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The notes shall mentioned most of the chapters 4, 6, 8, probably 9 and 11 of Markov Decision Process: Discrete
Stochastic Dynamic Programming by Martin L. Puterman.

1 Markov Decision Processes (MDPs)
We study sequential decision making process: a Markov Process, where the set of available actions, the rewards and
transition probabilities depend on the current state and the action taken that state. It has the following ingredients:

• Decision epoch

• State space

• Actions space

• Rewards

• Transition probabilities

Example 1.1.

• Inventory Model: A warehouse manager observes his on hand inventory at the end of each month. Based on
how many units he has, he decides to purchase new items or not to order anything at all.

– the demand is random.

– purchase cost

– holding cost

– reveneu from sales

– pending cost for shortage

• Machine Replacement: A machine deteriorates over time. The decision maker checks the condition of the ma-
chine at the end of everyday and decides to keep or replace the machine.

– state dependent income

– state dependent cost

– replacement cost

• Admission Control: Consider a system with k servers, i.e. the capacity is k, with service times following
exp(µ). One type of calls enters at a Poisson rate with parameter λ1 and reward r1 and another type of calls
enters at a Poisson rate with parameter λ2 and reward r2 with r1 > r2.
You should always accept the higher reward customers, and only reject the other set when as a number of servers
greater M has filled up, where M is to be determined.
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1.1 Modeling MDPs

Definition 1.1: Ingredients of a MDP

• Decision Epochs: T : set of decision epochs, T = {1, . . . , N} where N − 1 is the time of last decision,
and N is the time with a determined reward. T = {1, 2, . . .} if there are infinitely many epochs.

• State Space (of the Markov Chain): S

• Action Space: As: the set of possible actions in state s ∈ S, and the total action space is

A = ∪s∈SAs.

We can choose actions deterministically or randomly. Let us define

P (As) : collection of probability distributions on subsets of As

and q(·) ∈ P (As). Basically, when you are in state s, you choose a particular action a with probability
q(a).

• Rewards: rt(s, a) is the reward received when action a is chosen in state s at time t.
rt(s, a, j) is the reward earned when action a is chosen in state s at epoch t and the state is j at epoch
t+ 1, then

rt(s, a) =
∑
j∈S

Pt(j | s, a)rt(s, a, j).

For T being finite, the terminal reward rN (s) is the reward earned at decision epoch N if the state is s
at time N .

• Transition Probability:

pt(j | s, a) : probability of being in state j at decision epoch t+ 1

given that a is chosen in state s at decision epoch t.

The five-tuple
{T, S,A, p(· | ·, ·), r(·, ·)}

forms a Markov decision process (MDP).
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Definition 1.2: Decision Rules and Policy

A decision rule prescribes a procedure for action selection at a specified decision epoch.
Markovian Deterministic Decision Rule:

dt : S 7→ A where dt(s) ∈ As,

where dt represents the decision rules at decision epoch t.
Markovian Randomized Decision Rule

dt : S 7→ P (A) where qdt(s)(·) ∈ P (As) ,

where the decision rule in state st tells you a probability of possible actions.
History Dependent Deterministic Decision Rule Ht : the set of all histories at decision epoch t, where ht ∈ Ht

is a specific instance of history such that

ht = (s1, a1, s2, a2, . . . , st−1, at−1, st) = (ht−1, at−1, st),

then the rule can be represented as

dt : Ht → A, where dt(ht) ∈ Ast .

History Dependent Randomized Decision Rule: dt : Ht 7→ P (A).
Policy: A policy π is a sequence of decision of rules. For finite epochs T = {1, . . . , N}, π = (d1, d2, . . . , dN );
T = {1, 2, . . .}, pi = (d1, d2 . . .). If dt = d for all t ∈ T , then π = (d, d, . . .) := d∞ is called a stationary
policy.

Example 1.2. Consider the following plot of an MDP:

where for action a11, it goes to S2 with reward 7 and probability 0.5 OR go to S1 with reward 3 with probability
0.5; similar interpretations for a12, a13, a21. Specifically, S = {S1, S2}, AS1

= {a11, a12, a13}, AS2
= {a21}, T =

{1, 2, 3}. For example, P (S1 | S1, a11) = 0.5, P (S2 | S1, a11) = 0.5, rS1,a11,S1) = 3, r(S1, a12) = 10.

Example 1.3 (Continued). A Markovian deterministic decision rule: d1(S1) = a11, d1(S2) = a21, d2(S1) = a12, d2(S2) =
a21.
A history dependent deterministic decision rule: d1(S1) = a11, d1(S2) = a21, d2((S1, a11, S1)) = a13, d2((S1, a11, S2)) =
a21, d2((S1, a21, S2)) = a21
A Markovian randomized decision rule: P (d1(S1) = a11) = 0.6, P (d1(S1) = a13) = 0.4, P (d1(S2) = a21) =
1, P (d2(S1) = a11) = 0.4, P (d2(S1) = a12) = 0.6, P (d2(S2) = a21) = 1.

Example 1.4. An inventory manager checks his on-hand inventory at the end of each month. Depending on how many
units he has on hand, he decides whether or not order new units from a supplier. Assume that newly purchased units
arrive before the start of next month. Demand arrives during the month but orders are filled at the end of the month.
Assume no backlogs are allowed, i.e., orders are lost if not enough inventories, and the warehouse has a capacity of
M units. Let Dt be the monthly demand during month t and

P (Dt = j) = pj for j = 0, 1, 2, . . .
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Assume that if j units are purchased, the purchase cost is C(j). The holding cost for u units is h(u) and the revenue
obtained from j units is ρ(j). Finally, let O(u) denote the wholesale purchase cost when u units are purchased and

O(u) =

{
k + C(u), if u > 0

0, otherwise.

The inventory manager would like to maximize his expected profit for the next N months. Let gN (s) be the terminal
reward if there are s units left at time N .
Modeling this as a MDP, we have

T = {1, 2, . . . , N}
S = {0, 1, . . . ,M}

As = {0, 1, . . . ,M − s}, ∀s ∈ S

pt(j | s, a) =


0, if j > s+ a

ps+a−j , if 0 < j ≤ s+ a∑∞
j=s+a pj if j = 0

rt(s, a) =−O(a)− h(s+ a) +

s+a∑
j=0

ρ(j)pj +

∞∑
k=s+a+1

ρ(s+ 1)pj , for t = 1, . . . , N − 1

rN (s) = gN (s).

Example 1.5. The condition of a machine used in a manufacturing process deteriorates over time. The condition of
the machine is checked at predetermined discrete decision epochs. Let S = {0, 1, . . .} denote the state of the machine
at each decision epoch. The higher the value of s is, the worse the condition of the machine. At each decision epoch,
you can choose either to replace or keep as it is. Suppose replacements happen instantaneously. We assume in each
period, the machine deteriorates by i states with probability p(i). There is a fixed income of R units per period, a state
dependent operating cost h(s) where s is the state at the beginning of the period, and a replacement cost of K units.
Suppose the objective is to maximize the long-run average profit. Modeling this as a MDP, we have

T = {1, 2, . . .}
S = {0, 1, . . .}

As = {0, 1}, where 1 indicates a replacement action

pt(j | s, 0) =

{
0, if j < s

p(j − s), if j ≥ s

pt(j | s, 1) = p(j)

rt(s, 0) = R− h(s)

rt(s, 1) = R−K − h(0)

1.2 Finite Horizon MDPs
Throughout this subsection, let T = {1, . . . , N} and π = (d1, d2, . . . , dN−1). Let V π

N (s) be the total expected reward
for an N period problem under policy π when the system state at the first decision epoch is s.

Suppose π is a randomized history dependent policy and

Xt : state at time t

Yt : action chosen at time t,

where {Xt} is the Markov Chain representing state under policy π. Then,

V π
N (s) = Eπ

[
N−1∑
t=1

rt (Xt, Yt) + rN (XN ) | X1 = s

]
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If, π = (d1, . . . , dN−1) is a deterministic Markovian policy, then

V π
N (s) = Eπ

[
N−1∑
t=1

rt (Xt, dt (Xt)) + rN (XN ) | X1 = s

]

If instead, π = (d1, . . . , dN−1) is a history dependent deterministic policy, then

V π
N (s) = Eπ

[
N−1∑
t=1

rt (Xt, dt (ht)) + rN (XN ) | X1 = s

]
with ht = (ht−1, at−1, Xt) ,

where |r(s, a) < M for all a ∈ As, s ∈ S.
If there exists 0 < λ < 1 as a discount factor, then

V π
N (s) = Eπ

[
N−1∑
t=1

λt−1rt (Xt, dt (ht)) + λN−1rN (XN ) | X1 = s

]
with ht = (ht−1, at−1, Xt) .

Define Π : the set of all possible history dependent randomized policies. Our objective is to find π∗ (among all
history dependent randomized policies) such that

V π∗

N (s) ≥ V π
N (s), for all π ∈ Π

and we would also like to compute
V ∗
N (s) = sup

π∈Π
V π
N (s),

where V ∗
N (s) = maxπ∈Π V π

N (s) if the supremum is attained.
Now for a policy π = (d1, d2, . . . , dN−1), let us define the total expected reward from t to N − 1, given ht, as

uπ
t (ht) = E

[
N−1∑
n=t

rn (Xn, dn (hn)) + rn (XN ) | Ht = ht

]

for t = 1, . . . , N − 1 and uN (hN ) = rN (sN ) for all hN = (hN−1, aN−1, sN ). If π is Markovian deterministic, then

uπ
t (st) = E

[
N−1∑
n=t

rn (Xn, dn (Xn)) + rN (Xn) | Xt = st

]

If h1 = s, then
uπ
1 (s) = V π

N (s) = total expected reward

Note that V π
N (s) is not dependent on t. From recursively figuring out V π

N (s) by calculating uπ
t (ht), we can compute

V π
N (s).

1.2.1 Backward Dynamic Programming for Computing the Expected Reward for a Finite Horizon Problem

1. Set t = N and uπ
N (hN ) = rN (sN ), the terminal reward, for all hN = (hN−1, aN−1, sN ). Go to Step 2.

2. If t = 1, stop; otherwise go to Step 3 .

3. Substitute t− 1 for t and compute uπ
t (ht) as

uπ
t (ht) = rt (st, dt (ht)) +

∑
j∈S

pt (j | st, dt (ht))u
π
t+1(ht, dt (ht) , j︸ ︷︷ ︸

ht+1

)

4. Return to Step 2.
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For Markovian deterministic π, we have

uπ
t (ht) = rt (st, dt (ht))︸ ︷︷ ︸

immediate reward

+
∑
j∈S

p (j | st, dt (ht))u
π
t+1(j)︸ ︷︷ ︸

Eπ
ht

[ut+1]

Theorem 1.3

Suppose that π = (d1, . . . , dN−1) is a history dependent deterministic policy and uπ
t is obtained by the

backward dynamic programming. Then for all t ≤ N ,

uπ
t (ht) = Eht

[
N−1∑
n=t

rn (Xn, dn (hn)) + rN (XN )

]

and V π
N (s) = uπ

1 (h1) for h1 = s.

Proof. Let t = N , uπ
N (hN ) = rN (sN ) for all hN = (hN−1, aN−1, sN ). Suppose the result holds for n = t+1, . . . , N

and we will prove that it holds for n = t.

uπ
t (ht) = rt (st, dt (ht)) +

∑
j∈S

p (j | st, dt (ht))u
π
t+1 (ht, dt (ht) , j)

= rt (st, dt (ht)) + Eht

[
Eht+1

[
N−1∑
n=t+1

rn (Xn, dn (hn)) + rN (XN )

]]

= rt (st, dt (ht)) + Eht

[
N−1∑
n=t+1

rn (Xn, dn (hn)) + rN (XN )

]

= Eht

[
N−1∑
n=t

rn (Xn, dn (hn)) + rN (XN )

]

Suppose π were a randomized history dependent policy, then

uπ
t (ht) =

∑
a∈At

p(dt(ht) = a)

rt (st, a) +
∑
j∈S

p (j | st, a)uπ
t+1 (ht, a, j)


1.2.2 Optimality Equations

We have
u∗
t (ht) = sup

π∈Π
ut (ht) , h1 = s1

where π belongs to the set of history dependent deterministic policies.

Lemma 1.4

Let w be a real valued function on an arbitrary discrete set W and let q(·) be a probability distribution on W .
Then supu∈W w(u) ≥

∑
u∈W q(u)w(u)

Proof. Let w∗ = supu∈W w(u). Then

w∗ =
∑
u∈W

q(u)w∗ ≥
∑
u∈W

q(u)w(u)
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That is, there is always a deterministic rule that performs as well/better than all randomized ones.

Optimality Equations for the N Period Problem Define

ut (ht) = sup
a∈Ast

rt (st, a) +
∑
j∈S

pt (j | st, a)ut+1 (ht, a, j)


for t = 1, . . . , N − 1 and for uN (hN ) = rN (sN ) for hN = (hN−1, aN−1, sN ).

If the supremum is obtained,

ut (ht) = max
a∈Ast

rt (st, a) +
∑
j∈S

pt (j | st, a)ut+1 (ht, a, j)


Recall that

u∗
t (ht) = sup

π
uπ
t (ht) and uπ

1 (s) = V π
N (s)

so by computing u∗
1(s) like this, we will compute V ∗

N (s). In fact, we will show that, if we compute ut(ht) as
above, then it is actually u∗

t (ht) and hence we have u1(s1) = V ∗
N (s1).

Theorem 1.5

Suppose that ut is a solution to the optimality equations for t = 1, . . . , N −1 with uN (sN ) = rN (sN ). Then,
(a) ut (ht) = u∗

t (ht) for t = 1, . . . , N − 1
(b) u1 (s1) = V ∗

N (s1)

Proof. We will first try to show taht un(hn) ≥ u∗
n(hn) for all n = 1, . . . , N .

For n = N , un(hn) = rN (sN ) = uπ
N (hN ) for all π ∈ Π and hN = (hN1

, aN−1, sN ). Thus, the result holds for
n = N . Assume it holds for t = n+ 1, . . . , N , we will show that it holds for t = n as well. Let π = (d1, . . . , dN−1)
be an arbitrary policy.

un(hn) = sup
a∈Asn

rn (sn, a) +
∑
j∈S

pj (j | sn, a)un+1 (hn, a, j)


≥ sup

a∈Asn

rn (sn, a) +
∑
j∈S

pj (j | sn, a)u∗
n+1 (hn, a, j)


≥ rn(sn, dn(hn)) +

∑
j∈S

P (j | sn, dn(hn))u
π
n+1(hn, dn(hn), j)

= uπ
n(hn)

Since π is arbitrary,
un(hn) ≥ sup

π∈Π
uπ
n(hn).

We will next show that for each ϵ > 0, there exists π′ such that

uπ′

n (hn) + (N − n)ϵ ≥ un(hn).

We will construct such a policy π′ = (d′1, d
′
2, . . . , d

′
N−1) by choosing d′n(hn) such that

rn(sn, d
′
n(hn)) +

∑
j∈S

Pn(j | sn, d′n(hn))u
π′

n+1(hn, d
′
n(hn), j) + ϵ ≥ un(hn).
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This π′ exists by the definition of un(hn). Note uπ′

N = rN (sN ) = uN (sN ) for hN = (hN−1, aN−1, sN ). Suppose
the result holds for t = n+ 1, . . . , N , then

uπ′

n (hn) = rn(sn, d
′
n(hn)) +

∑
j∈S

Pn(j | sn, d′n(hn))u
π′

n+1(hn, d
′
n(hn), j)

≥ rn(sn, d
′
n(hn)) +

∑
j∈S

Pn(j | sn, d′n(hn)) (un+1(hn, d
′
n(hn), j)− (N − n− 1)ϵ)

≥ rn(sn, d
′
n(hn)) +

∑
j∈S

Pn(j | sn, d′n(hn))un+1(hn, d
′
n(hn), j)

+ ϵ− (N − n)ϵ

≥ un(hn)− (N − n)ϵ

But then for each n, we have

u∗
n(hn) + (N − n)ϵ ≥ uπ′

n (hn) + (N − n)ϵ ≥ un(hn) ≥ u∗
n(hn),

which impllies un(hn) = u∗
n(hn).

Now the above theorem shows us a way to iteratively compute u∗
n(hn) and hence V ∗

N (s1) in the end. Now, the
following theorem will show that in fact, we are able to compute an optimal policy based on the iterations.

