MATH 7018: Probabilistic Combinatorics

Rui Gong

January 7, 2025

Acknowledgements

These notes are based on the MATH 7018 lectures given by Professor Xiaoyu He in Spring 2025 at Georgia Institute of Technology.

Contents

1 Introduction

1 Introduction

We begin with three theorems.

Theorem 1.1: Erdös, from Graph Theory

The Ramsey number r(t,t) satisfies $r(t,t) \ge 2^{t/2}$.

Theorem 1.2: Erdös, from Additive Combinatorics

Every set B *of nonzero integers contains a sum-free subset* $A \subseteq B$ *of size* $|A| \ge \frac{1}{3}|B|$.

Theorem 1.3: Spencer, from Extremal Set Theory

Any set family $\mathcal{F} \subseteq 2^{[n]}$ such that no $S, T \in \mathcal{F}$ satisfy $S \subsetneq T$ satisfies $|\mathcal{F}| \subseteq {n \choose \lfloor n/2 \rfloor}$.

Theorem 1.4: from Coding Theory

Any binary prefix code $C \subseteq \{0,1\}^*$ satisfies $\sum_{s \in C} \frac{1}{2^{|s|}} \leq 1$.

Definition 1.5

Ramsey number r(t, t) is the smallest n such that any graph G on n vertices has either a clique of size t or an independent set of size t. Equivalently, any coloring of $E(K_n)$ in red, blue has either a monochromatic red or blue clique of size t. The equivalence can be seen by color all edges of G as red and $E(K_n) \setminus E(G)$ as blue. For example, r(3,3) = 6, it is not 5 because C_5 and its complement do not have a triangle.

Proof of Theorem 1.1. Let G = G(n, 1/2) which is the Erdös-Renyi graph with n vertices and each edge appears independently with probability 1/2.

Look at $S \subseteq V(G)$ of size t. Then

 $\Pr[S \text{ is a clique}] = 2^{-\binom{t}{2}}$ $\Pr[S \text{ is an independent set}] = 2^{-\binom{t}{2}}.$

Hence,

 $\Pr[G \text{ has a } t\text{-clique or } t\text{-independent set}]$

$$\leq \sum_{S \subseteq V(G)} \Pr[S \text{ is a } t\text{-clique or } t\text{-independent set}]$$
$$= \binom{n}{t} \frac{2}{2^{\binom{t}{2}}} < \frac{n^t}{2^{\binom{t}{2}}} = 1 \text{ by picking } n = 2^{(t-1)/2}.$$

Notice the strict inequality is always true when $t \ge 2$. Thus, with positive probability, G has no t-clique nor t-indpendent set.

Definition 1.6

 $S \subseteq \mathbb{Z}$ is sum-free if $\not\exists a, b, c \in S$ such that a + b = c. Ex: $B = [n] = \{1, \dots, n\}$. A = odd numbers in B is sum-free with $|A| \ge \lfloor \frac{1}{2} |B| \rfloor$; A = largest n/2 numbers in B is sum-free with $|A| \ge \lfloor \frac{1}{2} |B| \rfloor$. *Proof of Theorem 1.2.* Pick a big prime number $p > 2 \max_{b \in B} |b|$, say p = 3k + 2 (which exists by the prime number theorem). Define

$$A := \{ b \in B | (xb \mod p) \in [k+1, 2k+1] \}$$

where x is a uniformly random element of [p-1].

$$\mathbb{E}[|A|] = \sum_{b \in B} \Pr[xb \in [k+1, 2k+1]]$$

= $|B| \frac{k+1}{3k+1} > \frac{1}{3}|B|$

with positive probability $|A| > \frac{1}{3}|B|$.

Example 1.1. For n = 3, consider $2^{[n]}$. Look for biggest <u>antichain</u> in $2^{[n]}$, that is, choice of sets where no set lies above another. For example, $\{1\}, \{2\}, \{3\}$ and $\{1, 2\}, \{1, 3\}, \{2, 3\}$ are biggest antichains.

Proof of Theorem 1.3. Let π be a random element of S_n , which is a symmetric group. That is, $\pi = \pi_1 \pi_2 \dots \pi_n$ is a random permutation of [n]. We consider all prefixes of π and let \mathcal{F} be an antichain in $2^{[n]}$. Define X to be the number of elements in \mathcal{F} which appear among prefix of π . Note that here we say appear among prefix, that is, if $\pi = 312$, then the s appear among its prefix are \emptyset , $\{3\}$, $\{1, 3\}$, $\{1, 2, 3\}$, where $\{1\}$ is not because any permutation of 1 does not make a prefix for 312.

First, notice that $X \leq 1$ by the fact that \mathcal{F} is an antichain, so $\mathbb{E}[X] \leq 1$. Then

$$\mathbb{E}[X] = \sum_{s \in \mathcal{F}} \Pr[s \text{ is a prefix of } \pi]$$
$$= \sum_{s \in \mathcal{F}} \frac{1}{\binom{n}{|s|}} \ge \frac{\mathcal{F}}{\binom{n}{|n/2|}}.$$

where the probability of s being a prefix of π is the probability of π =(permutations of s)(permutations of $[n] \setminus s$. Thus, there are s! (n - |s|)! of such π and n! possibly π in total. The probability is as above.

Proof of Theorem 1.4. $\{0,1\}^* := \bigcup_{n\geq 0} \{0,1\}^n$. A set $C \subseteq \{0,1\}^*$ is a prefix code if no $s,t \in C$ satisfy that s is a prefix of t. For example, $C = \{0,0,0,1,0,11\}, C = \{10,110,1110,11110\}$ are prefix codes but $C = \{110,1101\}$ is not. The theorem states that if we want |C| to be large, then |S| needs to be large in general.

Sample an infinite binary string S uniformly at random. Let X be the number of elements of C that appear as a prefix of S (not among like in the previous proof). Similarly, $X \le 1$, or C is not a prefix code. Hence, $\mathbb{E}[X] \le 1$ and

$$\mathbb{E}[X] - = \sum_{s \in C} \frac{1}{2^{|s|}}$$

where $\frac{1}{2^{|s|}}$ is the probability of $s \in C$ being a prefix of the binary string S.

