S by the Strong Law of Large Number,

lim
k→∞

∑k
i=1 f+(wi)

k
= Ex[f+(w1)] = Ex[

τ(1)−1∑
j=0

f(xj)]

with Py almost surely, because if y ̸= x, then

f+(w1) + . . .+ f+(wk)

k
=

f+(w1)

k
+

f+(w2) + . . .+ f+(wk)

k − 1

k − 1

k
→ 0 + Ex[f+(w2)] ∗ 1.

In particular, if we set f ≡ 1, then

lim
k→∞

τ(k)/k = Ex[τ(1)]

with Py almost surely.

Let Nx
n = the number of visits to state x up to time n =

∑n
k=1 1{Xk = x}.

Theorem 2.38. Fix x ∈ S. If the Markov Chain is irreducible and positive recurrent, then ∃! (there
exists a unique) stationary distribution π and for all states x, y,

lim
n→∞

Nx
n/n = π(x), Py-a.s.

If the chain is null recurrent, then there does not exist a stationary distribution and for all x, y,

lim
n→∞

Nx
n/n = 0, Py-a.s.
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Proof. First, we show Nx
n/n → 1/Ex[Tx], Py-a.s. Note, Nx

n ≤ n, and Nx
n → ∞ Py a.s.,

τ(Nx
n )

Nx
n

≤ n

Nx
n

<
τ(1 +Nx

n )

1 +Nx
n

1 +Nx
n

Nx
n

.

where n < τ(1 + Nx
n ). And τ(Nx

n)
Nx

n
→ Ex[τ(1)],

τ(1+Nx
n)

1+Nx
n

→ Ex[τ(1)], so n/Nx
n → Ex[τ(1)] with

Py-a.s..
Second, assume the Markov Chain has a stationary distribution π, then define Pπ(·) =

∑
y π(y)Py(·),

Nx
n/n → 1/Ex[Tx], Pπ-a.s.

by Py-a.s and

lim
n→∞

Eπ[N
x
n/n] = Eπ lim

n→∞
Nx

n/n = Eπ[1/Ex[Tx]] = 1/Ex[Tx]

where the first equality is by |Nx
n/n|≤ 1, Eπ(1) = 1 < ∞ by Dominant Convergence Theorem.

The above equation is equivalent to

lim
n→∞

Eπ[N
x
n/n] = lim

n→∞
Eπ

∑n
j=1 1[Xj = x]

n
= lim

n→∞

nπ(x)

n
= π(x)

by π being stationary, Ex[1[Xj = x]] = 1 ∗ Pπ(x) =
∑

y π(y)Py(x) = π(x). Hence, for all state
x,

π(x) =
1

Ex[Tx]
.

For the positive recurrent case, π is uniquely defined as above. If it’s the null recurrent case, then
Ex[Tx] = ∞, π(x) = 0, which is not even a distribution.

Lemma 2.39. If X0, X1, . . . is recurrent, then the invariant measure is unique up to multiplication
by constants.

Proof. See Bremaul’s book.

Combining the Lemma and Theorem, we know a recurrent Markov Chain’s invariant measure
sometimes does not give a stationary distribution because the sum of measure goes to infinity.

2.4 Period
2.4.1 Fundamental Theorem of Markov Chain

Let a1, a2, . . . be a sequence of integers. dk = g.c.d.(a1, . . . , ak), if 1 ≤ dk is nondecreasing and
dk → d, then there exists k0 such that dk = d for k ≥ k0.

Lemma 2.40. Let S ⊆ Z contain at least one non-zero element and be closed under addition and
subtraction. Then S contains a smallest, positive integer a and S = {ka : k ∈ Z}.
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Proof. Let c ∈ S with c ̸= 0, then 0 = c− c ∈ S and −c = 0− c ∈ S. Hence S contains at least
one positive, one negative value. Then S contains a smallest positive element a. So

a, 2a, 3a, . . . ∈ S

−a,−2a,−3a, . . . ∈ S

so {ka : k ∈ Z} ⊆ S. Let c ∈ S, c = ka+ r, 0 ≤ r ≤ a− 1, r ∈ Z. And 0 ≤ r = c− ka ∈ S by
subtraction, but r < a and a is the smallest positive integer in S, so r = 0.

Lemma 2.41. Let a1, a2, . . . , ak be positive integer with g.c.d. d, there exist n1, n2, . . . , nk ∈ Z
such that d =

∑k
i=1 niai.

Proof. The set S = {
∑k

i=1 niai : n1, . . . , nk ∈ Z} is closed under additions and subtractions.
So S = {ka : k ∈ Z} with a =

∑k
i=1 niai being the smallest positive integer in S. Hence, d

is a divisor of a by a =
∑k

i=1 niai. Then by ai = ka, we know a is a divisor of ai, so a ≤
g.c.d.(a1, . . . , ak) = d, so a = d.

Theorem 2.42. A = {a1, a2, . . .} which is a set of positive integers. Let d = g.c.d.(A), and A is
closed under addition. Then A contains, all but a finite number of multiples of d.

Proof. WLOG, d = 1. For some k, we have d = g.c.d.(a1, . . . , ak). By Lemma (2.41).

1 =
k∑

i=1

niai, for some n1, . . . , nk ∈ Z, 1 = M − P, where M ≥ 0, P < 0,M, P ∈ A.

Let n ∈ N, n ≥ P (P − 1), n = aP + r, 0 ≤ r ≤ P − 1, so a ≥ P − 1 (If a ≤ P − 2, aP + r <
P (P − 1)). By 1 = M − P , we have

n = aP + r(M − P ) = (a− r)P + rM

and a− r ≥ 0 by a ≥ P − 1 ≥ r, which implies n ∈ A. Hence, n ∈ A except for n < P (P − 1),
n ∈ N.