Theorem 1.6

Suppose that u∗
t for t = 1, . . . , N are solutions to the optimality equations subject to the boundary condition

and the policy π∗ =
(
d∗1, . . . , d

∗
N−1

)
satisfies

rt (st, d
∗
t (ht)) +

∑
j∈S

pt (j | st, d∗t (ht))u
∗
t+1 (ht, d

∗
t (ht) , j)

= max
a∈Ast

rt (st, a) +
∑
j∈S

pt (j | st, a)u∗
t+1 (ht, a, j)

 for t = 1, . . . , N − 1

(a) u∗
t (ht) = uπ∗

t (ht)

(b) π∗ is an optimal policy and V π∗

N (s) = V ∗
N (s).

Proof.

(a) Trivially
u∗
N (sN ) = rN (sN ) = uπ∗

N (sn)

Suppose that this holds for n = t+ 1, . . . , N . We will show that it also holds for n = t. We have

u∗
t (ht) = max

a∈Ast

rt (st, a) +
∑
j∈S

pt (j | st, a)u∗
t+1 (ht, a, j)


= rt (st, d

∗
t (ht)) +

∑
j∈S

pt (j | st, a)uπ∗

t+1 (ht, d
∗
t (ht) , j)

= uπ∗

t (ht)

(b) We have

V π∗

N (s) = uπ∗

1 (s) = u∗
1(s) = V ∗

N (s)
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Hence, the optimal policy π∗ =
(
d∗1, . . . , d

∗
N−1

)
is defined as

dt (ht) ∈ argmaxa∈Ast

rt (st, a) +
∑
j∈S

pt (j | st, a)u∗
t+1 (ht, a, j)



That is, when we do the iteration, if we always pick the action maximizing ut(ht), we get an optimal policy. Now
we show that we actually only need st rather than ht and there exists a deterministic policy if all ut(ht) are attained
by a deterministic action.

Theorem 1.7

Let u∗
t for t = 1, . . . , N be the solution to the optimality equations together with the boundary conditions.

(a) For each t = 1, . . . , N , u∗
t (ht) depends on ht only through st.

(b) If there exists a1 ∈ Ast such that

rt
(
st, a

1
)
+
∑
j∈S

p
(
j | st, a1

)
u∗
t+1

(
ht, a

1, j
)

= sup
a∈Ast

rt (st, a) +
∑
j∈S

pt (j | st, a)u∗
t+1 (ht, a, j)


for all t = 1, . . . , N − 1 then there exists an optimal policy that is Markovian deterministic.

Proof.

(a) We have
u∗
N (hN ) = u∗

N (hN−1, aN−1, sN ) = rN (sN ) .

Thus, u∗
N depends on hN only though sN . The result holds for n = N . Let us assume it holds for n =

t+ 1, . . . , N and we proceed to show that it also holds for n = t. We have

u∗
t (ht) = sup

a∈Ast

rt (st, a) +
∑
j∈S

pt (j | st, a)u∗
t+1 (ht, a, j)


= sup

a∈Ast

rt (st, a) +
∑
j∈S

pt (j | st, a)u∗
t+1(j)


and the result holds for n = t.

(b) Given policy π∗ =
(
d∗1, . . . , d

∗
N−1

)
we have, from a previous result,

rt (st, d
∗
t (ht)) +

∑
j∈S

pt (j | st, d∗t (ht))u
π∗

t+1(j)

= max
a∈Ast

rt (st, a) +
∑
j∈S

pt (j | st, a)u∗
t+1(j)





Fall 2024 Rui Gong Markov Decision Processes (MDPs)

Corollary 1.8

Let

πHR : set of history dependent randomized policies

πMD : set of Markovian deterministic policies.

Then,

V ∗
N (s) = sup

π∈πHR

V π
N (s) = sup

π∈πMD

V π
N (s)

Proposition 1.9

Assume that S is finite or countable and if either one of the following conditions hold:

(a) As is finite for each s ∈ S.

(b) As is compact for each s ∈ S and

rt(s, a) is continuous in a for all s ∈ S

|rt(s, a)| ≤ M for all a ∈ As, s ∈ S

pt(j | s, a) is continuous in a for each j ∈ S, s ∈ S

(c) As is compact for each s ∈ S and
rt(s, a) is upper semicontinuous in a for all s ∈ S,
|rt(s, a)| ≤ M for all a ∈ As, s ∈ S,
pt(j | s, a) is lower semicontinuous in a for each j ∈ S, s ∈ S

then there exists a deterministic Markovian policy which is optimal.

Backward Induction Algorithm for the optimal policy and optimal total expected reward

(1) Set t = N and u∗
N (sN ) = rN (sN ).

(2) Substitute t− 1 for t and compute u∗
t (st) for each st ∈ S by

u∗
t (st) = max

a∈Ast

rt (st, a) +
∑
j∈S

pt (j | st, a)u∗
t+1(j)


and set

A∗
st = argmaxa∈Ast

rt (st, a) +
∑
j∈S

pt (j | st, a)u∗
t+1(j)


(3) If t = 1 then stop. Otherwise go to step 2 .
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Theorem 1.10

Suppose π∗
t , t = 1, . . . , N and A∗

st are obtained using backward dynamic programming.

(i) For t = 1, . . . , N and ht = (ht−1, at, st),

u∗
t (st) = sup

π∈Π
uπ
t (ht),

where Π is the set of all history dependent randomized policies.

(ii) Let d∗t (st) ∈ A∗
st , for all st ∈ S, t = 1, . . . , N − 1 and π∗ = (d∗1, d

∗
2, . . . , d

∗
N−1). The π∗ is optimal,

u∗
1(s) = V ∗

N (s) = V π∗

N (s).

Example 1.6 (Inventory problem revisited). Consider the setup

M = 3, h(u) = u, ρ(u) = 8u,N = 4, T = {1, 2, 3, 4}
As = {0, . . . , 3− s}

and

O(u) =

{
4 + 2u, u > 0

0, u = 0

with

P (D = 0) =
1

4
, P (D = 1) =

1

2
, P (D = 2) =

1

4
rN (0) = rN (1) = rN (2) = rN (3) = 0

Now,

u∗
4(0) = u∗

4(1) = u∗
4(2) = u∗

4(3) = 0

and since

u∗
t (st) = max

a∈Ast

rt (st, a) +
∑
j∈S

pt (j | st, a)u∗
t+1(j)


then

r(0, 1) = −O(1)− h(1) + ρ(1)P (D = 1 ∪D = 2) = −6− 1 + 8 · 3
4
= −1

r(0, 2) = −12− 2 + 16 · 1
4
+ 8 · 1

2
= −2

r(0, 3) = −10− 3 + 16 · 1
4
+ 8 · 1

2
= −5

u∗
3(0) = max{0 + 1 · 0, −1︸︷︷︸

=r(0,1)

+0, −2︸︷︷︸
=r(0,2)

, −5︸︷︷︸
=r(0,3)

} = 0, d∗3(0) = 0

and continuing in this fashion, we will get

u∗
3(1) = 5, u∗

3(2) = 6, u∗
3(3) = 5

d∗3(1) = 0, d∗3(2) = 0, d∗3(3) = 0

Next,
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u∗
2(0) = max

0,−6− 1 + 8 ∗ 3

4︸ ︷︷ ︸
reward

+
3

4
∗ 0︸ ︷︷ ︸

demand≥1,u∗
3(0)

+
1

4
∗ 5︸ ︷︷ ︸

demand=0,u∗
3(1)

, 2,
1

2


= max

{
0,

1

4
, 2,

1

2

}
= 2

and d∗2(0) = 2. Continuing, we will get

d∗1(s) =

{
3, s = 0
0, otherwise , d∗2(s) =

{
2, s = 0

0, otherwise

and d∗3(s) = 0 for all s ∈ {1, 2, 3}. Finishing, we will get

v∗4(0) =
67

16
, v∗4(1) =

129

16
, v∗4(2) =

97

8
, v∗4(3) =

227

16

1.3 Optimality of Monotone Policies
Consider

u∗
t (s) = max

a∈As

rt(s, a) +
∑
j∈S

pt(j | s, a)u∗
t+1(j)


Definition 1.11

We say that g(·, ·) for x+ ≥ x−in X and y+ ≥ y−in Y is superadditive if

g
(
x+, y+

)
+ g

(
x−, y−

)
≥ g

(
x+, y−

)
+ g

(
x−, y+

)
If −g(·, ·) is superadditive then g(·, ·) is subadditive.

Example 1.7. g(x, y) = h(x) + f(y) is both superadditive and subadditive.

Lemma 1.12

Suppose that g is a superadditive function in X × Y and for each x ∈ X,maxy∈Y g(x, y) exists. Then,

ρ(x) = max{y ∈ argmaxy∈Y g(x, y)}

is monotone non-decreasing in X .

Proof. Let x+ ≥ x−and choose y ≤ ρ (x−). Then,

g
(
x−, ρ

(
x−))− g

(
x−, y

)
≥ 0

Since g is superadditive,

g
(
x+, ρ(x−)

)
+ g

(
x−, y

)
≥ g

(
x+, y

)
+ g

(
x−, ρ

(
x−))

=⇒ g
(
x+, ρ

(
x−)) ≥ [g (x−, ρ(x−)

)
− g

(
x−, y

)]︸ ︷︷ ︸
≥0

+g
(
x+, y

)
=⇒ g

(
x+, ρ

(
x−)) ≥ g

(
x+, y

)
,∀y ≤ ρ(x−).
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then by definition, ρ (x+) ≥ ρ (x−) since

g
(
x+, ρ

(
x+
))

≥ g
(
x+, ρ

(
x−)) and g

(
x+, y

)
≤ g

(
x+, ρ

(
x−)) , ∀y ≤ ρ

(
x−) .

if ρ(x+) < ρ(x−), then g (x+, ρ (x+)) = g (x+, ρ (x−)), but then by the definition of ρ(x+), we have ρ(x+) ≥
ρ(x−).

Lemma 1.13

Let g(s, a) be a function on S × A, where S = A = 0, 1, · · · and suppose g(s + 1, a + 1) + g(s, a) ≥
g(s, a+ 1) + g(s+ 1, a) for all a ∈ A and s ∈ S. Then g is superadditive.

Proof. Let s+ ≥ s−, a+ ≥ a−. We have

g(s+, a−)

≥g(s+ − 1, a+) + g(s+, a+ − 1)− g(s+ − 1, a+ − 1)

≥g(s+ − 2, a+) + g(s+ − 1, a+ − 1)− g(s+ − 2, a+ − 1)

+ g(s+, a+ − 2) + g(s+ − 1, a+ − 1)− g(s+ − 1, a+ − 2)− g(s+ − 1, a+ − 1)

=g(s+ − 2, a+) + g(s+, a+ − 2) + g(s+ − 1, a+ − 1)

− g(s+ − 2, a+ − 1)− g(s+ − 1, a+ − 2)

≥g(s+, a+ − 2) + g(s+ − 2, a+)− g(s+ − 2, a+ − 2)

...

≥g(s+, a−) + g(s−, a+)− g(s−, a−).

where from the second to the third line, we apply the assumption to both g(s+−1, a+), g(s+, a+−1); from the fourth
to the fifth line, we apply the assumption to g(s+ − 1, a+ − 1)− g(s+ − 2, a+ − 1)− g(s+ − 1, a+ − 2).

Then, by adding g(s−, a−) to both sides, we get

g(s+, a+) + g(s−, a−)

≥g(s+, a−) + g(s−, a+)

Lemma 1.14

Let {xj} ,
{
x′
j

}
be real-valued sequences satisfying

∞∑
j=k

xj ≥
∞∑
j=k

x′
j

for all k ≥ 0 with equality holding for k = 0. Suppose vj+1 ≥ vj for all j = 0, 1, . . .. Then,

∞∑
j=0

xjvj ≥
∞∑
j=0

x′
jvj

Proof. Set v−1 = 0. Then,
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∞∑
j=0

vjxj =

∞∑
j=0

xj

j∑
i=0

(vi − vi−1)

=

∞∑
j=0

(vj − vj−1)

∞∑
i=j

xj

=

∞∑
j=1

(vj − vj−1)

∞∑
i=j

xj + v0

∞∑
i=0

xi

≥
∞∑
j=1

(vj − vj−1)

∞∑
i=j

x′
j + v0

∞∑
i=0

x′
i

=

∞∑
j=0

vjx
′
j .

Note. A classical way to apply this lemma is that given two variables X,Y such that P (X ≥ a) ≥ P (Y ≥ a),∀a,
then E[f(X)] ≥ E[f(y)] for every nondecreasing f .

Theorem 1.15

Assume that

1. S = {0, 1, . . .}

2. As = A for all s ∈ S

Suppose that

1. rt(s, a) is non-decreasing (non-increasing) in s for all a ∈ A and t = 1, . . . , N − 1.

2.
∑∞

j=k pt(j | s, a) is non-decreasing in s for all k ∈ S, a ∈ A and t = 1, . . . , N − 1.

3. rN (s) is non-decreasing (non-increasing) in s.

Then u∗
t (s) is non-decreasing (non-increasing) in s for all t = 1, . . . , N .

Proof. We know u∗
N (s) = rN (s) and thus the result holds for t = N . Now assume it holds for n = t+ 1, . . . , N and

note that for n = t we have

u∗
t (s) = max

a∈As

rt(s, a) +
∑
j∈S

pt(j | s, a)u∗
t+1(j)


= rt (s, a

∗
s) +

∑
j∈S

pt (j | s, a∗s)u∗
t+1(j)

Suppose that s′ ≥ s. We need to show u∗
t (s

′) ≥ u∗
t (s). Now

u∗
t (s) = rt (s, a

∗
s) +

∑
j∈S

pt (j | s, a∗s)u∗
t+1(j)

≤ rt (s
′, a∗s) +

∑
j∈S

pt (j | s′, a∗s)u∗
t+1(j)

≤ max
a∈A

rt (s
′, a) +

∑
j∈S

pt (j | s′, a)u∗
t+1(j)


= u∗

t (s
′)
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which follows from the assumptions of the theorem, induction hypothesis and the earlier lemma.

Theorem 1.16

Assume that

1. S = {0, 1, . . .}

2. As = A for all s ∈ S.

Suppose that

(1) rt(s, a) is non-decreasing in s for all a ∈ A and t = 1, . . . , N − 1.

(2)
∑∞

j=k pt(j | s, a) is non-decreasing in s for all k ∈ S, a ∈ A and t = 1, . . . , N − 1.

(3) rt(s, a) is a superadditive function on S ×A.

(4)
∑∞

j=k pt(j | s, a) is a superadditive function on S ×A for every k ∈ S.

(5) rN (s) is non-decreasing in s.

Then there exists an decision rules d∗t (s) which are non-decreasing in s for all t = 1, . . . , N − 1.

Proof. From 1, 2, and 5, we know that u∗
t (s) is non-decreasing in s for all t = 1, . . . , N and so

∞∑
j=k

[
pt
(
j | s+, a+

)
+ pt

(
j | s−, a−

)]
≥

∞∑
j=k

[
pt
(
j | s+, a−

)
+ pt

(
j | s−, a+

)]
for s+ ≥ s−, a+ ≥ a−, which implies, from the previous theorem, that

∞∑
j=0

[
pt
(
j | s+, a+

)
+ pt

(
j | s−, a−

)]
u∗
t+1(j) ≥

∞∑
j=0

[
pt
(
j | s+, a−

)
+ pt

(
j | s−, a+

)]
u∗
t+1(j),

so
∑∞

j=0 pt(j | s, a)u∗
t+1(j) is superadditive on S×A. Since the sum of two superadditive functions is superadditive,

then

rt(s, a) +

∞∑
j=0

pt(j | s, a)u∗
t+1(j)

is superadditive and the result follows from Lemma 1.12.

Theorem 1.17

Suppose for t = 1, . . . , N − 1 that

(1) rt(s, a) is non-increasing in s for all a ∈ A and t = 1, . . . , N − 1.

(2)
∑∞

j=k pt(j | s, a) is non-decreasing in s for all k ∈ S, a ∈ A and t = 1, . . . , N − 1.

(3) rt(s, a) is a superadditive function on S ×A.

(4)
∑∞

j=0 pt(j | s, a) is a superadditive function on S ×A.

