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1 Introduction
We begin with three theorems.

Theorem 1.1: Erdös, from Graph Theory

The Ramsey number r(t, t) satisfies r(t, t) ≥ 2t/2.

Theorem 1.2: Erdös, from Additive Combinatorics

Every set B of nonzero integers contains a sum-free subset A ⊆ B of size |A|≥ 1
3 |B|.

Theorem 1.3: Spencer, from Extremal Set Theory

Any set family F ⊆ 2[n] such that no S, T ∈ F satisfy S ⊊ T satisfies |F|⊆
(

n
⌊n/2⌋

)
.

Theorem 1.4: from Coding Theory

Any binary prefix code C ⊆ {0, 1}∗ satisfies
∑

s∈C
1

2|s|
≤ 1.

Definition 1.5

Ramsey number r(t, t) is the smallest n such that any graph G on n vertices has either a clique of size t or an
independent set of size t. Equivalently, any coloring of E(Kn) in red, blue has either a monochromatic red or
blue clique of size t. The equivalence can be seen by color all edges of G as red and E(Kn) \ E(G) as blue.
For example, r(3, 3) = 6, it is not 5 because C5 and its complement do not have a triangle.

Proof of Theorem 1.1. Let G = G(n, 1/2) which is the Erdös-Renyi graph with n vertices and each edge appears
independently with probability 1/2.

Look at S ⊆ V (G) of size t. Then

Pr[S is a clique] = 2−(
t
2)

Pr[S is an independent set] = 2−(
t
2).

Hence,

Pr[G has a t-clique or t-independent set]

≤
∑

S⊆V (G)

Pr[S is a t-clique or t-independent set]

=

(
n

t

)
2

2(
t
2)

<
nt

2(
t
2)

= 1 by picking n = 2(t−1)/2.

Notice the strict inequality is always true when t ≥ 2. Thus, with positive probability, G has no t-clique nor t-
indpendent set.

Definition 1.6

S ⊆ Z is sum-free if ̸∃ a, b, c ∈ S such that a+ b = c.
Ex: B = [n] = {1, . . . , n}. A = odd numbers in B is sum-free with |A|≥ ⌊ 1

2 |B|⌋; A = largest n/2 numbers
in B is sum-free with |A|≥ ⌊ 1

2 |B|⌋.
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Proof of Theorem 1.2. Pick a big prime number p > 2maxb∈B |b|, say p = 3k+2 (which exists by the prime number
theorem). Define

A := {b ∈ B|(xb mod p) ∈ [k + 1, 2k + 1]}
where x is a uniformly random element of [p− 1].

E[|A|] =
∑
b∈B

Pr[xb ∈ [k + 1, 2k + 1]]

= |B| k + 1

3k + 1
>

1

3
|B|

with positive probability |A|> 1
3 |B|.

∅

{1}

{2}

{3}

{1, 2}
{1, 3} {2, 3}

{1, 2, 3}

Figure 1: Subsets Diagram

Example 1.1. For n = 3, consider 2[n]. Look for biggest antichain in 2[n], that is, choice of sets where no set lies
above another. For example, {1}, {2}, {3} and {1, 2}, {1, 3}, {2, 3} are biggest antichains.

Proof of Theorem 1.3. Let π be a random element of Sn, which is a symmetric group. That is, π = π1π2 . . . πn is a
random permutation of [n]. We consider all prefixes of π and let F be an antichain in 2[n]. Define X to be the number
of elements in F which appear among prefix of π. Note that here we say appear among prefix, that is, if π = 312,
then the s appear among its prefix are ∅, {3}, {1, 3}, {1, 2, 3}, where {1} is not because any permutation of 1 does not
make a prefix for 312.

First, notice that X ≤ 1 by the fact that F is an antichain, so E[X] ≤ 1. Then

E[X] =
∑
s∈F

Pr[s is a prefix of π]

=
∑
s∈F

1(
n
|s|
) ≥ F(

n
⌊n/2⌋

) .
where the probability of s being a prefix of π is the probability of π =(permutations of s)(permutations of [n] \ s.
Thus, there are s! (n− |s|)! of such π and n! possibly π in total. The probability is as above.

Proof of Theorem 1.4. {0, 1}∗ := ∪n≥0{0, 1}n. A set C ⊆ {0, 1}∗ is a prefix code if no s, t ∈ C satisfy that s is a
prefix of t. For example, C = {00, 01, 10, 11}, C = {10, 110, 1110, 111110} are prefix codes but C = {110, 1101}
is not. The theorem states that if we want |C| to be large, then |S| needs to be large in general.

Sample an infinite binary string S uniformly at random. Let X be the number of elements of C that appear as a
prefix of S (not among like in the previous proof). Similarly, X ≤ 1, or C is not a prefix code. Hence, E[X] ≤ 1 and

E[X]− =
∑
s∈C

1

2|s|

where 1
2|s|

is the probability of s ∈ C being a prefix of the binary string S.


	Introduction

