
ISyE 7203: Logistics and System Engineering

Rui Gong

September 11, 2025

1

mailto:rgong44@gatech.edu

Fall 2024 Rui Gong Acknowledgements

Acknowledgements
These notes are based on the ISyE 7203 lectures given by Professor Alejandro Toriello in Fall 2025 at Georgia Institute
of Technology.

Fall 2024 Rui Gong Contents

Contents
1 Introduction 4

1.1 Network Flows . 4
1.2 Shortest Path . 6
1.3 Shortest Path on Direct Acyclic Networks . 9

1.3.1 (Deterministic) Dynamic Programming (finite state, action, horizon) 10
1.4 Max Flow . 10

1.4.1 Max Flow Applications . 11

2 Traveling Salesman Problem 12
2.1 TSP . 12
2.2 TSP Heuristic . 14

2.2.1 Minimum Spanning Tree(MST) Heuristic for Symmetric TSP 14

Fall 2024 Rui Gong Introduction

1 Introduction

1.1 Network Flows
Definition 1.1

A network (graph) is made of the following:

• (N) nodes (vertices): a finite set.

• For undirected network: (E) edges: {i, j}, i, j ∈ N drawn as i− j.

• For directed network: (A) arcs (i, j), i, j ∈ N drawn as i → j, where we call i the tail and j the head
of the arc.

For this course, we focus on the directed networks and the following definitions are all on directed networks.

Definition 1.2

• path: a sequence of arcs where the head of the first is the tail of the second and so forth, and no nodes
repeat.

• walk: a sequence of arcs where the head of the first is the tail of the second and so forth, and nodes may
repeat.

• cycle: a path except that the first and the last nodes are the same. If a cycles has repeated nodes in
between, it is a closed walk instead.

Definition 1.3: Connectedness

A directed network is:

• strongly connected: for any i, j ∈ N , there exists an i− j (directed) path and a j − i directed path.

• weakly connected: for any i, j ∈ N , there exists an (undirected) i− j path if we ignore orientations.

Example 1.1. Consider the following network:

It is weakly but not strongly connected.

Fall 2024 Rui Gong Introduction

Definition 1.4: network flow

Given the network by (N,A), b ∈ RN , c ∈ RA, u ∈ (R ∪ {∞})A. b represents the net supply where i is a
supplier, consumer, trans-shipment respectively if bi > 0, bi < 0, bi = 0 respectively; c represents the cost,
and u represent the capacity.
For modeling, Xij is used to represent the amount of flow on (i, j) ∈ A. Then the network flow problem is:

min
∑
a∈A

caxa

s.t.
∑

a∈δ+(i)

−
∑

a∈δ−(i)

xi = bi, i ∈ N

0 ≤ xa ≤ ua, ∀a ∈ A

(NF)

where δ+(i) is the set of arcs having i as the tail and δ−(i) is the set of arcs having i as the head. The equality
constraints are called the flow balance constraint.

Remark. Aggregate the flow balance constraints, we get

∑
i

 ∑
a∈δ+(i)

−
∑

a∈δ−(i)

xi

 =
∑
a∈A

xa − xa = 0 =
∑
i

bi.

Thus,
∑N

i=1 bi = 0 is a needed assumption.

Example 1.2. The following is an instance of a network flow problem:

2

3

0

−1

−4

(1, 10)

cost capacity

Theorem 1.5

The constraint matrix of (NF) is always TU (totally unimodular). Thus, if b, u are integral, all extreme points
are integral.

Example 1.3 (Assignment Problem). Considering assigning n workers to n tasks, one for each. Let cij be the cost of
assigning worker i to task j. In this way, we can consider 1, . . . , n nodes as workers and n + 1, . . . , 2n as tasks. For
each node representing a worker, it has arcs from it to all task nodes. The supply of each worker and task are 1 and

Fall 2024 Rui Gong Introduction

−1 respetively. Then the problem can be written as:

min

n∑
i=1

n∑
j=1

cijxij

s.t.
2n∑

j=n+1

xij = 1, i = 1, . . . , n

n∑
i=1

−xij = −1

0 ≤ xij .