(5) rN (s) is non-increasing in s.

Then there exists an optimal decision rules d∗t (s) which are non-decreasing in s for all t = 1, . . . , N − 1.
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Proof. From (1), (2), and (5) we have u∗
t (s) non-increasing in s. Then from (3) and (4), we have

rt(s, a) +

∞∑
j=0

pt(j | s, a)u∗
t (j)

superadditive on S ×A.

Backward Dynamic Programming for finding Monotone Optimal Policies Assume that for each t there is a
monotone optimal decision rule. Suppose that S = {0, 1, . . . ,M} and As = A for all s ∈ S.

1. Set t = N and u∗
N (s) = rN (s) for all s ∈ S.

2. Substitute t− 1 for t, set s = 0 and A0 = A.

(a) Set

u∗
t (s) = max

a∈As

rt(s, a) +
∑
j∈S

pt(j | s, a)u∗
t+1(j)


(b) Set

A∗
s,t = argmaxa∈As

rt(s, a) +
∑
j∈S

pt(j | s, a)u∗
t+1(j)


(c) If s = M go to step 3, otherwise set

As+1 =
{
a ∈ A : a ≥ max

{
a′ ∈ A∗

s,t

}}
(d) Substitute s+ 1 for s and return to (a).

3. If t = 1, stop; otherwise go to Step 2.

Example 1.8. Given S = {0, 1, . . .}, the higher the worse the equipment is. From one decision epoch to the next,
the equipment deteriorates i states with probability p(i). We are also given, As = {0, 1} where 0 is ”do nothing”
and 1 is replacing, R is the fixed income per period, h(s) is the operating cost if the equipment is in state s, K is the
replacement cost, rN (s) is the salvage of the equipment if it is in state s at time N . Assume h(s) is non-decreasing in
s and rN (s) is non-increasing in s. Let T = {1, . . . , N}.

We have:

p(j | s, 0) =
{

0, if j < s
p(j − s), if j ≥ s

and p(j | s, 1) = p(j), i = 0, 1, 2, . . .

and
r(s, 0) = R− h(s) and r(s, 1) = R−K − h(0)

1. r(s, a) is non-increasing in s. Clearly this holds for the rewards.

2. rN (s) is non-increasing in s.

3.
∑∞

j=k pt(j | s, a) is non-decreasing in s for all k ∈ S and a ∈ A since when we replace,

∞∑
j=k+1

p(j | s+ 1, 1)−
∞∑
j=k

p(j | s, 1) =
∞∑
j=k

p(j)−
∞∑
j=k

p(j) = 0

Now when we do not replace, for k > s,
∞∑
j=k

p(j | s+ 1, 0)−
∞∑
j=k

p(j | s, 0) =
∞∑
j=k

p(j − s− 1)−
∞∑
j=k

p(j − s) = p(k − s− 1) ≥ 0

and for k ≤ s, we have
∞∑
j=k

p(j | s+ 1, 0)−
∞∑
j=k

p(j | s, 0) =
∞∑

j=s+1

p(j − s− 1)−
∞∑
j=s

p(j − s) = 0
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4. r(s, a) is superadditive on S ×A :

r(s+ 1, 1) + r(s, 0) ≥ r(s, 1) + r(s+ 1, 0)

⇐⇒R−K − h(0) +R− h(s) ≥ R−K − h(0) +R− h(s+ 1)

⇐⇒h(s+ 1)− h(s) ≥ 0

5.
∑∞

j=0 p(j | s, a)u(j) is superadditive on S ×A for any non-increasing function u:

∞∑
j=0

p(j | s+ 1, 1)u(j) +

∞∑
j=0

p(j | s, 0)u(j) ≥
∞∑
j=0

p(j | s, 1)u(j) +
∞∑
j=0

p(j | s+ 1, 0)u(j)

⇐⇒
∞∑
j=0

p(j)u(j) +

∞∑
j=s

p(j − s)u(j) ≥
∞∑
j=0

p(j)u(j) +

∞∑
j=s+1

p(j − s− 1)u(j)

⇐⇒
∞∑
j=s

p(j − s)u(j) ≥
∞∑

j=s+1

p(j − s− 1)u(j)

⇐⇒
∞∑
j=s

p(j − s)u(j)−
∞∑
j=s

p(j − s)u(j + 1) ≥ 0

since u is non-creasing.

6. d∗t (s) =

{
0, if s ≤ s∗t
1, if s > s∗t ,∀t = 1, . . . , N − 1
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2 Infinite Horizon MDPs
We assume:

• Transition probabilities and rewards are stationary and |r(s, a)|≤ M

• We are given a discount factor 0 < λ < 1.

• π = (d1, d2, . . .) is Markovian deterministic.

• T = {1, 2, 3, . . .}.

• vπλ(s) : total expected discounted reward under policy π when the initial state is s and the discount factor is λ.
Let {Xt : t ≥ 1} be the Markov Chain under policy π,

vπλ(s) = Es

[ ∞∑
t=1

λt−1r (Xt, dt (Xt))

]

• rd : vector of rewards under decision rule d

rd1
=

r(s1, d1(s1))r(s2, d1(s2))
...


• Pd : probability transition matrix under decision rule d

Let us denote v∗λ(s) = supπ v
π
λ(s). If it is attained, we would also like to find π∗ where

v∗λ(s) = vπ
∗

λ (s).

If vπλ is the vector of total expected rewards, then

vπλ = rd1
+ λPd1

rd2
+ λ2Pd1

Pd2
rd3

+ . . .

=

∞∑
t=1

λt−1P t−1
d rd

= rd1
+ λPd1

(rd2
+ λPd2

rd3
+ . . .)

= rd1
+ λPd1

vπ
′

λ

where π′ = (d2, d3, . . .). Now if π is stationary, then

vπλ = rd + λPdv
π
λ =⇒ vπλ = (I − λPd)

−1
rd

Theorem 2.1

For any stationary policy π = d∞, vd
∞

λ is the unique solution of

v = rd + λPdv

and furthermore, vd
∞

λ can be written as

vd
∞

λ = (I − λPd)
−1

rd =

∞∑
t=1

λt−1P t−1
d rd = Ldv

d∞

λ

where Ld(v) := rd + λPdv. Note the inverse exists because λ < 1.
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Example 2.1. Consider a simple system with S = {s1, s2} and As1 = {a11, a12} and As2 = {a21}. We have
p (s1 | s1, a11) = 0.5, p (s2 | s1, a11) = 0.5, p (s2 | s1, a12) = 1, and p (s2 | s2, a21)=1. Finally, r (s1, a11, s1) =
5, r (s1, a11, s2) = 5, r (s1, a12) = 10 and r (s2, a21) = −1. Consider the stationary policy that uses the decision rule
d (s1) = a11 and d (s2) = a21. Compute vd

∞

λ (s1) and vd
∞

λ (s2).

We have rd =

[
5
−1

]
and

vd
∞

λ (s1) = 5 + λ
(
0.5vd

∞

λ (s1) + 0.5vd
∞

λ (s2)
)

vd
∞

λ (s2) = −1 + λvd
∞

λ (s2) =⇒ vd
∞

λ (s2) =
−1

1− λ

and so after a substitution,

vd
∞

λ (s1) =
5− 5.5λ

(1− λ)(1− 0.5λ)
.

Lemma 2.2

Suppose 0 ≤ λ < 1. Then for any Markovian deterministic decision rule d,

(i) If u ≥ 0 then (I − λPd)
−1

u ≥ 0 and (I − λPd)
−1

u ≥ u.

(ii) If u ≥ v then (I − λPd)
−1

u ≥ (I − λPd)
−1

v.

(iii) If u ≥ 0 then uT (I − λPd)
−1 ≥ 0.

Proof. (i) and (iii): directly by

(I − λPd)
−1

u =

∞∑
t=1

λt−1P t−1
d u ≥ u ≥ 0

(ii): follows from (i) by replacing u with u− v

2.1 Optimality Equations
Recall the optimality equation for the finite-horizon case:

vn(s) = sup
a∈As

r(s, a) +
∑
j∈S

λp(j | s, a)vn+1(j).


By taking the limit as n → ∞ on both sides, we the optimality equation for the infinite-horizon case:

vλ(s) = sup
a∈As

r(s, a) +
∑
j∈S

λp(j | s, a)v(j)

︸ ︷︷ ︸
L

Let v be the vector of v(s) for s ∈ S, then we write the above equation as v = Lv.
If the supremum is attained,

vλ(s) = max
a∈As

r(s, a) +
∑
j∈S

λp(j | s, a)v∗(j)

︸ ︷︷ ︸
L
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Theorem 2.3

Suppose that there exists a v such that

(i) v ≥ Lv then v ≥ v∗λ

(ii) v ≤ Lv then v ≤ v∗λ

(iii) v = Lv then v = v∗λ

Proof. (i) Let π = (d1, d2, . . .) and let us use the notation

Lv = sup
α

{rα + λPαv}

Lv = max
α

{rα + λPαv}

Then
v ≥ sup

α
{rα + λPαv} = Lv = rd1

+ λPd1
v

≥rd1
+ λPd1

(rd2
+ λPd2

v)

...

≥rd1
+ λPd1

rd2
+ λ2Pd1

Pd2
rd3

+ . . .+ λn−1Pd1
. . . Pdn−1

rdn
+ λn Pd1

. . . Pdn︸ ︷︷ ︸
Pn

π

v

and also since

vπλ = rd1
+ λPd1

rd2
+ . . .+

∞∑
k=2

λkPd1
. . . Pdk

rdk+1

then

v − vπλ ≥ λnPd1 . . . Pdnv −
∞∑

k=n

λkPd1 . . . Pdk
rdk+1

Next, if we define ∥v∥= sups∈S |v(s)| then ∥λnPnv∥ ≤ λn∥v∥ then we can choose ϵ > 0 such that there exists
n sufficiently larges such that

− ϵ

2
e ≤ λnPd1 . . . Pdnv ≤ ϵ

2
e

where e is a vector of ones. Also,

− λnMe

(1− λ)
≤

∞∑
k=n

λkPd1
. . . Pdk

rdk+1
≤ λnMe

(1− λ)

by |rdk+1
|≤ Me, and so with can find n sufficiently large so that

v − vπλ ≥ −εe =⇒ v ≥ sup
π

vπλ = v∗λ

(ii) From the definition of L, we know that for all ϵ > 0 there exists α such that

v ≤ rα + λPαv + ϵe

which, by the previous lemma, implies



Fall 2024 Rui Gong Infinite Horizon MDPs

(I − λPα) v ≤ rα + ϵe

=⇒ v ≤ (I − λPα)
−1

(rα + ϵe)

=⇒ v ≤ (I − λPα)
−1

rα + (I − λPα)
−1

ϵe

and hence

v ≤ vα
∞

λ + ϵ

∞∑
k=1

λk−1P k−1
α e

= vα
∞

λ +
ϵe

1− λ

≤ sup
π

vπλ = v∗λ

where the last inequality is by pushing ϵ to 0.

(iii) Trivial.

Definition 2.4

Let U be a Banach space (complete normed linear space, e.g. Rn). The operator T : U → U is a contraction
mapping if ∃λ with 0 ≤ λ < 1 such that

∥Tv − Tu∥≤ λ∥v − u∥

Theorem 2.5: Fixed Point Theorem

Suppose U is Banach space and T : U 7→ U is a contraction mapping. Then,

1. ∃v∗ ∈ U unique such that Tv∗ = v∗

2. for arbitrary v0 ∈ U , the sequence {vn} defined by vn+1 = Tvn converges to v∗.

Proof. (a) Directly ∥∥vn+m − vn
∥∥ =

∥∥∥∥∥
m−1∑
k=0

vn+k+1 −
m−1∑
k=0

vn+k

∥∥∥∥∥
≤

m−1∑
k=0

∥∥vn+k+1 − vn+k
∥∥

=

m−1∑
k=0

∥∥Tn+kv1 − Tn+kv0
∥∥

≤
m−1∑
k=0

λn+k
∥∥v1 − v0

∥∥
=
∥∥v1 − v0

∥∥ · λn (1− λm)

1− λ

and so {vn} is a Cauchy sequence and ∃v∗ such that vn → v∗. It remains to be seen that Tv∗ = v∗. We have

0 ≤ ∥Tv∗ − v∗∥ ≤ ∥Tv∗ − vn∥ − ∥vn − v∗∥
≤
∥∥Tv∗ − Tvn−1

∥∥− ∥vn − v∗∥
≤ λ

∥∥v∗ − vn−1
∥∥− ∥vn − v∗∥ .
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Since vn → v∗ the the right hand side can be made arbitrarily small by picking large enough n. Hence
∥Tv∗ − v∗∥ = 0 and Tv∗ = v∗.
Suppose there exists v′ such that Tv′ = v′. Then,

∥v∗ − v′∥ = ∥Tv∗ − Tv′∥ ≤ λ ∥v∗ − v′∥

which is only possible if ∥v∗ − v′∥ = 0 =⇒ v∗ = v′.

Proposition 2.6

For 0 ≤ λ < 1, L and L are contraction mappings.

Proof. Let u and v be such that Lv(s) ≥ Lu(s) for s ∈ S and

max
a∈As

{
r(s, a) + λ

∑
p(j | s, a)v(j)

}
≥ max

a∈As

{
r(s, a) + λ

∑
p(j | s, a)u(j)

}
and suppose that

a∗s ∈ argmax
a∈As

r(s, a) + λ
∑
j∈S

p(j | s, a)v(j)


Then

0 ≤ Lv(s)− Lu(s) ≤ r (s, a∗s) + λ
∑
j∈S

p (j | s, a∗s) v(j)− r (s, a∗s)− λ
∑
j∈S

p (j | s, a∗s)u(j)

= λ
∑
j∈S

p (j | s, a∗s) [v(j)− u(j)]

≤ λ
∑
j∈S

p (j | s, a∗s) ∥v − u∥

= λ∥v − u∥

and we can have the similar result for Lu(s) ≥ Lv(s). Therefore,

|Lv(s)− Lu(s)|≤ λ∥v − u∥ =⇒ ∥Lv − Lu∥≤ λ∥v − u∥

and a similar argument can be made for L. Note that Ld, through the same arguments, is also a contraction
mapping.

Theorem 2.7

1. There exists a unique v∗ satisfying Lv∗ = v∗ (Lv∗ = v∗) and v∗ = v∗λ.

2. For each d satisfying Ldv = v, there exists a unique solution v = vπλ where π = (d, d, . . .). [Ldv =
rd + λPdv]

Proof. By L,L being contraction mappings, we know there exists a unique solution v∗ such that Lv∗ = v∗. Then
from Theorem 2.3, we know v∗ = v∗λ. Part (2) can be consider a special case of (1) where the only available policy is
d.

Theorem 2.8

A policy π∗ is optimal if and only if vπ
∗

λ is a solution to the optimality equations.
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Proof. If π∗ is optimal then v∗λ = vπ
∗

λ and hence Lvπ
∗

λ = vπ
∗

λ by the above theorem. If Lvπ
∗

λ = vπ
∗

λ then vπ
∗

λ = v∗λ
by Theorem 2.3 and hence π∗ is optimal.

Theorem 2.9

Suppose d is such that
Ld∗v∗λ = rd∗ + λPd∗v∗λ = v∗λ

or d∗ ∈ argmax {rd + λPdv
∗
λ} where we say that d∗ is a conserving decision rule. Then, (d∗)∞ is an optimal

decision policy and v
(d∗)∞

λ = v∗λ.

Proof.
v∗λ = Lv∗λ = rd∗ + λPd∗v∗λ = Ld∗v∗λ,

then v∗λ = v
(d∗)∞

λ because v
(d∗)∞

λ is the unique solution to v = Ld∗v.

Theorem 2.10

Suppose there exists an optimal policy, then there exists an optimal stationary policy.

Proof. Given π∗ = (d1, d2, . . .) and π∗ = (d1, π
′). Then,

v∗λ = vπ
∗

λ = rd1
+ λPd1

vπ
′

λ

≤ rd1
+ λPd1

vπ
∗

λ

≤ sup
d

{
rd + λPdv

π∗

λ

}
= Lvπ

∗

λ = vπ
∗

λ

and d1 is a conserving decision rule which means it is an optimal decision rule.