Theorem 2.43 (Fundamental Theorem of Markov Chain). For an irreducible positive recurrent
aperiodic Markov chain Xi with the stationary distribution π and transition matrix P , we have

lim
n→∞

Pr
i
[Xn = j] = lim

n→∞
P n(i, j) = π(j)

Proof. Consider two sequences of variables. Let x = X0, X1, . . . be the Markov chain starting
with x, and X∗

0 , X
∗
1 , . . . be a Markov chain where each X∗

i ∼ π.
We have

|Pr
x
[Xn = y]− Pr

π
[Xn = y]|=|Pr

x
[Xn = y]− π(y)|

=|Pr[Xn = y,X∗
n = y] + Pr[Xn = y,X∗

n ̸= y]

− Pr[Xn = y,X∗
n = y]− Pr[X∗

n = y,Xn ̸= y]|
≤Pr[Xn ̸= X∗

n]
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and we want to show Pr[Xn ̸= X∗
n] goes to 0. Let τ := min{n ≥ 0 : Xn = X∗

n}. And consider
another independent Markov chain X ′

0, X
′
1, . . . which use the same transition matrix P . Consider

a Markov chain Vn and its transition matrix Q:

Vn = (Xn, X
′
n),Pr[Vn+1 = (y, y′)|Vn = (x, x′), Vn−1, . . . , V0] = Q((x, x′), (y, y′)) = P (x, y)P (x′, y′).

Vn has a stationary distribution where π(x, x′) = π(x)π(x′) and

π(y, y′) =
∑
x

∑
x′

π(x, x′)Q((x, x′), (y, y′))

=
∑
x

∑
x′

π(x)π(x′)P (x, y)P (x′, y′)

=
∑
x

π(x)P (x, y)
∑
x′

π(x′)P (x′, y′)

= π(y)π(y′)

Consider
Ax = {n ≥ 1 : P n(x, x) > 0}

Then Theorem 2.42, there exists nx such that ∀n ≥ nx, P n(x, x) > 0 and there exists kx,y such
that P kx,y(x, y) > 0, so P n+kx,y(x, y) ≥ P kx,y(x, y)P n(x, x). Hence

P n(x, y) > 0,∀n ≥ kx,y + nx,

similarly, we also have
P n(x′, y′) > 0,∀n ≥ kx′,y′ + nx′ .

Then for all n ≥ max{kx,y + nx, kx′,y′ + nx′}, we have

Qn((x, x′), (y, y′))) > 0,

so Vn is irreducible and aperiodic (by letting y, y′ = x, x′) and positive recurrent by having a
stationary distribution.

Hence, all states are expected to be visited in finite time. τ ′ = min{n ≥ 0 : Xn = X ′
n},

τ ′ < ∞ almost surely by considering arbitrary (x, x). Consider

X̄n =

{
X ′

n, n ≤ τ ′

Xn, n > τ ′
.

By the Strong Markov Property, the part of X ′
n and Xn for n ≥ τ ′ are i.i.d. Markov chain, so the

X̄n we construct follow the same distribution as X∗
n follows. That is,

Pr[Xn ̸= X∗
n] = Pr[Xn ̸= X̄n] = Pr[τ ′ > n] → 0

by τ ′ < ∞ almost surely.
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2.5 Reversibility
Let P be a transition matrix for an irreducible Markov chain. Take a guess for stationary distribu-
tion π and a reverse transition matrix ⃗P with the same state space. If π(j) ⃗P (j, i) = π(i)P (i, j),
then both guesses are right, we know this Markov chain is reversible with ⃗P and positive recurrent
with π.

Consider X0, X1, . . . being stationary with the stationary distribution π, then

Pr[Xn = i,Xn+1 = j] =Pr[Xn = i] Pr[Xn+1 = j|Xn = i] = π(i)P (i, j)

=Pr[Xn+1 = j] Pr[Xn = i|Xn+1 = j]

=π(j) ⃗P (j, i)

Example 2.44. Consider a simple graph G = (V,E) with vertices 0, . . . , n, then consider a
Markov chain with states being the vertices with the transition matrix:

P (i, j) =

{
1

d(i)
, if ij ∈ E

0, otherwise.

Then v = (d(0), d(1), . . .) is an invariant measure. Consider

v(j) ⃗P (j, i) = v(i)P (i, j)

⇐⇒ d(j) ⃗P (j, i) = d(i)
1

d(i)

so ⃗P (j, i) = 1
d(j)

, that is, ⃗P = P .

2.6 Wald’s (First) Lemma
Theorem 2.45 (Wald’s (First) Lemma). Let X1, X2, . . . , be i.i.d. integrable random variables with
E[|X1|] < ∞, and let T be a stopping time with E[T ] < ∞, then

E[X1 +X2 + . . .+XT︸ ︷︷ ︸
=:ST

] = E[X1]E[T ]

where S0 := 0.

Proof. We have

ST =
T∑

n=1

Xn =
∞∑
n=1

Xn1{n ≤ T} =
∞∑
n=1

Xn1{T ≤ n− 1}c,
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where the supscript c means the complement of the set. Also consider

E[ST ]
?
=

∞∑
n=1

E[Xn]E[1{T ≤ n− 1}c]

=
∞∑
n=1

E[Xn] Pr[T ≥ n]

= E[X1]
∞∑
n=1

Pr[T ≥ n]

= E[X1]E[T ].

For the ”?” equation, note

E[
∞∑
n=1

Xn1{T ≥ n}]

≤E

 ∞∑
n=1

|Xn|︸︷︷︸
≥0

1{T ≥ n}︸ ︷︷ ︸
≥0


=

∞∑
n=1

E [|Xn|1{T ≤ n− 1}c]

=E[|X1|]
∞∑
n=1

E [1{T ≤ n− 1}c]

=E[|X1|]
∞∑
n=1

Pr[T ≥ n]

=E[|X1|]E[T ] < ∞.

then we can apply dominant expectation theorem and get ”?”.