Notice that there is no need to have xij ≤ 1, it is implied by the balance flow constraints and nonnegative constraints.
Remark. Indeed, the above example shows that the extreme points of the set of double stochastic matrices are permu-
tation matrices.
Example 1.4 (Transportation Problem). Given suppliers i = 1, . . . ,m with bi units of supply and consumers j =
1, . . . , n with dj units of demand, let cij be the cost per unit from i to j. Assume that

∑
i bi =

∑
j dj , then we get the

LP:

min

n∑
i=1

n∑
j=1

cijxij

s.t.
2n∑

j=n+1

xij = bi, i = 1, . . . ,m

n∑
i=1

−xij = dj , j = 1, . . . , n

0 ≤ xij ≤ uij .

What if
∑

i bi >
∑

j dj?
We can consider adding a dummy customer whose demand is

∑
i bi −

∑
j dj . That is, we require a dummy customer

takes all the extra supply.

1.2 Shortest Path
Given a directed network (N,A), and s, t ∈ N , c ∈ RA. Goal: cheapest s− t path,

s t
1

1

min
∑
a∈A

caxa

s.t.
∑
δ+(s)

xa = 1

−
∑
δ−(s)

xa = −1

∑
δ+(s)

xa −
∑
δ−(s)

xa = 0,∀i ̸= s, t.

Fall 2024 Rui Gong Introduction

where

bi =


1, i = s

−1, i = t

0, o.w.
.

However, this formulation has a problem, consider a cycle in the network with all arcs having cost −1, then the LP is
unbounded by repeating on the cycle.

s
t

1

1

1

1

−1 −1

Even if we add xa ≤ 1, we can still have a walk but not necessarily a path.

s
t

1

1

1

1

− 1
2 −1

Notice that for the network above, the shortest path has cost 1, but the LP can give a shortest path with cost 1/2 even
if having constraints xa ≤ 1, which actually represents a walk that goes through the cycle once.

Condition: SP can be solved as a network flow problem if the network does not have directed cycles of net negative
cost. e.g.: non-negative costs, no (directed) cycles.

Remark. In general, if there is a negative cost cycle, then the problem is NP-hard.

Theorem 1.6: Principle of Optimality

Assume that there is cycle of net negative cost. If P is an s− t shortest path and i, j ∈ P (i precedes j in P),
then the i− j sub-path P̂ is an i− j shortest path.

Proof. Suppose there is an i− j path P̃ for contradiction such that
∑

a∈P̃ ca <
∑

a∈P̂ ca. Replace P̂ with P̃ in P to
obtain P ′. If P ′ is a path, we are done. If it is a walk, then there exists cycle which we can delete can strictly decrease
the cost. That is, P ′ is a cheaper path than P , contradiction.

Corollary 1.7

Let y∗i be the shortest path cost from i to t. Then y∗i ≤ cij + y∗j , ∀(i, j) ∈ A.
(Same thing in reverse: ŷi is a shortest path cost from s to i, then ŷj ≤ cij + ŷi.

Consider the dual of the LP:

max ys − yt

s.t. yi − yj ≤ cij , ∀(i, j) ∈ A

Note. if (yi) is feasible, then (yi + α) is also feasible for any α ∈ R and has the same objective value. Thus, the
linearity space is no empty. Thus, there is at least one constraint in the primal that is redundant, and we can then

Fall 2024 Rui Gong Introduction

assume the dual variable corresponding to the redundant primal constraint to be 0. If we sum all the primal constraint
up, we can see that the constraint corresponding to t is redundant and thus WLOG, assume yt = 0. Then we have,

max ys

s.t. yi ≤ cij + yj , ∀(i, j) ∈ A,

which is we have from the principle of optimality corollary; opt y∗ encodes distances to t. With complementarity,
(i, j) can only be in a shortest path if y∗i = cij + y∗j .

Analogously, if we set ys = 0 instead, then −y encodes distances from s.

Definition 1.8: Directed Acyclic Graph

A directed graph is called a directed acyclic graph if it does not contain a cycle.

Definition 1.9: Topological Sort

A topological sort of a directed graph is a labeling of nodes such that i < j for every (i, j) ∈ A.