2.2 Algorithms
We will be considering:

1. Value Iteration

2. Policy Iteration

3. Linear Programming

Theorem 2.11

Suppose that S is countable. Then there exists a stationary optimal policy if

(a) As is finite for each s ∈ S, or

(b) As is compact for each s ∈ S, r(s, a) is continuous in a for each s, and p(j | s, a) is continuous in a for
each j ∈ S and s ∈ S, or

(c) As is compact for each s ∈ S, r(s, a) is upper semicontinuous in a for each s, and p(j | s, a) is lower
semicontinuous in a for each j ∈ S and s ∈ S.
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2.2.1 Value Iteration

We wish to find a policy πϵ such that vπϵ

λ ≥ v∗λ(s)− ϵ.

(1) Select v0 ∈ V, ϵ > 0 and set n = 0

(2) For each s ∈ S, compute vn+1(s) as

v(n+1)(s) = max
a∈As

r(s, a) + λ
∑
j∈S

p(j | s, a)vn(j)


(3) If

∥∥vn+1 − vn
∥∥ ≤ ϵ(1−λ)

2λ then go to step 4. Otherwise, increment n by 1 and go to step (2).

(4) For each s ∈ S, choose

dϵ(s) ∈ argmax
a∈As

r(s, a) + λ
∑
j∈S

p(j | s, a)vn+1(j)


Theorem 2.12

For value iteration, we have

(1) vn converges to v∗λ

(2) Stationary policy (dϵ)
∞ is an ϵ-optimal policy

Proof.

(1) Trivial, from fixed point theorem.

(2) We need to show that
∥∥∥v(dϵ)

∞

λ − v∗λ

∥∥∥ ≤ ϵ, where v
(dϵ)

∞

λ is the expected reward under the stationary policy

(dϵ)
∞ satisfying L(dϵ)∞v

(dϵ)
∞

λ = v
(dϵ)

∞

λ . Note that∥∥∥v(dϵ)
∞

λ − v∗λ

∥∥∥ ≤
∥∥∥v(dϵ)

∞

λ − vn+1
∥∥∥+ ∥∥vn+1 − v∗λ

∥∥ .
First, we have ∥∥vn+1 − v∗λ

∥∥ =

∥∥∥∥∥
∞∑

k=n+1

vk − vk+1

∥∥∥∥∥
≤

∞∑
k=n+1

∥∥vk − vk+1
∥∥

=

∞∑
k=0

∥∥vk+n+1 − vk+n+2
∥∥

=

∞∑
k=0

∥∥Lk+1vn − Lk+1vn+1
∥∥

≤
∞∑
k=0

λk+1
∥∥vn − vn+1

∥∥
≤

∞∑
k=0

λk+1 ϵ(1− λ)

2λ

=
λ

1− λ
· ϵ(1− λ)

2λ

=
ϵ

2
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and ∥∥∥v(dϵ)
∞

λ − vn+1
∥∥∥ =

∥∥∥Ldϵ
v
(dϵ)

∞

λ − vn+1
∥∥∥

≤
∥∥∥Ldϵ

v
(dϵ)

∞

λ − Lvn+1
∥∥∥+ ∥∥Lvn+1 − vn+1

∥∥
=
∥∥∥Ldϵ

v
(dϵ)

∞

λ − Ldϵ
vn+1

∥∥∥+ ∥∥Lvn+1 − Lvn
∥∥

≤ λ
∥∥∥v(dϵ)

∞

λ − vn+1
∥∥∥+ λ

∥∥vn+1 − vn
∥∥

=⇒ (1− λ)
∥∥∥v(dϵ)

∞

λ − vn+1
∥∥∥ ≤ λ

∥∥vn+1 − vn
∥∥ ≤ ϵ(1− λ)

2

=⇒
∥∥∥v(dϵ)

∞

λ − vn+1
∥∥∥ ≤ ϵ

2

where from the second to the third line, we first use the fact that

Lvn+1(s) = max
a∈As

r(s, a) + λ
∑
j∈S

p(j | s, a)vn+1(j)


and then the definition dϵ(s) = argmax

a∈As

{
r(s, a) + λ

∑
j∈S p(j | s, a)vn+1(j)

}
, which implies that Lvn+1(s)

is obtained under policy dϵ(s), that is, Ldϵ
vn+1(s) = Lvn+1(s).

Combine the two results together, we get what we want.

Proposition 2.13

(1) Suppose v ≥ u. Then Lv ≥ Lu.

(2) Suppose that for some N,LvN ≤ (≥)vN . Then vN+m+1 ≤ (≥)vN+m for all m ≥ 0.

Proof.

1. Let d′ ∈ argmax {rd + λPdu}. Then,

Lu = rd′ + λPd′u ≤ rd′ + λPd′v ≤ max {rd + λPdv} = Lv,

where the first inequality is by the fact that Pd′ is a nonnegative matrix.

2. Directly,
vN+m+1 = LmLvN ≥ LmvN = vN+m

and likewise for the (≤) case.

For the second property of the proposition above, it says that if such N exists, then from N , such property holds
for all iterations after that. So if v1 ≥ v0 in value iteration, then {vn} → v∗λ is monotone decreasing. For example, if
Lv0 ≥ v0, then vn+1 ≥ vn for all n, similar for ≤, but for some problems, v1, v0 might not be comparable.

Definition 2.14

Let yn → y∗, so lim∥yn − y∗∥= 0. We say yn converges of order α if there exists a k > 0 such that

∥yn+1 − y∗∥≤ k∥yn − y∗∥α.
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Theorem 2.15

(i) Convergence rate of value iteration is linear in λ.

(ii)

lim sup
n→∞

[
∥vn − v∗λ∥
∥v0 − v∗λ∥

] 1
n

≤ λ

(iii) For every n,

∥vn − v∗λ∥≤
λn

1− λ
∥v1 − v0∥

(iv) For every dϵ = argmax {rd + λPdv
n},

∥v(dn)
∞

− v∗λ∥≤
2λn

1− λ
∥v1 − v0∥

Proof. (i) ∥vn+1 − v∗λ∥= ∥Lvn − Lv∗λ∥≤ λ∥vn − v∗λ∥

(ii) Directly from (i)

(iii) Similar to the first part of the proof of Theorem 2.12.

(iv) Similar to the proof of Theorem 2.12.

2.2.2 Policy Iteration

(a) Set n = 0 and select arbitrary decision rule d0

(b) (Policy Evaluation) Obtain vn by solving

(I − λPdn) v
n = rdn

(c) (Policy Increment) Choose dn+1 such that

dn+1 ∈ argmax
d

{rd + λPdv
n}

and setting dn+1 = dn if possible. That is, if dn is in the argmax above, always pick dn+1 = dn.

(d) If dn+1 = dn then stop and return d∗ = dn, otherwise increment n by 1 and return to (b)

• Advantages: Works well for solving d∗ and even 1 iteration is a good heuristic.

• Disadvantages: Computing step (b)

Proposition 2.16

Let vn, vn+1 be successive values generated by policy iteration. Then vn+1 ≥ vn.

Proof. Directly
rdn+1 + λPdn+1v

n ≥ rdn + λPdnv
n = vn

=⇒ rdn+1 ≥
(
I − λPdn+1

)
vn

=⇒
(
I − λPdn+1

)−1
rdn+1

≥ vn

=⇒ vn+1 ≥ vn
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Theorem 2.17

For a finite state and action space, policy iteration terminates after a finite number of step with a stationary
(discounted) optimal policy (d∗)

∞

That is, when we stop, our vn solves the optimality equations and dn is a conserving decision rule. It is finite
because we have a finite number of actions and states.

Example 2.2. Recall example with

S = {s1, s2} , As1 = {a11, a12} , As2 = {a21}

and
p (s1 | s1, a11) =

1

2

p (s2 | s1, a11) =
1

2
p (s2 | s1, a12) = 1

p (s2 | s2, a21) = 1

and general λ ∈ [0, 1). We also have

r (s1, a11) = 5, r (s1, a12) = 10, r (s2, a21) = −1

The policy iteration is:

(1) Let d0 (s1) = a11 and d0 (s2) = a21

(2) ≡ (b) Get

v
(d0)

∞

λ (s1) =
5− 5.5λ

(1− 0.5λ)(1− λ)
and v

(d0)
∞

λ (s2) =
−1

1− λ

(3) ≡ (c) Get

d1 (s1) ∈ argmax

{
5 +

1

2
v
(d0)

∞

λ (s1) +
1

2
v
(d0)

∞

λ (s2) , 10 + v
(d0)

∞

λ (s2)

}
=⇒ d1 (s1) ∈ argmax

{
(5− 5.5λ)

(1− 0.5λ)(1− λ)
,
2(5− 5.5λ)

1− λ

}
Now if λ > 10

11 , we have d1 (s1) = a11, otherwise we have d1 (s1) = a12.

For example, let λ = 0.95 and d0(s1) = a12, d0(s2) = a21. Then

v0 = rd0
+ λPd0

v0

v0(s1) = 10 + 0.95v0(s2) =⇒ v0(s1) = −9

v0(s2) = −1 + 0.95v0(s2) =⇒ v0(s2) = −20

And hence

ds(1) = argmax{5 + 0.95(0.5(−9) + 0.5 ∗ 20)︸ ︷︷ ︸
a11

, 10 + 0.95(−20)︸ ︷︷ ︸
a12

} = argmax{−8.775,−9} = a11.

Hence, d1(s1) = a11, d1(s2) = a21 which is different from d0, we need to run the iteration again and we go
back to the analysis above.
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2.2.3 Modified Policy Iteration

Let {mn} be a sequence of non-negative integers.

(1) Select v0, specify ϵ > 0, and set n = 0.

(2) (Policy Improvement) Choose dn+1 to satisfy

dn+1 ∈ argmax
d

{rd + λPdv
n}

and setting dn+1 = dn if possible (when n > 0 ).

(3) (Partial Policy Evaluation)

a. Set k = 0 and
u0
n = max

d∈D
{rd + λPdv

n}

or equivalently,

u0
n(s) = max

a∈As

rd(s, a) + λ
∑
j∈S

p(j | s, a)vn(j)


b. If

∥∥u0
n − vn

∥∥ < ϵ(1−λ)
2λ go to step (4). Otherwise go to c.

c. If k = mn go to e., otherwise compute uk+1
n by

uk+1
n = rdn+1

+ λPdn+1
uk
n = Ldn+1

uk
n

d. Increment k by 1 and return to c.

e. Set vn+1 = umn
n , increment n by 1 and go to step (2).

(4) Set dϵ = dn+1.

2.3 Linear Programming
If v ≥ Lv then v ≥ v∗λ by Proposition 2.13. For each j ∈ S pick α(j) > 0 and consider the primal LP:

min
v

∑
j∈S

α(j)v(j)

s.t. v(s) ≥ r(s, a) + λ
∑
j∈S

p(j | s, a)v(j),∀s ∈ S,∀a ∈ As

where the constraint is equivalent to

v(s)− λ
∑
j∈S

p(j | s, a)v(j) ≥ r(s, a),∀s ∈ S, ∀a ∈ As.

Also, please note that the constraint is equivalent to

v(s) ≥ max
a∈As

{r(s, a) + λ
∑
j∈S

p(j | s, a)v(j)} ⇐⇒ v ≥ Lv =⇒ v ≥ v∗λ.

The dual LP, with dual variables x(s, a) for each s ∈ S, a ∈ As, is

max
∑
s∈S

∑
a∈As

r(s, a)x(s, a)

s.t.
∑
a∈Aj

x(j, a)− λ
∑
s∈S

∑
a∈As

p(j | s, a)x(s, a) = α(j),∀j ∈ S

x(s, a) ≥ 0,∀a ∈ As, s ∈ S.
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The following theorem shows that there is an ”one-to-one” relation between the feasible set of the dual problem above
and the set of all Markovian randomzied decision rules.

Theorem 2.18

(1) For each Markovian randomized decision rule d, let

xd(s, a) =
∑
j∈S

α(j)

∞∑
n=1

λn−1Pd∞(Xn = s, Yn = a | X1 = j),

then xd(s, a) is a feasible solution to the dual LP.

(2) Suppose that x(s, a) is a feasible solution to the dual LP. Then for each s ∈ S, by α(s) > 0,∑
a∈As

x(s, a) > 0. Define the randomized decision ruls d∞x by

P (dx(s) = a) =
x(s, a)∑

a∈As
x(s, a)

,

then xdx
(s, a) as defined above is a feasible solution to the dual LP and xdx

(s, a) = x(s, a) for all
s ∈ S and a ∈ As.

Proof.

(1) Need to show
λ
∑
s∈S

∑
a∈As

p(j | s, a)xd(s, a) = −α(j) +
∑
a∈As

x(j, a).

Then ∑
s∈S

∑
a∈As

λp(j | s, a)xd(s, a)

=
∑
s∈S

∑
a∈As

λp(j | s, a)
∑
k∈S

α(k)

∞∑
n=1

λn−1Pd∞(Xn = s, Yn = a | X1 = k)

=
∑
k∈S

α(k)

∞∑
n=1

λn
∑
a∈As

∑
s∈S

p(j | s, a)Pd∞(Xn = s, Yn = a | X1 = k)

=
∑
k∈S

α(k)

∞∑
n=1

λnPd∞(Xn+1 = j | X1 = k) [by the fact Xn is a Markovian Process]

=
∑
k∈S

α(k)

( ∞∑
n=2

λn−1Pd∞(Xn = j | X1 = k) + P (X1 = j | X1 = k)− P (X1 = j | X1 = k)

)

=
∑
k∈S

α(k)

( ∞∑
n=1

λn−1Pd∞(Xn = j | X1 = k)− 1{j = k}

)

=
∑
k∈S

α(k)

∞∑
n=1

λn−1Pd∞(Xn = j | X1 = k)− α(j)

=
∑
a∈Aj

xd(j, a)− α(j)

(2) Let x(s, a) be a feasible solution to the dual LP. Define

u(j) :=
∑
a∈Aj

x(j, a).
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Then

u(j)− λ
∑
s∈S

∑
a∈As

P (j | s, a)x(s, a) = α(j)

⇐⇒ u(j)− λ
∑
s∈S

∑
a∈As

P (j | s, a)x(s, a) u(s)∑
a∈As

x(s, a)
= α(j)

⇐⇒ u(j)− λ
∑
s∈S

∑
a∈As

P (j | s, a)u(s)P (dx(s) = a) = α(j)

⇐⇒ u(j)− λ
∑
s∈S

Pdx(j | s)u(s) = α(j)

⇐⇒ u⊤[I − λPdx ] = α⊤

⇐⇒ u⊤ = α⊤[I − λPdx
]−1 = α⊤

( ∞∑
n=1

(λPdx
)n−1

)
.

We can then write:

u(s) =
∑
k∈S

α(k)

∞∑
n=1

λn−1
∑
a∈As

Pdx
(Xn = s, Yn = a | X1 = k)

=
∑
a∈As

∑
k∈S

α(k)

∞∑
n=1

λn−1Pd∞(Xn = s, Yn = a | X1 = k)

=
∑
a∈As

xdx(s, a) =
∑
a∈Aj

x(j, a).

xdx
(s) =

∑
j∈S

α(j)

∞∑
n=1

λn−1Pdx
(xn = s, Yn = a | x1 = j)

=
∑
j∈S

α(j)

∞∑
n=1

λn−1Pdx
(xn = s | X1 = j)P (dx(s) = a)

=
∑
j∈S

α(j)

∞∑
n=1

λn−1Pdx
(xn = s | X1 = j)P (dx(s) = a)

=
∑
j∈S

α(j)

∞∑
n=1

λn−1Pdx
(xn = s | X1 = j)︸ ︷︷ ︸∑

a∈As
xdx (s,a)

x(s, a)∑
a∈As

x(s, a)

= x(s, a)

∑
a∈As

xdx
(s, a)∑

a∈As
x(s, a)

= x(s, a)

Note (From MDP textbook by Martin L. Puterman). Since by definition, different d constructs different xd(s, a). The
above theorem tells us: whenever I have a policy stationary randomized policy d, I can construct an x, and this x can
be used to construct another dx, while this dx constructs x. Then, since both dx and d are mapped to the same x,
dx = d. Similarly, if two x, x′ are mapped to the same d, they are equal (directly from (2) of the above theorem). That
is, the mappings we have above are one-to-one mappings.