Example 2.46. We consider an example fails the assumptions. Consider

This Markov Chain is null recurrent. Let T be the first time reach 1 starting from 0.

Xi =

{
1, with probability 1

2
,

−1, with probability 1
2
.

Then E[Xi] = 0, T = inf{n ≥ 0 : Sn = 1 = X1 + . . . + Xn} and E[T ] = ∞, so we cannot
consider E[X1]E[T ] = E[ST ].
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2.6.1 Gambler’s Ruin

Suppose we start with i, then S0 = i. Let T = inf{n ≥ 0 : Xn ∈ {0,m}}, hi = Pri[ST =
m], h0 = 0, hm = 1. First, we show that E[T ] is finite. Let X1, X2, . . . be i.i.d. r.v.s where
Pr[Xi = 1] = p and Pr[Xi = −1] = q = 1 − p where p ∈ (0, 1). Let S0 = i, and Sn =
S0 +X1 + . . .+Xn. Now define

N = inf{k|X(k−1)m+1 = X(k−1)m+2 = ... = Xkm = 1}.

That is, we are looking at blocks of size m. First, we look at X1, . . . , Xm, then we look at
Xm+1, ..., X2m, and so on until we find a block that are all the X’s are +1. Now, T <= mN
since if we have m successes in a row, then the gambler must have either m or 0 dollars. But, N
is a geometric r.v. with parameter pm > 0. Since E[N ] = 1/pm, we have that E[T ] <= E[mN ] =
m/pm < ∞.

A way to interpret the setup is that we start with i dollars, for each play, we have p chances to
win and q to lose. And we have to stop playing when we reach m or 0 dollar.

E[ST |S0 = i] = mhi,E[X1+ . . .+XT ] = (m− i)hi+(−i)(1−hi) = mhi− i = 0 by E[X1] = 0

where E[X1 + . . . +XT ] = (m − i)hi + (−i)(1 − hi) is by the fact that X1 + . . . +XT is either
−i or (m− i), and it is m− i with probability hi.

Consider S ′
n := Sn−i, when p = 1/2 = q, as we have seen, hi =

i
m

, then Ei[ST ] = mhi+0 = i
or we can get it by Ei[ST ] = E[S ′

T ] + i = 0+ i, where S ′
T = X1+ . . .+XT by the fact that S0 = i

and E[S ′
T ] = E[X1 + . . .+XT ] = E[X1]E[T ] = 0.

If p ̸= q, then note that hi = phi+1 + qhi−1. Consider the probability matrix P of this chain,
we know h = Ph. Consider

(p+ q)hi = phi+1 + qhi−1

qhi − qhi−1 = phi+1 − phi

q

p
(hi − hi−1) = hi+1 − hi

Notice we can write
0 = ahi+1 + bhi + chi−1

which is in the form of a second order difference equation. The characterization equation of it is

0 = ar2 + br + c
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and once it is solved, we have two roots r1, r2 such that

hi = c1r
i
1 + c2r

i
2, when r1 ̸= r2

hi = c1r
i
1 + c2ir

i
2, when r1 = r2

for some constants c1, c2.
For our case, we need to consider

0 = pr2 − r + q ⇐⇒ 0 = (r − 1)(pr − q) =⇒ r1 = 1, r2 = q/p.

When p = q, hi = c11
i+c2i1

i = c1+c2i. Note h0 = 0 = c1+c2∗0 = c1 = 0 and hm = 0+c2m = 1
so c2 = 1

m
and hi =

i
m

which agrees with what we had before. When p ̸= q, hi = c1 + c2(
q
p
)i

and h0 = 0 =⇒ c1 + c2 = 0, c2 = −c1. And hm = c1 − c1(
q
p
)m = 1 =⇒ c1 = 1

1−( q
p
)m

, so

hi =
1−( q

p
)i

1−( q
p
)m

.

Let g(i) := Ei[T ], note g(0) = 0 = g(m) and g(i) = 1 + pg(i+ 1) + qg(i− 1). For the same
ST defined before, consider S ′

T = ST − i where S ′
n = Sn − i. We know

Ei[S
′
T ] = Ei[X1] Ei[T ]︸ ︷︷ ︸

≤ m
pm

<∞

= (p− q)Ei[T ].

When p ̸= q, Ei[S
′
T ] = (m− i)hi + (−i)(1− hi) = mhi − i, so

Ei[T ] =
mhi − i

p− q
.

When p = q, use second order difference equation, we have

Ei[T ] = g(i) = i(m− i)

which can be verified that

i(m− i) = 1 +
1

2
(i+ 1)(m− i− 1) +

1

2
(i− 1)(m− i+ 1).

Now we consider the reverse probability, by supposing h > 0, then

P̃ (i, j) =
P (i, j)hj

hi∑
j

P̃ (i, j) =

∑
j P (i, j)hj

hi

=
hi

hi

= 1.

When p = q, P̃ (i, i+ 1) =
P (i,i+1) i+1

m
i
m

= p i+1
i

= i+1
2i

,
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3 Renewal Theory
Definition 3.1. Let nonnegative random variables S0, S1, . . . be a renewal sequence where 0 ≤
S0 < S1 < . . .. That is, consider Si the time of i-th renewal. Let Xi be the time between (i− 1)-th
and i-th renewal, which is i.i.d. and nonnegative.

We call a renewal sequence an ordinary renewal process if

Sn = X1 + . . .+Xn.

We call it a delayed renewal process if

Sn = S0 +X1 + . . .+Xn,

where S0 is the delay.
We let N(t) := max{n : Sn ≤ t} which the number of renewals until t.

If you wish, you can think about a renewal process as considering returning to a specific state
of a Markov chain. Then it is recurrent if Pr[Xi < ∞] = 1 and transient if Pr[Xi < ∞] < 1.