Proposition 1.10

A network is a directed acyclic graph iff it has a topological sort.

Proof.

• (⇐=): If there is a cycle, then following the cycle, i < j1 < · · · < jk < i, contradiction.

• (=⇒):

Claim. If acyclic, there exists v ∈ N with δ−(v) = ∅.

Proof of the Claim. Perform a search starting from an arbitrary node backwards following the incoming arcs.
By the finiteness of the network, we either get a cycle of a node without incoming arcs.

Input: (N,A), i← 1.
while N ̸= ∅ do

choose any v ∈ N with δ−(v) = ∅
label(v)← i; i++
N ← N \ v, update A

end while

Claim. At assignment of label i, (1, . . . , i) is a a valid top. sort for the network induced by 1, . . . , i.

Proof of the Claim.

– Base case: i = 1, trivial.

– Induction: i ≥ 2, (1, . . . , i− i) is top. sort, any arc with head i must have tail ≤ i− 1.

Fall 2024 Rui Gong Introduction

Algorithm 1 Bellman-Ford
yn ← 0
for i = n− 1, n− 2, . . . , 1 do

yi ← min(i,j)∈A{cij + yj}
[succ(i)← j]

end for

1.3 Shortest Path on Direct Acyclic Networks
Given c ∈ RA, we can assume δ−(s) = δ+(t) = ∅. Find topological sort with (s = 1, . . . , t = n).

• Running Time: O(m), topological sort and assigning values to yi.

• Correctness: induction (backwards) at step i, labels yi, . . . , yn are correct.

Proof. – i = n, trivial.

– i < n, suppose yi = cij + yj = cij +
∑

a∈P ca where P is a shortest j − t path. All i− t paths use same
arc (i, k) implies that yi ≤ cik + yk ≤ cost of any i− t path that uses (i, k). That is, the cost of any i− t
path uses (i, k) has cost more than yi; thus, when we have yi equal to the cost of i− t path through (i, j)
and shortest path from j to t, also, this value is the smallest among all cik + yk thus less than or equal to
the cost of all paths from i− t through (i, k).

Notice that, the reason that we need a top. sort is that for (i, j) ∈ A, i is the tail and j is the head, by the top.
sort, j must be greater than i.

BF on General Networks use ”stages” Paths have ≤ n− 1 arcs. Then, the induction claim becomes:

y0t ← 0; y0i ←∞,∀i ̸= t
for k = 1, . . . , n− 1 do

for i ∈ N \ t do
yki := min{yk−1

i ,min(i,j)∈A{cij + yk−1
j }}

end for
end for

Claim. yki is the i− t Shortest path cost when using ≤ k arcs.

Proof. Similar to the proof of the previous induction claim.

The running time now becomes O(mn) might be worse than Diksjtra when the costs are nonnegative.

Theorem 1.11

If the network has a negative cost cycle, following the above algorithm, yni < yn−1
i for some i.

Proof. Take a cycle C, and suppose that yni = yn−1
i for all i ∈ C. Then,

yni ≤ cij + yn−1
j = cij + ynj for (i, j) ∈ C.

Thus, ∑
(i,j)∈C

yni − ynj ≤ cij =⇒ 0 ≤
∑

(i,j)∈C

cij .

Fall 2024 Rui Gong Introduction

1.3.1 (Deterministic) Dynamic Programming (finite state, action, horizon)

Another name for shortest path on directed acyclic network, Knapsack:

max

n∑
i=1

cixi

s.t.
n∑

i=1

aixi ≤ b

a ∈ Nn, b ∈ N, xi ∈ {0, 1},∀i = 1, . . . , n.