Now since α(s) > 0 ∀s ∈ S, without loss of generality, we may assume
∑

s∈S α(s) = 1. Then, we can consider
the x(s, a) defined in (1) of the above theorem as the total discounted joint probability under initial-state distribution
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{α(j)} that the system visits s and choose action a. To be more specific, if we consider r(s, a)x(s, a), we get

∑
j∈S

α(j)

∞∑
n=1

λn−1r(s, a)Pd∞(Xn = s, Yn = a | X1 = j),

and if we sum over all a and s, then this is ∑
j∈S

α(j)v
d∞
x

λ (j),

where v
d∞
x

λ (j) is the expected discounted reward starting at j. Thus we have∑
j∈S

α(j)v
d∞
x

λ (j) =
∑
s∈S

∑
a∈As

x(s, a)r(s, a),

which is the expected total discounted reward under policy d∞x . Combining with the theorem above, we know for any
policy d, ∑

j∈S

α(j)vd
∞

λ (j) =
∑
s∈S

∑
a∈As

xd(s, a)r(s, a),

Proposition 2.19

(1) Let x be a basic feasible solution to the dual LP, then dx is a deterministic Markovian decision rule.

(2) Suppose that d is a Markovian deterministic decision rule, then xd is a basic feasible solution to the
dual LP.

Proof.

(1) Since x is a BFS, and
∑

a∈As
x(s, a) > 0, for each s, there is exactly one as ∈ As such that x(s, as) > 0,

otherwise, if it has two positive entries, you can perturb them to get two feasible solution such that x is in their
convex hull. Then

P (dx(s) = as) = 1,

P (dx(s) = a) = 0 ∀a ∈ As \ {as}.

(2) Suppose xd(s, a) is feasible but not BFS. Then there exists distinct feasible w(s, a), z(s, a), and 0 < β < 1
such that

xd(s, a) = βw(s, a) + (1− β)z(s, a).

Notice that
∑

a∈As
w(s, a) > 0,

∑
a∈As

z(s, a) > 0. If at least one of them has two nonzero entries, we have
w(s, a) > 0, z(s, a′) > 0 for a ̸= a′, and hence P (dx(s) = a) > 0 and P (dx(s) = a′) > 0, so dx is not
deterministic. If they both have exactly one nonzero entry, then xd(s, a) has exactly one nonzero entry for this
s, it is a BFS or same to the previous case, it is not deterministic, we are done.

Theorem 2.20

(1) There exists a bounded optimal solution x∗ to the dual LP.

(2) Suppose that x∗ is an optimal solution to the dual LP. Then d∞x∗ is an optimal policy.

(3) Suppose that x∗ is a basic optimal solution to the dual LP. Then d∞x∗ is a deterministic optimal policy.

(4) Suppose d∗∞ is an optimal policy. Then xd∗ is an optimal solution to the dual LP.

(5) Suppose d∗∞ is a deterministic optimal policy. Then xd∗ is a basic optimal solution to the dual LP.
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Proof.

(1) Notice that since S,As are finite, we always have a feasible solution for the primal, so the dual always has an
optimal solution.

(2) Let v∗ be an optimal solution of the primal, notice that by the constraints of the primal, v∗ ≥ Lv∗, so v∗ ≥ v∗λ.∑
s∈S

α(s)v∗(s) =
∑
s∈S

∑
a∈As

r(s, a)x∗(s, a)

=
∑
s∈S

(∑
a∈As

x∗(s, a)

)(∑
a∈As

r(s, a)P (dx∗(s) = a)

)
= u⊤rd∞

x∗

= α⊤[I − λPdx∗ ]
−1rd∞

x∗

=
∑
s∈S

α(s)v
d∞
x∗

λ (s),

where u(s) :=
(∑

a∈As
x∗(s, a)

)
and u⊤ = α⊤[I − λPdx∗ ]

−1. Then by definition v∗λ ≥ v
d∞
∗

λ , and α(s) > 0,∑
s∈S

α(s)v∗(s) =
∑
s∈S

α(s)v∗λ(s) =
∑
s∈S

α(s)v
d∞
∗

λ (s) =⇒ v∗(s) = v∗λ(s) = v
d∞
∗

λ (s) ∀s ∈ S,

so d∞x∗ is optimal.

(3) Follows from (2) and the previous proposition.

(4) Let x be an arbitrary feasible solution to the dual LP and build policy d such that x(s, a) = xd(s, a). Also, let
xd∗ be the feasible solution built from d∗.∑

s∈S

∑
a∈As

r(s, a)xd∗(s, a) =
∑
s∈S

α(s)v
(d∗)∞

λ

≥
∑
s∈S

α(s)vd
∞

λ

=
∑
s∈S

∑
a∈As

r(s, a)xd(s, a)

=
∑
s∈S

∑
a∈As

r(s, a)x(s, a).

Since x is arbitrary, xd∗ is optimal.

Proposition 2.21

For any positive vector α, the dual LP has the same optimal basis. Hence, (dx∗)∞ does not depend on the
choice of α

Proof. Let x∗ be the optimal basis so x∗(s, a) > 0 for only one a ∈ As. From sensitivity analysis, changing α only
affects feasibility but not optimality of the basis. Hence, we show that the basis corresponding to x∗ remains feasible
as long as α is positive. We let x∗ be the part corresponding to positive entries, then

(x∗)⊤(I − λPdx∗ ) = α⊤ ⇐⇒ x∗ = (I − λPdx∗ )
−1α⊤ ≥ α⊤ > 0.

Not that the value of x∗ might change as α changes, but the positive entries’ positions are not, so the basis stays the
same, that is, dx∗ does not changes as it’s a deterministic policy choosing the unique action a with x∗(s, a) > 0 for
each s.



Fall 2024 Rui Gong Infinite Horizon MDPs

Example 2.3. Consider our previous example again:

S = {s1, s2} , As1 = {a11, a12} , As2 = {a21}

and
p (s1 | s1, a11) =

1

2

p (s2 | s1, a11) =
1

2
p (s2 | s1, a12) = 1

p (s2 | s2, a21) = 1

and λ = 0.95. We also have
r (s1, a11) = 5, r (s1, a12) = 10, r (s2, a21) = −1.

The primal LP formulation, with α (s1) = α (s2) =
1
2 , is

min
v

1

2
v (s1) +

1

2
v (s2)

s.t. v (s1)− 0.95 [0.5v (s1) + 0.5v (s2)] ≥ 5

v (s1)− 0.95v (s2) ≥ 10

v (s2)− 0.95v (s2) ≥ −1

and the dual LP is

max 5x (s1, a11) + 10x (s1, a12)− x (s2, a21)
s.t. x (s1, a11) + x (s1, a12)− 0.95 [0.5x (s1, a11)] =

1
2

x (s2, a21)− 0.95 [0.5x (s1, a11) + x (s1, a12) + x (s2, a21)] =
1
2

x (s1, a11) ≥ 0
x (s1, a12) ≥ 0
x (s2, a21) ≥ 0

and the dual LP can be solved to get the optimal solution

x∗ (s1, s11) = 0.9523

x∗ (s1, s12) = 0

x∗ (s2, s21) = 19.0476

2.4 Action Elimination
Proposition 2.22

If for a′ ∈ As, r (s, a
′) + λ

∑
j∈S p(j | s, a)v∗λ(j) < v∗λ(s) then

a′ /∈ argmax
a∈A∗

r(s, a) + λ
∑
j∈S

p(j | s, a)v∗λ(j)


Proof. We know

v∗λ(s) = max
a∈A,

{
r(s, a) + λ

∑
p(j | s, a)v∗λ(j)

}
but we have

r
(
s, a

′
)
+ λ

∑
j∈S

p(j | s, a′)v∗λ(j) < v∗λ(s)

Clearly a′ cannot be optimal in state s.
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Proposition 2.23

Suppose there exists vL and vU such that vL ≤ v∗λ ≤ vU . Then if for a′ ∈ As,

r (s, a′) + λ
∑
j∈S

p(j | s, a)vu(j) < vL(s)

any stationary policy that uses α′ in state s cannot be optimal.

Proof.

r(s, a′) + λ
∑
j∈S

P (j | s, a′)v∗λ(j)

≤r(s, a′) + λ
∑
j∈S

P (j | s, a′)vuλ(j)

<vL(s) ≤ v∗λ(s)

so a′ is not optimal from the previous result.

Theorem 2.24

Let V σ be the set of structured values and Dσ be the set of structured decision rules. Suppose that for all v
there exists Ldv = Lv and ∥rd∥ ≤ M < ∞ for all d and that

(a) v ∈ V σ implies that Lv ∈ V σ

(b) v ∈ V σ implies that there exists d′ ∈ Dσ ∩ argmaxd Ldv

(c) for any convergent sequence {vn} ⊆ V σ, limn→∞ vn ∈ V σ .

There exists an optimal stationary policy (d∗)
∞ where d∗ ∈ Dσ .

Proof. Choose v0 ∈ V σ and set vn = Lvn−1. Then from (a) we know that vn ∈ V σ for all n ∈ N. But from (c) we
know that vn → v∗λ ∈ V σ . Finally, from (b) we have the existence of d∗ ∈ Dσ and

d∗ ∈ Dσ ∩ argmax
d

Ldv
∗
λ.

Theorem 2.25

Consider S = {0, 1, . . .}, As = A for all s ∈ S. If

1. r(s, a) is non-decreasing in s for all a ∈ A,

2.
∑∞

j=k p(j | s, a) is non-decreasing in s for all k ∈ S and a ∈ A,

3. r(s, a) is super(sub)additive on S ×A, and

4.
∑∞

j=k p(j | s, a) is super(sub)additive on S ×A,

then there exists an optimal stationary policy (d∗)
∞ for which d∗(s) is non-de(in)creasing in s.

Proof. Let us define
V σ = {v : v(s) is non-decreasing in s}
Dσ = {d : d(s) is non-decreasing in s}
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and let v0 = 0. Then v1(s) = maxa∈As , {r(s, a)} =⇒ v1 ∈ V σ . Assume that vn ∈ V σ . We will show that
vn+1 ∈ V σ . We have

vn+1(s) = max
a∈As

r(s, a) + λ
∑
j∈S

p(j | s, a)vn(j)


= r (s, a∗s) + λ

∑
j∈S

p (j | s, a∗s) vn(j)

and suppose that s′ ≥ s. Then

vn+1(s) = r (s, a∗s) + λ
∑
j∈S

p (j | s, a∗n) vn(j)

≤ r (s′, a∗s) + λ
∑
j∈S

p (j | s′, a∗s) vn(j)

≤ max
a∈Ai

r (s′, a) + λ
∑
j∈S

p (j | s′, a) vn(j)


= vn+1 (s′)

Thus, {vn} ∈ V σ and vn → v∗λ ∈ V σ by the fact that pointwise limit of a nondecreasing vector is nondecreasing.
Suppose that v ∈ V σ . Does there exist a d ∈ Dσ? For s−, s+and a− ≤ a+we have

∞∑
j=0

[
p
(
j | s+, a+

)
+ p

(
j | s−, a−

)]
v(j) ≥

∞∑
j=0

[
p
(
j | s+, a−

)
+ p

(
j | s−, a+

)]
v(j)

and so

r(s, a) + λ

∞∑
j=0

p(j | s, a)v(j)

is superadditive. Hence, there must exist a decision rule

d(s) ∈ argmax
a∈A

r(s, a) + λ

∞∑
j=0

p(j | s, a)v(j)

 ∩Dσ

which is non-decreasing in s from the finite case theorem. That is, since

r(s, a) + λ

∞∑
j=0

p(j | s, a)v(j)

is superadditive, we can always pick the largest a attaining the maximum, which gives a non-decreasing d by Lemma 1.12.

Theorem 2.26

Consider S = {0, 1, . . .}, As = A for all s ∈ S. If

1. r(s, a) is non-increasing in s for all a ∈ A,

2.
∑∞

j=k p(j | s, a) is non-decreasing in s for all k ∈ S and a ∈ A,

3. r(s, a) is superadditive on S ×A, and

4.
∑∞

j=k p(j | s, a)u(j) is superadditive on S ×A for non-increasing u,

then there exists an optimal stationary policy (d∗)
∞ for which d∗(s) is non-decreasing in s.

Proof. Similar to the above, notice how Lemma 1.14 is used.
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Monotone Policy Iteration Suppose S = {0, . . . ,K}.

1. Choose d0 which is monotone non-decreasing in S. Set n = 0.

2. Find vn by solving (I − λPdn
)v = rdn

.

3. Set s = 0 and A′
0 = A′.

(a) Set

A′∗
s = argmaxa∈As

r(s, a) + λ
∑
j∈S

pt(j | s, a)vn(j)


(b) If s = K go to step 3d), otherwise set

A′
s+1 = {a ∈ A′

s : a ≥ max {a′ ∈ A∗
s}}

(c) Substitute s+ 1 for s and return to 3a).

(d) Pick d
(s)
n+1 ∈ A∗

s setting dn+1 = dn if possible.

4. If dn+1 = dn, stop and set d∗ = dn. Otherwise, substitute n+ 1 for n and go to step 2
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3 Long-Run Average Reward Optimality

3.1 Long-Run Average Reward
Let π = (d1, d2, d3, . . .), {Xt : t ≥ 0} be the underlying Markov Chain. Recall that if rN+1(s) = 0,

vπN+1(s) = Eπ

[
N∑
t=1

r (Xt, Yt)

∣∣∣∣∣X1 = s

]
.

Definition 3.1

If π = (d, d, . . .), define the long-run average reward (gain) under policy π starting from s,

gπ(s) = lim
N→∞

1

N
vπN+1(s) = lim

N→∞
rd + Pdrd + P 2

d rd + . . .+ PN−1
d rd = lim

N→∞

1

N

N∑
n=1

Pn−1rdn
(s)

and we also define

P ∗ = lim
N→∞

1

N

N−1∑
n=0

Pn

Hence, gπ exists when limN→∞
1
N

∑N
n=1 P

n−1 exists.

Lemma 3.2

Suppose limn→∞ an = a∗, then the Cesaro limit: limN→∞
a1+...+aN

N = a∗ but limn→∞ an might not exist
while the Cesaro limit does.

So by the lemma above, if limn→∞ Pn
d exists, limN→∞

1
N

∑N
n=1 P

n−1 exists. If the stationary distribution exists,
limn→∞ Pn

d exists. If the Markov Chain has finitely many states, then the row s of limN→∞
1
N

∑N
n=1 P

n−1 represents
the long-run time spent in each state when starting with state s.

Proposition 3.3

If S is finite, then

lim
N→∞

1

N

N∑
n=1

Pn−1
d = P ∗

d

always exists for any d∞, and we have
gd

∞
(s) = P ∗

d rd(s).
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Definition 3.4

Define

gπ+(s) = lim sup
N→∞

1

N
v∗N+1(s)

gπ−(s) = lim inf
N→∞

1

N
v∗N+1(s)

A policy π∗ is long-run average optimal if

gπ
∗

− (s) ≥ gπ+(s) for all π

A policy π∗ is limsup optimal if
gπ

∗

+ (s) ≥ gπ+(s) for all π

A policy π∗ is liminf optimal if
gπ

∗

− (s) ≥ gπ−(s) for all π

Proposition 3.5

Let S be countable. Let d∞ be a stationary Markovian randomized policy and suppose that P ∗
d exists, then

gd
∞
(s) = P ∗

d rd(s).

Definition 3.6

Let P denote the probability transition matrix of a Markov chain {Xt : t = 1, 2, . . .} and r(s) a reward func-
tion for each s ∈ S. We refer to the bivariate stochastic process {(Xt, r (Xt)) : t = 1, 2, . . .} as a Markov
reward process.

Remark. If P ∗ exists,

g(s) = [P ∗r](s) = lim
N→∞

1

N

N∑
n=1

Pn−1r(s)

Proposition 3.7

Suppose that P ∗ exists. If j and k are in the same irreducible class, gπ(j) = gπ(k). Furthermore, if the
Markov chain is irreducible or unichain (i.e. a single recurrent class plus some transient states), then gπ(s) is
a constant function.

Claim. If n ≥ 1,(P − P ∗)n = Pn − P ∗

Proof. When n = 1, it’s trivial. We do induction on n. Then

(P − P ∗)n+1 = (Pn − P ∗)(P − P ∗)

= Pn+1 − PnP ∗ − P ∗P + P ∗P ∗

= Pn+1 − 2P ∗ + P ∗

= Pn+1 − P ∗,

where we know that PP ∗ = P ∗.
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Definition 3.8

The bias vector is defined as
h = (I − P + P ∗)

−1
(I − P ∗) r.