Some examples of renewal processes are:

• Arithmetic Bernoulli Process: Pr[Xi ∈ hZ] = 1 with the largest possible h, assume,
WLOG, h = 1.

• Nonarithmetic Poisson Continuous Process: For Xi ∼ exp(π), then we have Poisson
which is a renewal process.

3.1 Erdös Feller Pollard
The Erd̈os Feller Pollard (EFP) theorem we are discussing in this subsection is for arithmetic
processes. For the non-arithmetic ones, one can check the Blackwell’s theorem.

Let fk = Pr[Xi = k],
∑∞

k=1 fk = 1, and µ =
∑∞

k=1 kfk < ∞.

Definition 3.2. The renewal measure of a renewal process is defined as:

u(m) = Pr[Sn = m for some n ≥ 0] =
∞∑
n=0

Pr[Sn = m],

which is the probablity that the renewal ever happens at time m.

Theorem 3.3 (Elementary Renewal Theorem). For an ordinary, recurrent and arithmetic renewal
process,

N(m)

m
→ 1

µ
a.s.

E
[
N(m)

m

]
→ 1

µ
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Proof. Notice that

SN(m) ≤ m ≤ SN(m)+1 ⇐⇒
SN(m)

N(m)
≤ m

N(m)
≤

SN(m)+1

N(m)

where SN(m)

N(m)
→ µ a.s. by Sn

n
= X1+...+Xn

n
→ µ a.s., and we also have SN(m)+1

N(m)
=

SN(m)+1

N(m)+1
N(m)+1
N(m)

→
µ ∗ 1 a.s..

Also, since N(m)/m ≤ 1, by Dominant Convergence Theorem or Bounded Convergence
Theorem, we have

lim
m→∞

E[N(m)/m] = E lim
m→∞

N(m)/m = 1/µ.

Theorem 3.4 (Erdös Feller Pollard (EFP) Theorem). Let {Sn, n ≥ 0} be an ordinary, recurrent
arithmetic renewal process whose interoccurence times have distribution fk = Pr[Xi = k], µ =
E[Xi] < ∞ that is not supported by any proper subgroup of the integers (i.e., there does not exists
an m ≥ 2 such that Pr[Xi ∈ mZ] = 1). Then

lim
m→∞

u(m) =
1

µ
=

1

E[Xi]
.

Corollary 3.5. With the same conditions as EFP, except having a delayed renewal process

lim
m→∞

Pr[Sn = m for some n ≥ 0] =
1

µ
.

Proof. We can condition on S0, then

lim
m→∞

Pr[Sn = m, for some n ≥ 0]

= lim
m→∞

∞∑
k=0

Pr[S0 = k] Pr[Sn − S0 = m− k, for some n ≥ 0]

=
∞∑
k=0

Pr[S0 = k]
1

µ

=
1

µ
,

where the second equality is by DCT, so we can put lim inside.

3.2 Life Time, Age, Remaining Time and Renewal Equation
Consider a point m, and the age A(m) at m is the time from the last renewal to m, that is, m−SN(m)

and the remaining time R(m) at m is the time from m to the next renewal, that is, SN(m)+1 −m,
and we also have the life time L(m) = A(m) +R(m).

Example 3.6. Suppose we have a renewal process with Xi ∈ {1, . . . , k}. Is R(0), R(1), . . . a
Markov Chain?
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Consider its probability matrix, P (1, i) = fi, because when R(t) = 1, at t + 1, a renewal
happens, so the remaining time is actually, Xt+1, which follows the distribution fi. For j > 1,
P (j, j − 1) = 1 and 0 otherwise. We can consider the stationary distribution, where

π1 = π1f1 + π2

π2 = π1(1− f1)

= f2π1 + π3

π3 = π2 − f2π1 = π1(1− f1 − f2),

and
∞∑
i=1

πi =
∞∑
i=1

π1 Pr[X1 ≥ i] = π1

∞∑
i=1

Pr[X1 ≥ i] = π1E[X1] = 1.

so π1 = 1/E[X1].
Notice that u(m) = Pr[R(m−1) = 1], where R(m−1) is an aperiodic and irreducible Markov

Chain, so
lim

m→∞
Pr[R(m− 1) = 1] → 1/π1 = 1/µ = 1/E[X1],

which agrees EFP.

3.2.1 Renewal Equation

Consider bounded sequences {z(m),m ≥ 0} and {b(m),m ≥ 0}, where the renewal equation is

z(m) = b(m) +
∞∑
k=1

fkz(m− k),m ≥ 0.

Let z(m) = b(m) = 0 for m < 0,

z(m) = b(m) +
∞∑
k=1

fkz(m− k)

= b(m) + E[z(m− k)]

1. Set up renewal equation.

2. Solution is z(m) =
∑∞

k=0 b(m− k)u(k) =
∑m

k=0 b(m− k)u(k) + 0

3. Key Renewal Theorem: if
∑∞

k=0|b(k)|< ∞, then

lim
m→∞

z(m) =
∞∑
k=0

b(k)/µ.

Now we consider one renewal equation:

z(m) = Pr[A(m) = r]

z(m) =
∞∑

k=m+1

fk Pr[A(m) = r|X1 = k] +
m∑
k=1

fk Pr[A(m) = r|X1 = k].

= 1{m = r}
∞∑

k=m+1

fk +
m∑
k=1

fkz(m− k).
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notice when k > m, A(m) = m− 0 = m, so A(m) = r if and only if m = r. Let δm,r = 1{m =
r}. We then have

b(m) = 1{m = r}
∞∑

k=m+1

fk =
∞∑

k=m+1

fkδm,r

from renewal equation.