Knapsack as DP [SP]; nodes [states]; arcs[actions]. Let the current candidate item be i = 1, . . . , n, and the remaining
capacity s = 0, . . . , b. Then, consider the sate (i, s) which has arcs from it to (i + 1, s) without any cost and to
(i+ 1, s− ai) where s ≥ ai with cost −ci. Thus, the number of nodes is O(nb), the number of arcs is O(nb) and the
start point is (1, b). The BF complexity is O(nb) which, in precise, is O(n2log2 b)

1.4 Max Flow
Given a network (N,A); source s and a sink t in N ; arc capacities v ∈ (R+ ∪ {∞})A. Add a dummy arc from t to s.
How much can flow from s to t?

min − xts

s.t.
∑
δ+(s)

xa +
∑
δ−(t)

xa = xts

∑
δ+(i)

xa −
∑
δ−(i)

xa = 0, ∀i ∈ N \ {s, t}

0 ≤ xa ≤ ua, ∀a ∈ Ǎ

0 = xa, a ∈ Â

Definition 1.12

s-t cut: F ⊆ A such that (N,A \ F) has no s-t path; capacity of a cut F : u(F) =
∑

a∈F ua; minimal cuts:
S ⊆ N \ t, S ∋ s, where we let δ+(S) be the cut defined by S.

Theorem 1.13

Weak Duality: for any feasible s-t flow x and any cut S,

xts ≤ u(S)

Proof. xts +
∑

δ+(S) xa =
∑

δ+(S) xa −
∑

δ−(S) xa ≤
∑

δ+(S) ua.

Theorem 1.14: [Max-Flow Min-Cut]

max
s−t flows

xts = min
s∈S⊆N\t

u(S)

Fall 2024 Rui Gong Introduction

Dual of the LP:

min
a∈Ǎ

uaza

yt − ys ≥ 1

yi − yj ≥ 0,∀(i, j) ∈ Â

yi − yj + zij ≥ 0,∀(i, j) ∈ Ǎ

z ≥ 0.

Reminder of the primal:

max
x≥0

xts∑
δ+(i)

xa −
∑
δ−(i)

xa = 0, ∀i ∈ N

xa ≤ ua, ∀a ∈ Ǎ

WLOG, set ys = 0, then we can set yt = 1. By totally unimodular, we can set y ∈ ZN and za ∈ Za, and we need
y ∈ {0, 1}N which implies Zij = 1 when yj = 1, yi = 0 and 0 otherwise). Then, the optimal y∗ ∈ {0, 1}n defines
the cut. S = {i : y∗i = 0}, z∗ij = 1 correspond to arcs in δ+(S).

• y ≥ 0: suppose yi < 0 for some i. Replace all such yi by 0.

• y ≤ 1 : set yi ← 1 if yi > 1.

• Complementary Slackness:

xij(yi − yj) = 0, (i, j) ∈ Â

xij(yi − yj + zij) = 0, (i, j) ∈ Ǎ

zij(uij − xij) = 0, (i, j) ∈ Ǎ.

Thus, if yi > yj , then xij , so for this arc (i, j), there is no flow, which agrees with xts =
∑

δ+(S) xa −∑
δ−(S) xa ≤

∑
δ+(S) ua requires

∑
δ−(S) xa for max flow being equal to the min cut. Similarly, Xij = 0 only

when zij = 0 and yi > yj , same to the above. zij > 0 if and only if uij = xij , so there is only flow when the
arc is used at capacity.

1.4.1 Max Flow Applications

Theorem 1.15: Hall’s Theorem

Consider a bipartite network (N,E) where N = V ∪W , V ∩W = ∅, |V |= |W |= n. Necessary and sufficient
condition for perfect matching (marriage condition): for X ⊆ V , need |Γ(X)|≥ |X|.

Proof. Let s having arcs from s to each vertex in V , and each vertex has arcs to t, each of them has capacity 1. For
arcs between V,W , let their capacity be∞.

Clearly, (N,E) has a perfect matching iff the max flow in the network built has value |V |= |W |= n. If the max
flow has value < n, we want to show that some X ⊆ V violates the marriage condition. Suppose so, then the min
cut has capacity < n (by the fact any max flow has to use all capacity on the arcs). Then this cut cannot have any
arc between V,W , so the cut S has S ∩ V ̸= ∅, and if i ∈ S ∩ V , then j ∈ δ(i) also has j ∈ S. Capacity of S is
|V \ S|+|W \ S|= n− |V ∩ S|+|δ(S ∩ V)|< n since S is a min cut. Then |Γ(S ∩ V)|< |S ∩ V |, contradiction.