Note that

(Pn − P ∗) (I − P ∗) = Pn − P ∗ − (Pn − P ∗)P ∗ = Pn − P ∗ − (P ∗ − P ∗) = Pn − P ∗,

and

(I − P + P ∗)
−1

(I − P ∗) =

∞∑
n=0

(Pn − P ∗)

from the fact that

(I − P + P ∗)
−1

=

∞∑
n=0

(P − P ∗)
n
= I +

∞∑
n=1

(Pn − P ∗)

and hence

(I − P + P ∗)
−1

(I − P ∗) = (I − P ∗) +
∞∑

n=1

(Pn − P ∗) (I − P ∗)

= (I − P ∗) +

∞∑
n=1

(Pn − P ∗)

=

∞∑
n=0

(Pn − P ∗)

Therefore, the bias function, can be expressed as

h = (I − P + P ∗)
−1

(I − P ∗) r =

∞∑
n=0

(Pnr − P ∗r) =

∞∑
n=0

(Pnr − g)

and we can interpret

h(s) = Es

[ ∞∑
t=1

(r (St)− g (St))

]
.

In fact, we can also interpret h as capturing the transition behavior of the Markov Chain. If we write h =∑∞
n=0(P

n − P ∗)r, it measures the performance of this policy before it reaches stationary.

Remark. Note that since vN+1 =
∑N

t=1 P
t−1r then

h =

∞∑
t=1

(
P t−1r − g

)
=

N∑
t=1

(
P t−1r − g

)
+

∞∑
t=N+1

(
P t−1r − g

)
=

N∑
t=1

P t−1r −Ng +

∞∑
t=N+1

(
P t−1 − P ∗) r

= vN+1 −Ng + o(1)

and hence
vN+1(s) = h(s) +Ng(s) + o(1)

and as N → ∞ we have vN+1(s) → h(s) + Ng(s). Now suppose that states j and k belong to the same recurrent
class. Then, g(j) = g(k) which implies

lim
N→∞

[vN+1(j)− vN+1(k)] = h(j)− h(k)
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which is why the bias h is also called the relative value function.

Theorem 3.9

Let S be finite and let g and h denote the gain and bias vectors of a Markov Reward process with transition
matrix P and reward vector r. Then

(a) (I − P )g = 0 and g + (I − P )h = r

(b) Suppose that g and h satisfy (I − P )g = 0 and g + (I − P )h = r. Then g = P ∗r and

h = (I − P + P ∗)
−1

(I − P ∗) r + u

where (I − P )u = 0.

(c) Suppose g and h satisfy the equations in (a) and P ∗h = 0, then

h = (I − P + P ∗)−1(I − P ∗)r.

With (b) and (c) above, we know that h computed in (b) is a ”shifted” bias while the one in (c) is the true one.

Proof. (a) Directly (I − P )P ∗r = (P ∗ − P ∗) r = 0 and

g + (I − P )h

=P ∗r + (I − P ) (I − P + P ∗)
−1

(I − P ∗) r

=P ∗r + (I − P )

∞∑
n=0

(Pn − P ∗) r

=P ∗r +

∞∑
n=0

(
Pn − P ∗ − Pn+1 + P ∗) r

=P ∗r +

∞∑
n=0

(
Pn − Pn+1

)
r

=P ∗r + (I − P ∗) r

=r

(b) We first note that adding the first equation plus P ∗ times the second equation. By P ∗(I − P ) = P ∗ − P ∗ = 0,
it gives us

P ∗g + g − Pg = P ∗r

=⇒ (I − P + P ∗) g = P ∗r

=⇒g = (I − P + P ∗)
−1

P ∗r

=⇒g =

[
I +

∞∑
n=1

(Pn − P ∗)

]
P ∗r

=⇒g = P ∗r,

where [I − (P − P ∗)]−1 =
∑∞

n=0(P − P ∗)n.
In part (a), we have shown that h = (I − P + P ∗)

−1
(I − P ∗) r satisfies g+ (I −P )h = r. Suppose that h′ is

another vector satisfying g + (I − P )h′ = r. Then

g + (I − P )h = r and g + (I − P )h′ = r

implies that
(I − P ) (h− h′)︸ ︷︷ ︸

−u

= 0.
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(c) Given g + (I − P )h = r, P ∗h = 0, we have

P ∗r + (I − P )h = r, P ∗h = 0,

which implies

P ∗r + (I − P + P ∗)h = r =⇒ (I − P + P ∗)h = (I − P ∗)r =⇒ h = (I − P + P ∗)−1(I − P ∗)r.

Remark. Note that if g is a constant vector, then since P is a probability matrix, then (I − P )g = 0 trivially

Corollary 3.10

Suppose P is unichain. Then the long-run average reward P ∗r = ge where g ∈ R is a constant, and it is
uniquely determined by solving

ge+ (I − P )h = r,

where the other equation (I − P )ge = 0 is redundant. Furthermore, if P ∗h = 0 then h =

(I − P + P ∗)
−1

(I − P ∗) r.

Proof. Suppose g and h satisfy the above equation. Then by the previous theorem, P ∗r = ge and

h = (I − P + P ∗)
−1

(I − P ∗) r + ke

for any scalar k. Furthermore, as P ∗h = 0 then h = (I − P + P ∗)
−1

(I − P ∗) r.

Lemma 3.11: Laurent Series Expansion

For 0 < λ < 1, ρ = 1−λ
λ =⇒ λ = 1

1+ρ . Then the infinite horizon expected value is

vλ =
1 + ρ

ρ
g + (1 + ρ)h+ (1 + ρ)

∞∑
n=1

ρnyn,

for some yn, which is equivalent to

vλ =
1

1− λ
g +

h

λ
+ (1− λ)

∞∑
n=1

1

λn
yn

(1− λ)vλ = g +
1− λ

λ
h+ (1− λ)2

∞∑
n=1

1

λn
yn

Proposition 3.12

Let g and h represent the gain and bias of a Markov Reward process with finite state space S. Then,

vλ =
g

Lλ
+ h/λ+ f(λ)

where f(λ) is a vector whose components converge to 0 as λ ↑ 1.

Apply the results above,

Corollary 3.13

We have
lim
λ↑1

(1− λ)vλ = g
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3.2 Classification of MDPs
(a) Recurrent: if the transition matrix corresponding to every stationary deterministic policy yields an irreducible

Markov chain.

(b) Unichain: if the transition matrix corresponding to every stationary deterministic policy yields a single recurrent
class plus some (possibly none) transient states.

(c) Communicating: if for every pair of states s and j there exists a deterministic stationary policy under which j is
accessible from s, that is pnd (s | j) > 0 for some n ≥ 1. Note that they do NOT need to communicate under the
same policy.

(d) Weakly communicating: if there exists a closed set of states which is a recurrent class under some deterministic
stationary policy, plus (possibly empty) set of transient states which is transient under every policy.

(e) Multichain: if there exists a policy under which Markov Chain has multiple recurrent classes.

Example 3.1 (Inventory problem revisited). Suppose the warehouse has a capacity of 3 units. We are given

P (Dt = 0) = p

P (Dt = 1) = 1− p

S = {0, 1, 2, 3}
As = {0, 1, . . . , 3− s}

d(0) = 1

d(1) = 0

d(2) = 1

d(3) = 0

The transition plot is below:

0 1

p

p

1− p

1− p

2 3

p

p

1− p

1− p

Consider a separate policy
δ(0) = 3

δ(1) = 0

δ(2) = 0

δ(3) = 0.

The transition plot is below:
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0 1

p

p

1− p

2 3

p

1− pp

1− p

1− p

These two policies, d and δ, imply this is a communicating and multichain MDP.

Example 3.2. Given S = {s1, s2} and As1 = {a11, a12} , As2 = {a21}, define

p (s1 | s1, a11) = 1

p (s2 | s1, a12) = 1

p (s2 | s2, a21) = 1

and d (s1) = a11, d (s2) = a21, δ (s1) = a12, δ (s2) = a21 and the policies d and δ imply that this is multichain. Note
that this is not a weakly-communicating because s1 is not transient under every policy and even though δ gives a single
recurrent class.

Example 3.3. S = {s1, s2}, As1 = {a11}, As2 = {a21, a22}.

P (s2 | s1, a11) = 1, P (s1 | s2, a22) = 1, P (s2 | s2, a21) = 1.

Consider d(s1) = a11, d(s2) = a21 and δ(s1) = a11, δ(s2) = a22. Thus the MDP is unichain and communicating.

Example 3.4. S = {s1, s2}, As1 = {a11, a12}, As2 = {a21, a22}.

P (s1 | s1, a11) = 1, P (s2 | s1, a12) = 1, P (s2 | s2, a21) = 1, P (s1 | s2, a22) = 1.

d1(s1) = a11, d1(s2) = a21

d2(s1) = a11, d2(s2) = a22

d3(s1) = a12, d3(s2) = a21

d4(s1) = a12, d4(s2) = a22.

Thus the MDP is multichain (by d1) and communicating (by d2, d3, d4).

Proposition 3.14

1. A Markov decision process is communicating if and only if there exists a randomized stationary policy
where the chain is irreducible.

2. A Markov decision process is weakly communicating if and only if there exists a randomized stationary
policy under which the chain has a single recurrent set with some set of transient states where under any
policy, these states must be transient.



Fall 2024 Rui Gong Long-Run Average Reward Optimality

Theorem 3.15

Assume a weakly communicating model and let d be a Markovian deterministic decision rule.

(a) Let C be a recurrent class in the Markov Chain corresponding to d∞. Then there exists a deterministic
decision rule δ with δ(s) = d(s) for all s ∈ C and for which the chain generated by d has C as its
irreducible set.

(b) Suppose the stationary policy d∞ has gd
∞
(s) < gd

∞
(s′) for some s ∈ C, s′ ∈ S. Then there exists a

stationary policy δ∞ for which
gδ

∞
(s) = gδ

∞
(s′) ≥ gd

∞
(s′)

Proof. (a) Let T be the set of transient states that are transient under all policies. Then ∃s0 ∈ S\(T ∪ C) and
a′s0 ∈ As such that ∑

j∈C

P (j | s0, as0) > 0.

If S = T ∪ C, there exists s0 ∈ T should work too because at least one transient state should go to C.
We then set δ(s0) = as0 and augment T ∪ C with T ∪ C ∪ s and continue in this fashion until δ(s) is defined
for all s ∈ S\T . By definition of T , there exists s′ ∈ T and as′ ∈ As′ for which∑

j∈S\T

P (j | s′, as′) > 0

We then set δ (s′) = as′ .

(b) If s′ ∈ C then the result follows from (a) with gδ
∞
(s) = gδ

∞
(s′) = gd

∞
(s′) by the g is constant in the same

recurrent class. If s′ is transient under d∞ then there exists a recurrent state s′′ for which

gd
∞
(s′′) ≥ gd

∞
(s′)

since essentially gd
∞

is a weighted average of all gains for recurrent states it can end up in. So there exists s′′

which yields the largest gain. Then apply (a) when C is the closed set containing s′′. We will get

gδ
∞
(s′′) = gδ

∞
(s′) = gd

∞
(s′′) ≥ gd

∞
(s′) .

Theorem 3.16

Assume a weakly communicating model and let d be a determinisitic decision rule.

1. Given a Markovian deterministic decision rule d there exists a Markovian deterministic decision rule δ
for which gδ

∞
is constant and gδ

∞ ≥ gd
∞

.

2. If there exists a stationary optimal policy, there exists a stationary optimal policy with constant gain.

3.2.1 Unichain Markov Decision Processes

Remark. The Optimality Equations for Unichain MDPs are:
maxa∈As

{
r(s, a)− g +

∑
j∈S p(j | s, a)h(j)− h(s)

}
= 0

maxd {rd − ge+ (Pd − I)h} = 0

g + (I − P )h = r
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where the first equation is equivalent to

g + h(s) = max
a∈As

r(s, a) +
∑
j∈S

p(j | s, a)h(j)


⇐⇒ max

d
{rd − g∗e+ (Pd − I)h} = 0.

This is because, we know that

v∗λ =
1

1− λ
g∗e+

h

λ
+ f(λ) = max

d∈D
{rd + λPdv

∗
λ}

which implies that

0 = max
d∈D

{rd + (λPd − I) v∗λ}

= max
d∈D

{
rd + (λPd − I)

[
1

1− λ
g∗e+

h

λ
+ f(λ)

]}
= max

d∈D

{
rd + (λPd − I)

1

1− λ
g∗e+ (λPd − I)

h

λ
+ (λPd − I) f(λ)

}
= max

d∈D

{
rd +

λ− 1

1− λ
g∗e+ (λPd − I)

h

λ
+ (λPd − I) f(λ)

}
where the second last to the last line is by λPdge

∗ = λg∗e. And if we take λ ↑ 1 then

0 = max
d

{rd − g∗e+ (Pd − I)h}

Alternatively, since
vN+1 = Ng∗e+ h+ o(1)

v∗N = (N − 1)g∗e+ h+ o(1)

and
v∗N = max

d∈D
{rd + λPdv

∗
N}

then
Ng∗e+ h+ o(1) = max

d∈D
{rd + Pd ((N − 1)g∗e+ h+ o(1))}

and hence by Pde = e,
0 = max

d∈D
{rd − g∗e+ (Pd − I)h+ o(1)}

and as N → ∞, 0 = maxd∈D {rd − g∗e+ (Pd − I)h}.
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Theorem 3.17

Suppose S is countable,

(a) If there exists a scalar g and a vector h which satisfy

max
d∈D

{rd − g + (Pd − I)h} ≤ 0

then ge ≥ g∗+.

(b) If there exists a scalar g and a vector h with

max
d∈D

{rd − g + (Pd − I)h} ≥ 0

then ge ≤ g∗−.

(c) If there exists a scalar g and a vector h with

max
d∈D

{rd − g + (Pd − I)h} = 0

then ge = g∗+ = g∗− = g∗.

Proof. (a) We can write the condition as maxd{rd + Pdh} ≤ ge+ h, then we have

ge+ h ≥ rd + Pdh for all d
π = (d1, d2, d3, . . .)

ge ≥ rd2
+ (Pd2

− I)h =⇒ ge = Pd1
ge ≥ Pd1

rd2
+ Pd1

(Pd2
− I)h

ge ≥ Pd1
Pd2

rd3
+ Pd1

Pd2
(Pd3

− I)h

...
ge ≥ Pd1

Pd2
. . . PdN−1

rdN
+ Pd1

Pd2
. . . PdN−1

(PdN
− I)h

Add the ge ≥ inequalities up, we get

Nge ≥
[
rd1

+ Pd1
rd2

+ . . .+ Pd1
Pd2

. . . PdN−1
rdN

+ (Pd − I)h
]

+ Pd1
(Pd2

− I)h+ . . .+ Pd1
Pd2

. . . PdN−1
(PdN

− I)h

Treat the terms in the square bracket as an expected reward with rN+1 = 0, then we get

ge ≥
V π
N+1

N
+

1

N

(
(Pd − I)h+ Pd1(Pd2 − I)h+ . . .+ Pd1 . . . PdN−1

(PdN
− I)h

)
︸ ︷︷ ︸

(1)

where (1) equals to 1
N (Pd1Pd2 . . . PdN

− I)h and ∥Pd1 . . . PdN
h∥≤ ∥h∥< ∞, and so lim supN→∞(1) = 0.

Thus

ge ≥ lim sup
N→∞

vπN+1

N
=⇒ ge ≥ g∗+.

(b) By maxd{rd +Pdh} ≥ ge+h, there exists d such that ge ≤ rd +(Pd − I)h. Let π = d∞. Using the argument
in part (a), we have

ge ≤ lim inf
N→∞

vd
∞

N+1

N
≤ g∗−.
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Theorem 3.18

Suppose S and As for each s ∈ S are finite, and the model is unichain

(a) Then there exists a scalar g and a vector h for which

0 = max
d∈D

{rd − ge+ (Pd − I)h}

(b) If there exists any other solution (g′, h′) then g = g′.