Example 3.7. Consider a renewal process as a Bernoulli(p), that is, we have a renewal when the
Bernoulli hits a success. Then u(0) = 1 by starting with a success and u(k) = p, and Xi ∼ Geo(p),
we have that, by EFP,

u(m) → 1/p

Example 3.8. Consider a renewal process where Xi ∈ {1, 2} and f1 = f2 = 1/2, from Lalley’s
notes,

u(m) =
2

3
+

1

3
(−1/2)m → 2/3

u(1) = 2/3− 1/3(1/2)1 = 2/3− 1/6 = 1/2

u(2) = f2 + f 2
1 = 3/4.

We can now start to try to solve the renewal equation.

Example 3.9. Back to the example above with Bernoulli process.

z(m) = Pr[A(m) = r] =
∞∑
k=0

b(m− k)u(k)

=
m∑
k=0

b(m− k)u(k) + 0

= b(m) + p
m∑
k=1

b(m− k)

=
∞∑

k=m+1

fkδm,r + p

m∑
k=1

b(m− k)

say m = 7, r = 5, so z(m) = Pr[A(7) = 5], and b(m − k) =
∑∞

j=m−k+1 fjδm−k,r, where
b(5) =

∑∞
k=6 fkδ5,5 = Pr[X1 > 5] = (1− p)5. We have the above equation becoming:

= 0 + p

7∑
k=1

b(7− k)

= 0 + pb(7− 2)

= p(1− p)5

which makes sense because A(7) = 5 is saying the last renewal is at 2 and there is no renewal at
3, 4, 5, 6, 7, and the probability for that is p(1− p)5.
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Another question we have is that for z(m) = Pr[A(m) = r], do we have

∞∑
k=0

|b(k)|< ∞?

The answer is yes.

∞∑
m=0

|b(m)|=
∞∑

m=0

b(m) =
∞∑

m=0

∞∑
k=m+1

fkδm,r

=
∞∑
k=1

fk

k−1∑
m=0

δm,r

=
∞∑

k=r+1

fk = Pr[X1 > r] < ∞

Then by Key Renewal Theorem, we have

z(m) = Pr[A(m) = r] → Pr[X1 > r]

µ
.

For our Bernoulli example again, with z(m) = Pr[A(m) = r] = p(1− p)r, where

Pr[X1 > r]

µ
=

(1− p)r

1/p
= p(1− p)r

which agrees with what we have.
Now we consider another renewal equation, where z(m) = Pr[L(m) = r]. Then

z(m) =
∞∑

k=m+1

fk1{k = r}+
m∑
k=1

fkz(m− k)

where for the first term, given X1 = k, by m ∈ {0, 1, . . . , k}, we know L(m) = k, so L(m) = r
is equivalent to saying the process renewing at k = r.

3.3 E[N(m)−m/µ]

Recall that E[N(m)/m] = 1/µ by the elementary renewal theorem, so we can approximate
E[N(m)] by

E[N(m)] ≈ m/µ.

Consider z(m) = E[N(m)]−m/µ, and then

z(m) =
∞∑

k=m+1

fkE[N(m)−m/µ|X1 = k] +
m∑
k=1

fkE[N(m)−m/µ|X1 = k]
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Note, when k > m, E[N(m)|X1 = k] = 0, so the first term is
∑∞

k=m+1 fk(−m/µ). For the second
one, since m ≥ k, E[N(m)|X1 = k] = 1 + E[N(m− k)], and so

E[N(m)−m/µ|X1 = k] = 1 + E[N(m− k)]− m− k

µ
+

m− k

µ
− m

µ

So the second term becomes
m∑
k=1

fk

(
1 + z(m− k) +

m− k

µ
− m

µ

)
=

m∑
k=1

fk

(
1 +

m− k

µ
− m

µ

)
+

m∑
k=1

fkz(m− k)

=
m∑
k=1

fk

(
1− k

µ

)
+

m∑
k=1

fkz(m− k)

=

(
m∑
k=1

fk

)
− 1 +

µ−
∑m

k=1 kfk
µ

+
m∑
k=1

fkz(m− k)

=
∞∑

k=m+1

(k/µ− 1)fk +
m∑
k=1

fkz(m− k)

so

z(m) =
∞∑

k=m+1

(
k −m

µ
− 1

)
fk︸ ︷︷ ︸

b(m)

+
m∑
k=1

fkz(m− k).

Then we assume E[X2
i ] or var(Xi) is finite and apply Key Renewal Theorem. Then

∞∑
m=0

|b(m)| ≤
∞∑

m=0

∞∑
k=m+1

fk︸︷︷︸
≥0

(
k −m

µ
+ 1

)
︸ ︷︷ ︸

>0

=
∞∑
k=1

fk

(
k−1∑
m=0

k −m

µ
+ 1

)

=
∞∑
k=1

fk

(
k

µ
+ . . .+

1

µ
+ k

)
=

∞∑
k=1

fk
k(k + 1)

2µ
+

∞∑
k=1

kfk

=
∞∑
k=1

k2fk
2µ

+

∑∞
k=1 kfk
2µ

+ µ

=
σ2 + µ2

2
+

1

2
+ µ < ∞,
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then KRT says,

z(m) →
∑∞

k=0 b(k)

µ
=

∞∑
m=0

∞∑
k=m+1

fk
µ

(
k −m

µ
− 1

)
=

∞∑
k=1

fk
µ

k−1∑
m=0

(
k −m

µ
− 1

)

=
∞∑
k=1

fk
µ

(
k(k + 1)

2µ
− k

)
=

σ2 + µ2 + µ

2µ2
− µ

µ

=
σ2 − µ2 + µ

2µ

so E[N(m)−m/µ] → σ2−µ2+µ
2µ2 .

Note it ”seems” like E[N(m)] = 1 ∗ u1 + 1 ∗ u2 + . . .+ 1 ∗ um = mp = m
µ

as u(m) → 1
µ

, but
is it true? Do we always have E[N(m)−m/µ] → 0?