Fall 2024 Rui Gong Traveling Salesman Problem

2 Traveling Salesman Problem

2.1 TSP
Consider a depot: 0; customers: N = {1, . . . , n}; cij : cost of direct travel from i to j. Goal: minimum cost
Hamiltonian cycle ”tour”. Assume c ≥ 0 and a complete network; triangle inequality: cij ≤ cik + ckj . Maybe:
symmetry: cij = cji.

IP formulation:

xij =

{
1, if tour includes (i, j);
0, otherwise.

min
∑

i,j∈N∪{0},i̸=j

cijxij

s.t.
∑
δ+(i)

xa =
∑
δ−(i)

xa = 1, ∀i ∈ N ∪ {0}

∑
δ+(S)

xa ≥ 1, ∅ ≠ S ⊆ N

xij ∈ {0, 1}.

where the second constraint is called the subtour elimination contraint, there would be exponentially many of such
constraints. For undirected graphs, we have

∑
δ(i) xe = 2 and

∑
δ(S) xe ≥ 2 instead.

DP formulation (Held+Karp): When building a tour, need current location and remaining customers to visit.

• State: (i, S), i ∈ N ∪ {0}, S ⊆ N .

• Action: j ∈ S if S ̸= ∅, 0 if S = ∅.

• Number of states: Θ(n2n).

• Number of actions: Θ(n22n).

Lower Bounds and Relaxations Forward Star: cheapest arc from every forward start

min
x≥0

∑
caxa∑

δ+(i)

xa = 1, i ∈ N ∪ {0}.

Assignment Bound

min
x≥0

∑
caxa∑

δ+(i)

xa = 1

∑
δ−(i)

xa = 1.

Fall 2024 Rui Gong Traveling Salesman Problem

Min. Spanning Tree (for the undirected graph) Hamiltonian cycle is a Hamiltonian path plus an edge. Hamilto-
nian path is a spanning tree. If c ≥ 0, MST is a lower bound.

Take S ⊆ N , ∑
i∈S

∑
δ(i)

xe = 2|S|

=2
∑
e⊆S

xe +
∑
δ(S)

xe

By subtracting
∑

δ(S) xe ≥ 2, we get ∑
e⊆S

xe ≤ |S|−1.

Then,
∑

i∈N∪{0}
∑

δ(i) xe = 2(n+ 1) = 2
∑

e xe. Consider

min
x≥0

∑
e

cexe∑
e

xe = n+ 1∑
e⊆S

xe ≤ |S|−1, S ⊊ N ∪ {0}

Notice that when we change n + 1 to n, the corresponding coefficient in the objective function of the dual decrease.
Since the inequalities are ≤, the corresponding variables in the dual are ≤ 0, the only possible nonnegative variable
is the one corresponding to the equality. However, since the objective function of the primal is nonnegative (when
c ≥ 0), the dual variable corresponding to the equality has to be nonnegative, changing n + 1 to n decreases the
objective value of the dual, thus it’s a lower bound.

0-tree a TSP tour is a Hamiltonian cycle through N plus two edges connecting N to O (so you create a unique cycle
including 0). Can be optimized with greedy algorithm (like minimum spanning tree problem).

min
∑
e

cexe∑
δ(0)

xe = 2

∑
e⊆N

xe = n− 1

∑
e⊆S

xe ≤ |S|−1, ∀S ⊆ N

0 ≤ xe ≤ 1.

0-Tree Bound + Lagrangian Relaxation for Symmetric TSP π(2 −
∑

δ(i) xe) = 0 for any TSP tour, set π0 = 0.
Then we can consider the objective function∑

i,j

cijxij +
∑

i∈N∪{0}

πi(2−
∑
δ(i)

xi) =
∑
i,j

(cij − πi − πj)xij + 2
∑
i

πi,

which implies that for any π ∈ RN , the cost of optimal 0-tree w.r.t. this objective plus 2
∑

i πi gives a lower bound.

f(π) = 2
∑
i

πi + min
0-treeT

{
∑
ij∈T

(cij − πi − πj)},

Fall 2024 Rui Gong Traveling Salesman Problem

want maxπ∈RN f(π). Notice that f is concave and piece-wise linear in π because
∑

ij∈T (cij − πi − πj) is linear in
π.
Optimize 0-tree: deg(i) = 1, then increase πi; deg(i) > 2, then decrease πi.