Definition 3.19

A decision rule dh is called h-improving if

dh ∈ argmax
d

{rd + Pdh} ,

or equivalently
rdh

+ Pdh
h = max

d
{rd + Pdh}.

is an optimal policy.

Theorem 3.20

Suppose scalar g∗ and h vector satisfy the unichain optimality equations. Then if d∗ is h-improving then
(d∗)∞ is a long-run average optimal policy.

Proof. Note 0 = maxd{rd−g∗e+(Pd−I)h}, so d∗ ∈ argmax{rd+Pdh} implies rd∗ +Pd∗h = maxd{rd+Pdh}.
Hence,

rd∗ + Pd∗h− g∗e− h = max
d

{rd − g∗e+ (Pd − I)h} = 0,

which implies g∗e+ (I − Pd∗)h = rd∗ and g∗ = g(d
∗)∞ .

Theorem 3.21

Suppose S and AS for all s ∈ S are finite, then

(a) There exists a stationary optimal policy.

(b) There exists g∗ and h satisfying the optimal equation.

(c) Any stationary policy derived from h-improving decision rule is long-run reward optimal,

(d) g∗e = g∗+ = g∗−.

Value Iteration Algorithm Define:
sp(v) = max

s
v(s)−min

s
v(s)

which is a semi-norm.

1. Select v0, specify ϵ > 0, and set n = 0.

2. For each s ∈ S, compute vn+1 by

vn+1(s) = max
a∈As

r(s, a) +
∑
j∈S

p(j | s, a)vn(j)

 .



Fall 2024 Rui Gong Long-Run Average Reward Optimality

3. If sp
(
vn+1 − vn

)
< ϵ go to step 4; otherwise increment n by 1 and return to step 2.

4. For each s ∈ S choose,

dϵ(s) ∈ argmax
a∈As

r(s, a) +
∑
j∈S

p(j | s, a)vn+1(j)

 .

Theorem 3.22

Suppose S and AS are finite for each s ∈ S, r(s, a) is bounded and the model is unichain. Then for a vector v
we have

min
s∈S

(Lv(s)− v(s)) ≤ gd
∞

≤ g∗ ≤ max
s∈S

(Lv(s)− v(s))

where d ∈ argmax {rd + Pdv}.

Proof. For any v improving d, by definition,

gd
∞
e = P ∗

d rd = P ∗
d [rd + Pdv︸ ︷︷ ︸

Lv

−v]

= Pd[Lv − v]

≥ Pd min
s

(Lv(s)− v(s))e

= min
s

(Lv(s)− v(s))e

and

min
s∈S

(Lv(s)− v(s)) ≤ gd
∞

≤ g∗

We know that there exists a δ∞ such that gδ
∞

= g∗. Hence

g∗e = gδ
∞
e = P ∗

δ rδ = P ∗
δ [rδ + Pδv︸ ︷︷ ︸

≤Lv

−v]

≤ P ∗
δ [Lv − v]

≤ P ∗
δ max

s∈S
[Lv(s)− v(s)]e

= max
s∈S

[Lv(s)− v(s)]e

Theorem 3.23

(i) d∞ϵ is an ϵ-optimal policy where

dϵ(s) ∈ argmax
a∈As

r(s, a) +
∑
j∈S

p(j | s, a)vn+1(j)

 ,

where vn+1 = Lvn. Then |g∗ − g(dϵ)
∞ |≤ ϵ

(ii) Define g′ = 1
2

[
maxs

(
vn+1(s)− vn(s)

)
+mins

(
vn+1(s)− vn(s)

)]
. Then |g′ − g∗| < ϵ

2 and∣∣g′ − g(dϵ)
∞∣∣ < ϵ

2 .

Proof.
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(i) We need |g∗ − g(dϵ)
∞ |< ϵ. Using the previous result

min
s∈S

(Lvn(s)− vn(s)) ≤ gd
∞
ϵ ≤ g∗ ≤ max

s∈S
(Lvn(s)− vn(s))

and sp(vn+1 − vn) ≤ ϵ.

(ii) Note that if x ≤ y ≤ z and z − x < ϵ then

− ϵ

2
<

1

2
(x− z) ≤ y − 1

2
(x+ z) ≤ 1

2
(z − x) ≤ ϵ

2
.

We know that

min
s∈S

(
vn+1(s)− vn(s)

)
︸ ︷︷ ︸

x

≤ gd
∞
ϵ︸︷︷︸
y

≤ max
s∈S

(
vn+1(s)− vn(s)

)
︸ ︷︷ ︸

z

and so

− ϵ

2
< −1

2

(
sp
(
vn+1 − vn

))
≤ gd

∞
ϵ − 1

2
(min
s∈S

(
vn+1(s)− vn(s)

)
+max

s∈S

(
vn+1(s)− vn(s)

)
︸ ︷︷ ︸

g′

)

≤ 1

2

(
sp
(
vn+1 − vn

))
≤ ϵ

2
.

The same argument applies by the previous theorem and replacing g(d
∗
ϵ )

∞
by g∗.

Theorem 3.24

Suppose that all stationary policies yield unichain Markov chains and that every policy has an aperiodic
Markov chain. Then the value iteration converges in a finite number of iterations.

An aperiodic transformation Choose 0 < τ < 1 and define

r̃(s, a) = τr(s, a)

P̃ (j | s, a) = (1− τ)1(j = s) + τp(j | s, a)∑
j∈S

P̃ (j | s, a) = (1− τ) +
∑
j∈S

τP (j | s, a)

= (1− τ) + τ
∑
j∈S

P (j | s, a)

= 1− τ + τ = 1

r̃d = τrd

P̃d = (1− τ)I + τPd

Proposition 3.25

For any decision rule d,

P̃ ∗
d = Pd and g̃d

∞
= τgd

∞
.
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Proof. We need P ∗
d P̃d = P̃dP

∗
d = P ∗

d . Directly,

P ∗
d P̃d = P ∗

d ((1− τ)I + τPd)

= (1− τ)P ∗
d + τP ∗

dPd

= P ∗
d − τP ∗

d + τP ∗
d = P ∗

d

and hence

P̃dP
∗
d = (1− τ)P ∗

d + τPdP
∗
d = P ∗

d

Now

g̃d = P̃dr̃d = P̃dτrd = τP ∗
d rd = τgd

∞

Corollary 3.26

The set of long-run average optimal stationary policies under the original and the transformed model are the
same. That is, g̃∗ = τg∗.

Policy Iteration for Unichain Models

1. Set n = 0 and select an arbitrary decision rule dn.

2. (Policy evaluation) Obtain a scalar gn and a vector hn such that

rdn
− gne+ (Pd − I)hn = 0.

3. (Policy improvement) Choose dn+1 to satisfy

dn+1 ∈ argmax
d

{rd + Pdhn}

and setting dn+1 = dn if possible.

4. If dn+1 = dn, stop and d∗ = dn; otherwise increment n by 1 and go to step 2 .

Doing Policy Evaluation

1. Choose hn to satisfy P ∗
dn
hn = 0.

2. Pick a recurrent state s0 under dn and set hn (s0) = 0.

3. Choose hn to satisfy

−hn + (Pdn − I)w = 0

for some vector w.

Proposition 3.27

Suppose that dn+1 ∈ argmax {rd + Pdhn}. Then,

(a) gn+1e = gne+ P ∗
dn+1

[
rdn+1

− gne+
(
Pdn+1

− I
)
hn

]
(b) If

[
rdn+1

− gne+
(
Pdn+1

− I
)
hn

]
(s) > 0 for some state s which is recurrent under dn+1 then gn+1 >

gn.

(c) If
[
rdn+1

− gne+
(
Pdn+1

− I
)
hn

]
(s) = 0 for all s under dn+1 then gn+1 = gn.
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Proof. (a) By computing dn+1 and optimality equation, gn+1e = P ∗
dn+1

rdn+1 . Directly,

gn+1e = P ∗
dn+1

[rdn+1
− gne+ gne]

= gne+ P ∗
dn+1

[
rdn+1

− gne+
(
Pdn+1

− I
)
hn

]
by P ∗

dn+1
gne = gne and P ∗

dn+1
Pdn+1

= P ∗
dn+1

I .

(b) Given the assumption, then P ∗
dn+1

[
rdn+1

− gne+
(
Pdn+1

− I
)
hn

]
(s) > 0 for recurrent state.

(c) The vector above is zero when the state is transient.

Corollary 3.28

Suppose the Markov decision process is recurrent. Assume the set of states and actions are finite. Then the
policy iteration converges monotonically in a finite number of iterations to a solution (g∗, h) and average
optimal solution policy (d∗)

∞.

Proposition 3.29

Suppose dn+1 ∈ argmaxd{rd + Pdhn}, then

h(dn+1)
∞

= h(dn)
∞

− P ∗
dn+1

h(dn)
∞

+ (I − Pdn+1
+ P ∗

dn+1
)−1(I − P ∗

dn+1
)[rdn+1

− gne+ (Pdn+1
− I)hn]

Proof.

h = (I − P + P ∗)−1(I − P ∗)r

h(dn+1)
∞

= (I − Pdn+1
+ P ∗

dn+1
)−1(I − P ∗

dn+1
)rdn+1

= (I − Pdn+1
+ P ∗

dn+1
)−1(I − P ∗

dn+1
)[rdn+1

− gne+ gne+ (Pdn+1
− I)hn − (Pdn+1

− I)hn]

Now for a general h and P, P ∗, we have

[(I − P ) +

∞∑
n=1

(Pn − P ∗)]e = 0

[(I − P ∗) +

∞∑
n=1

(Pn − P ∗)](P − I)

=P − I − P ∗ + P ∗ +

∞∑
n=1

(Pn+1 − Pn)

=P − I + P ∗ − P = P ∗ − I

Then plug the above two equations into h(dn+1)
∞

, get

h(dn+1)
∞

= (I − Pdn+1 + P ∗
dn+1

)−1(I − P ∗
dn+1

)[rdn+1 − gne+ (Pdn+1 − I)hn]− (Pdn+1 − I)hn.

Then by the optimality equation and MDP being a unichain, hd∞
n − hn is a constant vector, so by Corollary 3.10

(P ∗
dn+1

− I)(hn − hd∞
n ) = 0

plug this equation in, we get the required result.
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Proposition 3.30

Suppose dn+1 ∈ argmaxd{rd + Pdhn}. If

[rdn+1
− gne+ (Pdn+1

− I)hn](s) = 0

for all s that are recurrent under (dn+1)
∞, and

[rdn+1 − gne+ (Pdn+1 − I)hn](s0) > 0

for some s0 that is transient under (dn+1)
∞ then h(dn+1)

∞
(s) > h(dn)

∞
(s) for some s which is transient

under (dn+1)
∞.

Proof. If
[rdn+1

− gne+ (Pdn+1
− I)hn](s) = 0

for all s that are recurrent under (dn+1)
∞, then dn+1(s) = dn(s) for all recurrent state s.

r(s, dn+1(s)) +
∑
j

P (j | s, dn+1(s))hn(j) = max
a

r(s, a) +
∑
j

P (j | s, a)hn(j)

 .

Since Pdn+1
(j | s) = 0 if s is recurrent and j is transient under dn+1, (dn+1)

∞ and (dn)
∞ have the same recurrent

states. Then P ∗
dn+1

= P ∗
dn

.

Note. The above proposition shows that while the gain stays the same under policy iteration, the bias might change.
The actions might remain the same but only for the recurrent states, so you can stop because of the gain optimality;
even though the value iteration might not when one seeks to find a policy being both gain and bias optimal (which is
not covered here).

Proposition 3.31

In the unichain models, the iterates of the policy iteration has the following properties:

1. g(dn+1)
∞

> g(dn)
∞

or

2. g(dn+1)
∞

= g(dn)
∞

but h(dn+1)
∞
(s) > h(dn)

∞
(s) for some s ∈ S or

3. g(dn+1)
∞

= g(dn)
∞

and h(dn+1)
∞

= h(dn)
∞

Example 3.5. Consider our old example again:

S = {s1, s2} , As1 = {a11, a12} , As2 = {a21}

and

p (s1 | s1, a11) =
1

2

p (s2 | s1, a11) =
1

2
p (s2 | s1, a12) = 1

p (s2 | s2, a21) = 1

and

r (s1, a11) = 5, r (s1, a12) = 10, r (s2, a21) = −1

We have
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d0 (s1) = a12, d0 (s2) = a21

Now,

0 = 10− g − h (s1)− h (s2)

0 = −1− g =⇒ g = −1

and also h (s2) = 0, h (s1) = 11. Hence,

d1 (s1) ∈ argmax

{
5 +

1

2
· 11 + 1

2
· 0, 10 + 1 · 0

}
= a11

and similarly d1 (s2) = a21. Next,

0 = 5− g − 1

2
h (s1)−

1

2
h (s2)

0 = −1− g =⇒ g = −1

and also h (s2) = 0, h (s1) = 12. Hence,

d2 (s1) ∈ argmax

{
5 +

1

2
· 12 + 1

2
· 0, 10 + 1 · 0

}
= a11.

3.3 LP for Unichain MDP
The LP formulation is

min
h,g

g

s.t. g + h(s)−
∑
j∈S

p(j | s, a)h(j) ≥ r(s, a),∀s ∈ S and ∀a ∈ As

and using dual variables x(s, a), the dual formulation is

max
∑
s∈S

∑
a∈As

r(s, a)x(s, a)

s.t.
∑
a∈Aj

x(j, a)−
∑
s∈S

∑
a∈As

p(j | s, a)x(s, a) = 0,∀j ∈ S

∑
s∈S

∑
a∈As

x(s, a) = 1

x(s, a) ≥ 0,∀s ∈ S and ∀a ∈ As.



Fall 2024 Rui Gong Long-Run Average Reward Optimality

Theorem 3.32

Suppose that the MDP is irreducible.

1. For each Markovian randomized decision rule d, define

xd(s, a) = P (d(s) = a)Πd(s)

for all s ∈ S, a ∈ As and Π is the stationary distribution. Then xd(s, a) is a solution to the dual LP.

2. Let x be a feasible solution to the dual LP. Then for each s ∈ S,
∑

a∈As
x(s, a) > 0. Define a random-

ized decision rule as

P (dx(s) = a) =
x(s, a)∑

a∈As
x(s, a)

.

Then xdx
is a feasible solution the dual LP and xdx

(s, a) = x(s, a).

Proof. 1. ∑
a∈Aj

P (d(j) = a)Πd(j)−
∑
s∈S

∑
a∈As

P (j | s, a)P (d(s) = a)Πd(s)

=Πd(j)−
∑
s∈S

Πd(s)

(∑
a∈As

P (j | s, a)P (d(s) = a)

)
=Πd(j)−

∑
s∈S

Πd(s)P (j | s) = 0

and ∑
s∈S

∑
a∈As

P (d(s) = a)Πd(s) =
∑
s∈S

Πd(s)
∑
a∈As

P (d(s) = a) =
∑
s∈S

Πd(s) = 1.

2. Define v(s) =
∑

a∈As
x(s, a). Let S′ = {s ∈ S : v(s) > 0}. We need to show S′ = S. x(s, a) = P (dx(s) =

a)
∑

a∈As
x(s, a) = P (dx(s) = a)v(s) and{

v(j)−
∑

j∈S Pdx
(j | s)v(s) = 0∑

s∈S v(s) = 1
=⇒ unique solution v(s) = Πdx

(s) > 0.

Corollary 3.33

1. Suppose x∗ is a basic optimal solution to the dual LP. Then the stationary policy (d∗x)
∞ in which we

choose dx∗(s) = a if x∗(s, a) > 0 is an optimal stationary deterministic policy.

2. Suppose d is a Markovian deterministic decision rule, then xd = Πd is a basic feasible solution to the
dual LP.

Corollary 3.34

There exists a bounded basic optimal solution x∗ to the dual LP and the policy using decision rule dx∗ such
that dx∗(s) = a if x∗(s, a) > 0 is an optimal deterministic policy.
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Example 3.6. Consider the previous example,

S = {s1, s2} , As1 = {a11, a12} , As2 = {a21}

and
p (s1 | s1, a11) =

1

2

p (s2 | s1, a11) =
1

2
p (s2 | s1, a12) = 1

p (s2 | s2, a21) = 1

and
r (s1, a11) = 5, r (s1, a12) = 10, r (s2, a21) = −1

max 5x (s1, a11) + 10x (s1, a12)− x (s2, a21)

s.t. x (s1, a11) + x (s1, a12)− 0.5x (s1, a11) = 0

x (s1, a11)− x (s1, a12)− 0.5x (s1, a11)− x (s2, a22) = 0

x (s1, a11) + x (s1, a12) + x (s2, a21) = 1

x (s1, a11) , x (s1, a12) , x (s2, a21) ≥ 0

and solving it, we will get

x∗ (s1, a11) = x∗ (s1, a12) = 0, x∗ (s2, a21) = 1

Note that s1 is trnasient, so it does not matter d∗(s1) = a11 or a12.