Example 3.10. Consider Bernoulli renewal, Bernoulli(P ), where X1 ∼ Geo(p), µ = 1/p and
σ2 = q/p2. Then

q
p2

− 1
p2

+ p
p2

2/p2
= 0.

Example 3.11. f1 = f2 =
1
2
. Then recall we condition on the first renewal time,

u(m) = δ0,m +
m∑
k=1

fku(m− k)

by the fact that the first renewal is at k ≥ m, then having a renewal at m if and only if m = k.
Hence,

u(m) =
1

2
u(m− 1) +

1

2
u(m− 2)

0 = u(m)− 1

2
u(m)− 1

2
u(m− 2)

0 = r2 − 1

2
r − 1

2

0 = (r − 1)(r +
1

2
)

u(m) = c11
m + c2(−

1

2
)m = c1 + c2(−1/2)m

u(0) = 1 = c1 + c2

u(1) =
1

2
= c1 −

1

2
c2

1

2
=

3

2
c2
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so c2 =
1
3
, c1 = 2

3
. Now µ = 1

2
∗ 1 + 1

2
∗ 2 = 3

2
and σ2 = 1

4
(same as Bernoulli(1/2) shifted by 1).

Then

E[N(m)−m/µ] → 1/4− 9/4 + 6/4

2 ∗ 9/4
= −1/9.

and

E[N(m)−m/µ] = E[N(m)]− 2m/3

=
m∑
k=1

u(k)− 2m/3

=
m∑
k=1

(2/3 + (1/3)(−1/2)k)− 2m/3

= 2m/3 +
1

3

m∑
k=1

(−1/2)k − 2m/3

=
1

3

m∑
k=1

(−1/2)k

=
1

3

−1

2

m−1∑
k=0

(−1/2)j → 1

3
(−1/2)

1

1 + 1
2

= −1

9
.

In fact, we can say

E[N(m)] → m/µ+
σ2 − µ2 + µ

2µ2
+ o(1).

Example 3.12. Consider the following example:

z(0) z(1) z(2) z(3) z(4) z(5)
0 12 18 24 20 21

and f1 = 3/6, f2 = 2/6, f3 = 1/6. This z(m) is constructed as, z(1), z(2), z(3) are given,
z(m) = f1z(m − 1) + f2z(m − 2) + f3z(m − 3). Is this z a renewal equation? Define z(0) =
b(0) = 0. We have z(1) = b(1) +

∑1
k=1 fkz(1− k).

12 = z(1) = b(1) + f1z(0) =⇒ b(1) = 12

z(2) = b(2) + f1z(1) + f2z(0)

z(3) = b(3) + f1z(2) + f2z(1) + f3z(0)

z(4) = b(4) + f1z(3) + f2z(2) + f3z(1)

=⇒ b(4) = 0, b(5) = 0,

so z(2) = b(2) + 3
6
12 + 2

6
0 =⇒ b(2) = 12. Similarly, b(3) = 11.

∞∑
m=0

b(m) = 12 + 12 + 11 + 35

because by the way z(m) being constructed, b(m) = 0 for all m ≥ 4.

45



Proof of Key Renewal Theorem. Note b(m) = z(m) = 0 for m ≤ −1. First we have that E[z(m−
X1)] = b(m−X1) + E[z(m−X1 −X2)]. And hence

z(m) = b(m) + E[z(m−X1)]

= b(m) + E[b(m−X1)] + E[z(m−X1 −X2)]

= b(m) + E[b(m−X1)] + E[z(m−X1 −X2)]

= b(m) + E[b(m−X1)] + E[b(m−X1 −X2)] + . . .+ E[b(m−X1 − . . .−Xm)]

because m−X1 −X2 − . . .−Xm −Xm+1 < 0. Now

z(m) =
m∑

n=0

E[b(m− Sn)] =
∞∑
n=0

∞∑
k=0

[b(m− k)] Pr[Sn = k]

=
∞∑
k=0

∞∑
n=0

b(m− k) Pr[Sn = k]

z(m) =
∞∑
k=0

b(m− k)u(k)

=
∞∑
k=0

b(k)u(m− k).

With this,

lim
m→∞

z(m) = lim
m→∞

∞∑
k=0

b(k)u(m− k)

=
∞∑
k=0

b(k) lim
m→∞

u(m− k)︸ ︷︷ ︸
→1/µ

=
∞∑
k=0

b(k)/µ

where the second equality is by
∑∞

k=0 b(k)u(m − k) ≤
∑∞

k=0|b(k)| since u(m − k) ∈ [0, 1] and
dominant convergence theorem.

3.4 Regenerative Processes
Definition 3.13. Let {Zm,m ≥ 0} be a stochastic process with arbitrary state space. Let S0, S1, . . .
be a possibly delayed arithmetic renewal sequence with span 1. The process Z0, Z1, . . . is regener-
ative w.r.t. S0, S1 . . . if

1. {Zn+Sk
, n ≥ 0} is independent of S0, X1, . . . , Xk (stronger version requires everything be-

fore Sk).

2. {Zn+Sk
, n ≥ 0} D

= {Zn+S0 , n ≥ 0}.
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For the continuous case, we consider {Zt, t ∈ R+} and {Zt+Sk
, t ∈ R+} instead.

Example 3.14. Suppose Z0, Z1, . . . is an irreducible recurrent Markov Chain. And let Si be the
i-th time the Markov Chain go back to x.

so this is a regenerative process by checking both condition 1) and 2) basically by the Strong
Markov Theorem, that once we return to x, the process ”restarts”. We can also delay it by letting
Markov Chain start with some other value, then S0 is the first time it goes to x.