max
π∈RN

2
∑
i∈N

πi +min
x≥0

∑
i,j

(cij − πi − πj)xij

s.t.
∑
δ(0)

xe = 2

∑
e⊆N

xe = n− 1

∑
e⊆S

xe ≤ |S|−1, ∀∅ ≠ S ⊆ N

[xe ∈ {0, 1}]

where the constraint δδ(i)xe = 2 is dropped and we penalize it in the objective function. IP theory implies that, since
the polyhedron defining this relaxation is integral, the value of the Lagrangian relaxation equals the LP relaxation.

min
∑

i,j∈N∪{0},i̸=j

cijxij

s.t.
∑
δ+(i)

xa =
∑
δ−(i)

xa = 1, ∀i ∈ N ∪ {0}

∑
δ+(S)

xa ≥ 1, ∅ ≠ S ⊆ N (⋆)

Let S ⊆ 2N .

while do:
Solve LP with (⋆) for S ∈ S, get solution x̂.
check: min∅̸=S⊆N

{∑
δ+(S) x̂a

}
< 1 (global) MINCUT

if ≥ 1 then
Done, exist

else
add minimizing S to S

end if
end while

2.2 TSP Heuristic
We consider the worst-case analysi ofa minimization problem.

Definition 2.1

Let CH(I) be the cost of a heuristic H for an instance I , and C∗(I) be the optimal cost of I . If CH(I) ≤
αC∗(I) for all I , then we say H is an α-approximation algorithm where α ∈ [1,∞).

2.2.1 Minimum Spanning Tree(MST) Heuristic for Symmetric TSP

Assume triangle inequality is satisfied.

Fall 2024 Rui Gong Traveling Salesman Problem

Algorithm 2 MST
Step 1: Construct MST on N ∪ {0}. Call it T .
Step 2: Replace each edge with two arcs in T with the same weight. The created graph has vertices with all degrees
even. That is, if {u, v} ∈ T , delete it and add arcs (u, v), (v, u).
Step 3: Construct Eulerian tour through T , which is guaranteed to exists by the even degree property.
Step 4: Every time the tour repeats a node, ”short cut” to the next node. That is, in the tour, delete the repeated
node and keep going, this only improves the tour by triangle inequality. Output this Hamiltonian cycle.

Theorem 2.2

CAlg2(I) ≤ 2C∗(I)

for all symmetric instances with triangle inequality.

Proof. CMST ≤ CTSP by the fact that any TSP can become a MST by deleting an edge. CAlg2 ≤ 2CMST by
changing the edges to arcs and triangle inequality.

Example 2.1 (Tightness of the above Theorem (Johnson and Papadimitriou 1985)). Consider a graph of (1 − ϵ) × 1
rectangles repeating n times and connect by the (1 − ϵ) edge one by one. The set of vertices are {(0, 0), (1, 0), (1 +
ϵ, 0), (2, 0), . . . , (n− 1+ ϵ, 0), (n, 0), (0, 1− ϵ), (1, 1− ϵ), . . . , (n, 1− ϵ), (0, 1), (n, 1)}. Use the Manhatten distance
for triangles. Then MST has cost n(2 − ϵ) + (1 − ϵ) + 2ϵ, MST heuristic has n(3 − 2ϵ) + 2ϵ + (2ϵ + n), OPT has
2n+ 2 + 4ϵ. The ratio of CAlg2/COPT = 2 as n→∞.

· · ·

1 ϵ 1− ϵ ϵ 1− ϵ ϵ 1− ϵ

ϵ ϵ

1− ϵ 1− ϵ

	Introduction
	Network Flows
	Shortest Path
	Shortest Path on Direct Acyclic Networks
	(Deterministic) Dynamic Programming (finite state, action, horizon)

	Max Flow
	Max Flow Applications

	Traveling Salesman Problem
	TSP
	TSP Heuristic
	Minimum Spanning Tree(MST) Heuristic for Symmetric TSP