For a decision rule d, let Rd denote the set of recurrent states and Td denotes the one of transient ones.

Theorem 3.35

Suppose the Markov decision process is unichain.

1. Let d be a Markovian randomized decision rule and Rd be the set of recurrent states under d. Define

xd(s, a) =

{
P (d(s) = a)Πd(s), for s ∈ Rd

0, otherwise

Then xd(s, a) is a solution to the dual LP .

2. Let x(s, a) be a feasible solution the dual LP. Define

Sx =

{
s ∈ S :

∑
a∈As

x(s, a) > 0

}

and define P (dx(s) = a) = x(s, a)/
[∑

a∈As
x(s, a)

]
for s ∈ Sx and arbitrary otherwise. Then

xdx(s, a) = x(s, a) for a ∈ As and s ∈ Sx.
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Corollary 3.36

1. Let x be a basic feasible solution to the dual LP and suppose that dx is defined as in the previous
theorem. Then for dx is deterministic and satisfies

dx(s) =

{
a, if x(s, a) > 0 for s ∈ Sx

arbitrary, for s /∈ Sx

2. Suppose that dx is a deterministic decision rule, then x(s, a) = Πd(s) is a basic feasible solution to the
dual LP.

Corollary 3.37

There exists a bounded optimal basic solution x∗ to the dual LP and the policy (dx∗)
∞ defined as

dx∗(s) =

{
a, if x(s, a) > 0 for s ∈ Sx∗

arbitrary, for s /∈ Sx∗

is an optimal policy.

Note. Constraints can be added to the LP, while value/policy iteration cannot.

As before, consider

• Dσ : set of structured decision rules.

• Πσ : set of structured policies.

• V σ : set of structured value functions.

• Ldv = rd + Pdv, Lv = maxd{rd + Pdv}.

Theorem 3.38

Let S = {0, 1, . . .}. Then if

1. for any sequence {λn} , 0 < λn < 1 for which λn → 1,

lim
n→∞

[
v∗λn

− v∗λn
(0)e

]
∈ V σ

and,

2. h ∈ V σ implies that there exists a d′ such that

d′ ∈ argmaxd Ldh ∩Dσ,

then Dσ ∩ argmaxd∈D Ldh ̸= ∅ and

dσ ∈ argmax
d∈D

{rd + Pdh} ∩Dσ

is an optimal decision rule if an optimal decision rule exists.

Proof. We have
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vλ =
ge

1− λ
+ h+ f(λ)

vλ(s) =
g

1− λ
+ h(s) + h(λ)

vλ(0) =
g

1− λ
+ h(0) + h(λ)

and

[vλ(s)− vλ(0)] = h(s)− h(0) + i(λ) =⇒ lim
λ→1

[vλ(s)− vλ(0)] = h(s).

Theorem 3.39

Let S = {0, 1, 2, . . .} and suppose

1. r(s, a) is non-decreasing in s for all a ∈ A,

2.
∑∞

j=k p(j | s, a) is non-decreasing in s for all k ∈ S and a ∈ A,

3. r(s, a) is superadditive (subadditive) on S ×A,

4.
∑∞

j=k p(s | j, a) is superadditive (subadditive) on S ×A.

Then if there exists a long-run average optimal policy, there exists an optimal decision rule (d∗)∞ which is
non-decreasing (non-increasing) in s. Here,

V σ : set of non-decreasing value functions

Dσ : set of non-decreasing rules.

Theorem 3.40

Let S = {0, 1, 2, . . .} and suppose

1. r(s, a) is non-increasing in s for all a ∈ A,

2.
∑∞

j=k p(j | s, a) is non-decreasing in s for all k ∈ S and a ∈ A,

3. r(s, a) is superadditive on S ×A,

4.
∑

j∈S p(s | j, a)u(j) is superadditive on S ×A for any non-increasing u.

Then there exists an optimal decision rule which is monotone non-decreasing in s if there exists an optimal
decision rule.

2.2 Multichain Markov Decision Processes
Example 3.7. Let S = {s1, s2, s3} , As1 = {a11, a12} , As2 = {a21, a22} and As3 = {a31}. We have

p (s1 | s1, a11) = 1

p (s2 | s1, a12) = 1

p (s2 | s2, a21) = 1

p (s3 | s2, a22) = 1

p (s3 | s3, a31) = 1

Furthermore,
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r (s1, a11) = 3

r (s1, a12) = 1

r (s2, a21) = 0

r (s2, a22) = 1

r (s3, a31) = 2

Consider d(s1) = a11, d(s1) = a21, d(s3) = a31, we get a multichain.
The unichain optimality condition is

g + h(s) = max
a∈As

r(s, a) +
∑
j∈S

p(j | s, a)h(j)


This is not sufficient to solve the system, because different s gives different equations:

g + h(s1) = max{3 + h(s1), 1 + h(s2)}
g + h(s2) = max{0 + h(s2), 1 + h(s3)}
g + h(s3) = 2 + h(s3)

3.3.1 Multichain Optimality Equations

max
a∈As

∑
j∈S

p(j | s, a)g(j)− g(s)

 = 0, ∀s ∈ S

and

max
a∈Bs

r(s, a)− g(s) +
∑
j∈S

p(j | s, a)h(j)− h(s)

 = 0, ∀s ∈ S

where

Bs =

a ∈ As :
∑
j∈S

p(j | s, a)g(j)− g(s) = 0


As nested optimality equations,

max
d∈D

{(Pd − I) g} = 0

and

max
d∈E

{rd − g + (Pd − I)} = 0 where E = {d ∈ D : d(s) ∈ Bs}

3.3.2 Modified Optimality Equations

These are:

max
a∈As

∑
j∈S

p(j | s, a)g(j)− g(s)

 = 0

and
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max
a∈As

r(s, a)− g(s) +
∑
j∈S

p(j | s, a)h(j)− h(s)

 = 0

Proposition 3.41

Assume S and As are finite and there exists g∗, h∗ satisfying the optimality equations. Then there exists an M
such that g∗ and h∗ +Mg satisfying the modified optimality equations.

Proof. Suppose that for some s ∈ S and a′ ∈ As, we have

0 < r(s, a′)− h∗(s)− g∗(s) +
∑
j∈S

P (j | s, a′)h∗(j) = c.

Then we must have a′ ∈ As \ Bs such that 0 >
∑

j∈s P (j | s, a′)g∗(j) − g∗(s) = d. For some M , we define
h′ = h∗(s) +Mg∗(s), then

r(s, a′) +
∑
j∈S

P (j | s, a′)h′(j)− g∗(s)− h′(s)

=r(s, a′) +
∑
j∈S

P (j | s, a′)[h∗(j) +Mg∗(s)]− g∗(s)− h∗(s)−Mg∗(s)

=c+Md

and choose M ≥ |c/d|.

Theorem 3.42

Suppose S is countable.

1. Suppose there exists g and h such that (Pd − I)g ≤ 0 and rd + (Pd − I)h − g ≤ 0 for all d. Then
g ≥ g∗+.

2. Suppose there exists (g, h) and d′ such that (Pd′ − I)g ≥ 0 and rd′ + (Pd′ − I)h − g ≤ 0. Then
g ≤ supd g

d∞ ≤ g∗+.

3. Suppose there exists g and h satisfying the modified optimality equations, then g = g∗+ = g∗− = g∗.

Theorem 3.43

Suppose S and As are finite. Then

1. There exists g∗ and h for which (g∗, h) satisfy the multichain optimality conditions.

2. There exists g∗ and h′ for which (g∗, h′) satisfy the modified optimality conditions.
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Theorem 3.44

Suppose S and As are finite.

1. Suppose g and h satisfy the optimality equations and there exists d∗ such that

Pd∗g = g and

d ∈ argmax {rd + Pdh} .

Then (d∗)
∞ is long-run average optimal.

2. Suppose g and h satisfy the modified optimality equations and there exists d∗ such that

Pd∗g = g and

d ∈ argmax {rd + Pdh} .

Then (d∗)
∞ is long-run average optimal.

3.3.3 Multichain Policy Iteration

1. Set n = 0 and select an arbitrary decision rule d0

2. (Policy Evaluation) Obtain gn and hn such that

(I − Pn) gn = 0

rdn
− gn + (Pdn

− I)hn = 0

Solve Step 2 by first setting one of:

(a) P ∗
dn
hn = 0

(b) Suppose R1, . . . , Rn are recurrent classes under Pdn . Solve the policy evaluation equations by setting
hn (sji) = 0 where ji denotes the minimal index such that sj ∈ Ri for i = 1, 2, . . . , n. (not necessary to
pick the one with smallest index).

(c) −hn + (Pd − I)w = 0

3. (Policy Improvement)

(a) Choose dn+1 ∈ D such that dn+1 ∈ argmaxd {Pdgn} and setting dn+1 = dn if possible. If dn+1 = dn
the go to (b); otherwise increment n by 1 and return to Step 2.

(b) Choose dn+1 ∈ En such that
dn+1 ∈ argmax

d∈En

{rd + Pdhn}

where En = {d : (Pd − I)gn = 0}. and setting dn+1 = dn if possible.

4. If dn+1 = dn, STOP and set d∗ = dn; otherwise increment n by 1 and return to Step 2.

Properties of the Policy Iteration:

1. The gain of the successive iterations are monotone nondecreasing.

2. If improvement occurs in step 3a in state s′, then s′ is a transient state under dn+1 and gn+1(s
′) > gn(s

′).
Furthermore, we may have gn+1(s) ≥ gn(s) for some other transient state s.

3. If no improvement occurs in 3a, and it occurs in s′ in 3b, where s′ is recurrent under dn+1, then gn+1(s) > gn(s)
for all states s which are in the same recurrent class as s′ and possibly in some transient states.

4. If no improvement occurs in 3a of the algorithm and it occurs in s′ in 3b, where s′ is transient under dn+1, then
hn+1(s

′) > hn(s
′).



Fall 2024 Rui Gong Long-Run Average Reward Optimality

3.4 Policy Iteration for Communicating / Weakly Communicating Models
1. Set n = 0. Select a d0. If Pd0 is unichain, set unichain = yes; otherwise, set unichain = no.

2. If unichain = no, go to (2a), otherwise go to (2b).

(2a) (Policy evaluation) Find vectors gn and hn by solving

(Pdn
− I) gn = 0

rdn
− gn + (Pdn

− I)hn = 0

solve it using the methods for the multichain policy iteration.

(2b) Find scalar gn and vector hn by solving

rdn
− gne+ (Pdn

− I)hn = 0

solve it using the methods for the multichain policy iteration.

3. If gn is a constant, go (3b), otherwise (3a).

(3a) Let S0 = {s ∈ S : gn(s) = maxj∈S gn(s)} and dn+1(s) = dn(s) for s ∈ S0. Let T = S \ S0, and
W = S0.

(i) If T = ∅, go to (iv).
(ii) Obtain s′ ∈ T and a ∈ As′ such that

∑
j∈W P (j | s′, a).

(iii) Set T = T \ {s′} and dn+1(s
′) = a and W = W ∪ {s′}. Go to (i).

(iv) Set unichain to yes and go to 2.

(3b) Choose dn+1 ∈ argmaxd∈D {rd + Pdhn}, setting dn+1 = dn if possible. If dn+1 = dn, go to 4,
otherwise set unichain = no, increment n by 1, and go to 2.

4. Set d∗ = dn.

Remark. Given g ≥ Pdg and h+ g ≥ rd + Pdh, then g ≥ g∗.

3.4.1 Linear Programming

Suppose that α(j) > 0 for all j ∈ S and
∑

j∈S α(j) = 1. The primal LP can be written as

min
∑
s∈S

α(s)g(s)

s.t. g(s)−
∑
j∈S

p(j | s, a)g(j) ≥ 0,∀a ∈ As, s ∈ S

g(s)−
∑
j∈S

p(j | s, a)h(j) + h(s) ≥ r(s, a),∀a ∈ As, s ∈ S

and the dual LP is

max
∑
j∈S

∑
a∈As

r(s, a)x(s, a)

s.t.
∑
a∈Aj

x(j, a)−
∑
s∈S

∑
a∈As

p(j | s, a)x(s, a) = 0,∀j ∈ S

∑
a∈Aj

x(j, a) +
∑
a∈Aj

y(j, a)−
∑
s∈S

∑
a∈As

p(j | s, a)y(s, a) = α(j),∀j ∈ S

x(s, a), y(s, a) ≥ 0,∀s ∈ S, a ∈ As.

The second set of constraints, summed over j ∈ S, implies that
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∑
j∈S

∑
a∈Aj

x(j, a) +
∑
j∈S

∑
a∈Aj

y(j, a)−
∑
j∈S

∑
s∈S

∑
a∈As

p(j | s, a)y(s, a) = 1

and hence ∑
j∈S

∑
a∈Aj

x(j, a) = 1

since the last two terms on the LHS are equal.

Remark. Suppose (x, y) is a feasible solution to the dual LP. Then,

P (dx,y(s) = a) =

{
x(s, a)/

∑
a∈As

x(s, a), for s ∈ Sx

y(s, a)/
∑

a∈As
y(s, a), for s /∈ Sx

where Sx =
{
s ∈ S :

∑
a∈As

x(s, a) > 0
}

.

Proposition 3.45

If (x, y) is a feasible solution to the dual LP , then Sx is the set of recurrent states and S\Sx is the set of
transient states under (dx,y)

∞

Theorem 3.46

Suppose (x∗, y∗) is an optimal solution to the dual LP. then (dx∗,y∗)
∞ is a stationary (long-run average)

optimal policy.

Example 3.8. Consider S = {s1, s2, s3, s4} , As1 = {a11} , As2 = {a21} and As3 = {a31, a32, a33}, and As4 =
{a41}. We also have

p (s3 | s1, a11) = 1

p (s3 | s2, a21) = 1

p (s1 | s3, a31) = 1

p (s2 | s3, a32) = 1

p (s4 | s3, a33) = 1

p (s4 | s4, a41) = 1

Furthermore,

r (s1, a11) = 1

r (s2, a21) = 2

r (s3, a31) = 4

r (s3, a32) = 3

r (s3, a33) = 0

r (s4, a41) = 2

The dual LP is
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max

x (s1, a11) + 2x (s2, a21) + 4x (s3, a31) + 3x (s3, a32) + 4x (s4, a41)

s.t. x (s1, a11) + y (s1, a11)− y (s3, a31) =
1

4

x (s2, a21) + y (s2, a21)− y (s3, a32) =
1

4
x (s3, a31) + x (s3, a32) + y (s3, a33) + y (s3, a31) + y (s3, a32) + y (s3, a33)

− y (s1, a11)− y (s2, a21) =
1

4

x (s4, a41) + y (s4, a41)− y (s3, a33) =
1

4
x (s1, a11)− x (s3, a31) = 0

x (s2, a21)− x (s3, a32) = 0

x (s4, a41)− x (s3, a33) = 0

x (s3, a31) + x (s3, a32) + x (s3, a33)− x (s1, a11)− x (s2, a21) = 0.

A solution is

x (s1, a11) =
1

4

x (s2, a21) =
1

4

x (s3, a31) =
1

8

x (s3, a32) =
1

8

x (s4, a41) =
1

4
x (s3, a33) = 0

and y(s, a) = 0 for all s and a.

LP For Weakly Communicating Classes

• Use the multichain LP.

• Formulate the LP for unichain problem. Obtain x∗ which is an optimal solution of the dual LP for the unichain
problem. For s ∈ Sx∗ where Sx∗ =

{
s :
∑

a∈As
x(s, a) > 0

}
, define dx∗(s) = a for x∗(s, a) > 0. For

s /∈ Sx∗ , choose an action which drives the chain to Sx∗ with positive probability. One procedure for this is the
algorithm we used in (3a) of the policy iteration for weakly communicating models.
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