Example 3.15 (Reliability). Consider a machine which has working (up) and not working (down)
time, then we can consider the time it gets back to work as a regeneration.

where U1, D1, . . . be independent; U1, U2, . . . be i.i.d. and integer-valued and D1, D2, . . . be
i.i.d. we also want d = max{h : Ui + Di ∈ {h, 2h, . . .}} = 1. For the continuous case, just let
Ui, Di be a continuous time interval.

Example 3.16 (M/M/1 Queue). Let Yt be the number in the system at time t.
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The behavior after Sk is probabilistic the same as the one after S0.

Example 3.17 (Difference between independence of S0, X1, . . . , Xk and everything before Sk).
Consider independent copies of Markov Chains with probability matrix P . Denote the copies as:

x11 = 0, x12, . . .

x21 = 0, x22, . . .

...

Consider some independent generated renewal times which are arithmetic with span 1. Then start-
ing from S0 to S1 − 1, we consider ZS0 = x11, . . . , ZS1−1 = x1S1 , then for S1, renew as x21 and
then keep doing and get ZS2−1 = x2(S2−S1). This is a regenerative process because the distribution
after Sk is probabilistic same to the one after S0 and independent of S0, X1, . . . , Xk.

Modify it: let r ∈ (0, 1). Now at S1, with probability r, we use x11, . . ., with probability
(1 − r), use x21, . . .. That is, every time it renews, there is a probability r to reuse the previous
one. But then, Zn+Sk

is not independent from everything before Sk but it is actually independent
from S0, X1, . . . , Xk. But 2) is satisfied, once we renew, it is just following a Markov Chain with
probability matrix P .

Theorem 3.18 (Regenerative Theorem). Let Z0, Z1, . . . be a non-delayed regenerative process, and
let f be a real valued function such that

E

[
S1−1∑
n=0

|f(Zn)|

]
< ∞

and the renewal time is arithmetic with span 1, then

lim
n→∞

E[f(Zn)] =
E[
∑S1−1

n=0 f(Zn)]

E[S1]

Example 3.19. Consider a regenerative process which regenerates whenever an irreducible posi-
tive recurrent and aperiodic Markov Chain reaches x and starting with x. Let f(Zm) = 1{Zm =
x}. Now from what we know from Markov Chain:

E[f(Zm)] = Pr
x
[Zm = x] → πx
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From the regeneraitive theorem, we know

lim
m→∞

E[f(Zm)] =
E[
∑S1−1

m=0 f(Zm)]

E[S1]
=

1

1/πx

= πx

Example 3.20. For the reliability example. We let the ”up” condition be 1, ”down” be 0, then

lim
m→∞

Pr[Zm = 1] =
E[U1]

E[U1 +D1]

if U1 ∼ Geo(p), then D ∼ Geo(1− p), so

lim
m→∞

Pr[Zm = 1] =
1/p

1/p+ 1/(1− p)
.

Proof of Regenerative Theorem. For the arithmetic case:

z(m) = b(m) + E(z(m−X1))

= b(m) +
m∑
k=1

fkz(m− k)

Let z(m) = E[f(zm)], then

E[f(zm)] = E[f(zm)1{m < X1}] + E[f(zm)1{X1 ≤ m}]

= E[f(zm)1{m < X1}︸ ︷︷ ︸
b(m)

] +
m∑
k=1

fkE[f(zm−k)]

For KRT, we need

∞∑
m=0

|b(m)|

≤
∞∑

m=0

E[|f(zm)|1{m < X1}]

=E

[
∞∑

m=0

|f(zm)|1{m < X1}

]

=E

[
X1−1∑
m=0

f(zm)

]
< ∞

which is given, then KRT implies

lim
m→∞

E[f(zm)] =
E[
∑X1−1

m=0 f(zm)]

E[X1]
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3.5 Delayed Regenerative Theorem
For a delayed regenerative process, we have

E[f(zm)] = E[f(zm)1{m ≤ S0}] + E[f(zm)1{S0 < m}].

To use KRT, we need E
[∑S1−1

k=S0
|f(zk)|

]
< ∞. We also need |f(zm)|≤ b for some b, limm→∞ E[f(zm)1{m ≤

S0}] = 0. A sufficient condition is that f is a bounded function and we can apply DCT.

3.6 Renewal Equations: Non-arithmetic, non-lattice
When we say arithmetic, we mean Pr[X1 ∈ {0, h, 2h, . . .}] = 1 for some positive integer h.

For non-arithmetic case, let X1 be a continuous random variable defined by F (t) = Pr[X1 ≤ t],
F (0) < 1, Pr[X1 ≥ 0] = 1. For the recurrent case, we also have F (∞) = 1. Then the renewal
equation is set up as: z(t) = b(t) = 0 if t < 0, and

z(t) = b(t) +

∫
[0,t]

dF (s) z(t− s).

If b(t) is a bounded function, the unique solution to the renewal equation is

z(t) =

∫
[0,∞)

du(s) b(t− s).

Let N(t) be the number of renewals in (0, t], then the renewal measure is defined as

u(t) = 1 + E[N(t)]

For example, for a Poisson Process with rate λ > 0, we have the renewal measure

u(t) = 1 + λt

And Blackwell’s Renewal Theorem gives

lim
t→∞

u(t+ h)− u(t) = h/µ.

3.6.1 KRT non-arithmetic

Let X1 be some continuous random variable. If b(t) is directly Riemann Integrable (dRi), then

lim
t→∞

z(t) =

∫∞
0

b(t)dt

µ
.

dRi: b(t) = 0, for t < 0, and

lim
a→0+

∞∑
n=1

a inf
(n−1)a≤t≤na

f(t) = lim
a→0+

∞∑
n=1

a sup
(n−1)a≤t≤na

f(t) =

∫ ∞

0

b(t)dt

then b is dRi. The difference between this condition and Riemann integrable is that Riemann
integral usually uses on finite interval then to infinity, this one is directly applied to infinity.
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Proposition 3.21. If either one the following

1. b(t) is nonnegative, nonincreasing and
∫∞
0

b(t)dt < ∞.

2. the support of b(t) is compact and b(t) is Riemann Integrable,

then b(t) is dRi.

Lemma 3.22. For a continuous random variable,

X =

∫ ∞

0

(1− 1{X ≤ t}dt =
∫ ∞

0

1{X > t}dt =
∫ X

0

1dt

and

E[X] = E
∫ ∞

0

1{X > t}dt =
∫ ∞

0

E[1{X > t}]dt =
∫ ∞

0

Pr[X > t]dt =

∫ ∞

0

(1− F (t))dt

where the second equality is by Fubini’s Theorem.

Example 3.23. Let z(t) = Pr[R(t) > y], where R(t) = SN(t)+1 − t is the remaining time from t
to the next renewal after t. Then if we condition on the first renewal after S0, then we set up the
renewal equation as:

z(t) = Pr[X1 > t+ y] +

∫
[0,t]

dF (s)z(t− s) = 1− F (t+ y)︸ ︷︷ ︸
b(t)

+

∫
[0,t]

dF (s) z(t− s)

Note b(t) ≥ 0 and non-increasing, and by the above lemma, we have∫ ∞

0

1− F (t+ y)dt ≤
∫ ∞

0

(1− F (t))dt = µ < ∞

so it is dRi, then we have

lim
t→∞

z(t) = lim
t→∞

Pr[R(t) > y] =

∫∞
y
(1− F (t))dt

µ

Corollary 3.24. Consider E[f(zt)] = E[f(zt)1{t < X1}]︸ ︷︷ ︸
b(t)

+
∫
[0,t]

dF (s) z(t − s). If b(t) is dRi,

then

lim
t→∞

E[f(zt)] =
E
[∫ X1

0
f(zs)ds

]
µ

Example 3.25. Let z(t) = Pr[A(t) > x,R(t) > y], E[X1] = µ < ∞. Pr[X1 ≤ t] = F (t),

z(t) = b(t) + E[z(t−X1)] = (1− F (t+ y))1{t ∈ (x,∞)}+ E[z(t−X1)]

= (1− F (t+ y))1{t ∈ (x,∞)}+
∫
[0,t]

dF (s) z(t− s)
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where the first term is when S1 is greater than t, that means A(t) = t and R(t) > y is equivalent
to X1 > t + y. For the second term, the first renewal is before t, so the age becomes t − X1 and
remaining time is R(t−X1).

Then is b(t) dRi?. It is zero before x and starts decreasing, so we know b(t) is non-negative,
”nonincreasing” (form x to ∞) and

∫∞
0

b(t) < ∞, then dRi, where∫ ∞

0

b(t)dt =

∫ ∞

x

1− F (t+ y) ≤
∫ ∞

0

(1− F (t))dt = µ < ∞

so

Pr[A(t) > x,R(t) > y] →
∫∞
x+y

(1− F (u))du

µ
as t → ∞
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4 Some Other Examples
Example 4.1. For a M/G/1 queue, let Vt be the virtual waiting time at times t. How can we find
regenerative processes?

The arrival to the empty system and departure leaving an empty system are regenerative pro-
cesses. The reason is that we know the arrival to the empty system is always a regenerative one
because the service time are i.i.d., and the departure is also one because of the memoryless property
of a Markov Chain.

For a G/G/1 queue: arrivals to an empty system gives an regen process. If you consider the
departure time leaving to an empty system, then suppose the service time is deterministic, we will
know the arrival time once we know the departure time.

For G/M/k, you don’t have memoryless property for interarrival time, but we can have depar-
ture left an emptys system as a regen process. For example, if it is D/M/k, we can know when
the least, next arrival is, because the arrival time is deterministic.

For M/G/2, we don’t want consider anything in the middle of service. So arrival to empty
system and departure leaving empty system are two regen processes.

Example 4.2. Given two unknown unequal number x, y, we can see one of them x, I can tell if
this one is larger with probability > 1/2.

Let z ∈ N(0, 1), treat z as the hidden number, that is, if z > x, I say y is larger, z < x then
y is smaller. Hence, if z > max(x, y) or z < min(x, y), then we have 1/2 chance to be correct
depending on if revealed one is the smaller or larger one. If z ∈ [x, y], then we are always correct.

Example 4.3. Suppose we are generating letters i.i.d following a uniform distribution (each letter
with prob 1/26). How long do we expect ”miami” to be typed?

Consider a fair casino which stops once ”miami” appear. At each time unit, one person came
in with $1, and they always bet all money they have, and always bet on ”miami”, that is, suppose
a person enters the casino at 2, then they would bet m at time 2, i at time 3, a at time 4 and so
on. If they got correct, they receive the amount they bet, otherwise, they lose everything and leave.
Notice that for a fair casino, since every person has 1/26 chance to get the correct letter, the return
is 26 times the bet.

Let T be the first time ”miami” appears, so T − 4 is m, T − 3 is i, T − 2 is a, T − 1 is m, and
T is i. The one enters the casino at T − 4 got all correct, so they receive $265, and the one enters
at T − 1 got the first two letter correct, so receive $262, and all other people lose their money.

Hence, the money the casino expect to pay is 265 + 262 which is the expect amount it receives
becausre it’s a fair casino. Also, the amount it expects to receive is the $1 every customer brings,
so E[T ] = 265 + 262. is the expected time for ”miami” to be typed.

In the sense of matingale, let S0 = 0 and Sn be the change in casino bankroll. Then Sn =
X1, . . . +Xn with E[Xi] = 0 because all bets are fair. Since E[Sn+1|Sn] = Sn, it is a martingale.
By E[T ] < ∞, E[ST ] = E[S0] = 0.
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