PMATH450

Rui Gong

April 13, 2021

Contents

1 Measure 4
1.1 Borel Set 4
1.2 Outer Measure 6
1.3 Outer Measure 2 7
1.4 Basic Properties of Outer Measure 9
1.5 Measurable Sets 11
1.6 Countably Additivity 13
1.7 Measurable Sets Continued 15
1.8 Basic Properties of Lebesgue Measure 17
1.9 Non-Measurable Sets 19
1.10 Cantor-Lebesgue Function 21
1.11 A Non-Borel Set 24
1.12 Measurable Function 26
1.13 Properties of Measurable Function 28
1.14 More Properties for Measurable Functions 30
1.15 Simple Approximation 32
1.16 Littlewood's Principle 35
2 Integration 40
2.1 Integration 40
2.2 Bounded Convergence Theorem 46
2.3 Fatou's Lemma and MCT 52
2.4 The General Integral 54
2.5 Riemann Integration 56
2.5.1 Riemann Integral VS Lebesgue Integral 58
$3 L^{p}$ Spaces 61
$3.1 \quad L^{P}$ Spaces 61
$3.2 L^{p}$ Norm 63
3.3 Completeness 67
3.3.1 Separability: 69
4 Fourier Analysis 72
4.1 Hilbert Space 72
4.2 Orthogonality 74
4.3 Big Theorems 77
4.4 Fourier Series 80
4.5 Fourier Coefficients 82
4.6 Vector-Valued Integration 85
4.7 Summability Kernels 87
4.8 Dirichlet Kernel 89
4.9 Fejér Kernel 91
4.10 Fejér's Theorem 93
4.11 Homogeneous Banach Space . 96

1 Measure

1.1 Borel Set

Definition 1

X is a set. We call $a \subseteq \mathcal{P}(x)$ a σ-algebra of subsets of X if:

1. $\emptyset \in a$
2. $A \in a \Longrightarrow X \backslash A \in a$
3. $A_{1}, A_{2}, A_{3}, \ldots, \in a \Longrightarrow \bigcup_{i=1}^{\infty} A_{i} \in a$

Remark. $a \subseteq \mathcal{P}(X)$ is a σ-algebra

1. $X \in a, X \backslash \emptyset=X \in a$
2. $A, B \in a \Longrightarrow A \bigcup B \in a$ by $A \bigcup=A \bigcup B \bigcup \underbrace{\emptyset \ldots \bigcup \emptyset \ldots \in a}_{\text {countably many }}$
3. $A_{1}, A_{2}, \ldots \in a \Longrightarrow \bigcap_{i=1}^{\infty} A_{i} \in a$, by $\bigcap_{i=1}^{\infty} A_{i}=X \backslash\left(\bigcup_{i=1}^{\infty}\left(X \backslash A_{i}\right)\right) \in a$
4. $A, B \in a \Longrightarrow A \bigcap B \in a$

Example 1: σ-algebra

- $\{\emptyset, X\}$
- $a=\mathcal{P}(x)$
- $a=\{A \subseteq \mathbb{R}: A$ is open $\}$ is not a σ-algebra. $A=(0,1) \in a$, but $\mathbb{R} \backslash A=$ $(-\infty, 0] \cup[1, \infty) \notin a$ because it's not open
- $a=\{A \subseteq \mathbb{R}: A$ is open or closed $\}$ is not a σ-algebra, because $\mathbb{Q}=\bigcup_{q \in \mathbb{Q}}\{q\} \notin a(Q$ is countable)

Proposition 1

X is a set, $C \subseteq \mathcal{P}(x)$, then

$$
a:=\bigcap\{\mathbb{B}: \mathbb{B} \sigma \text {-algebra, } C \subseteq \mathbb{B}\} \text { is a } \sigma \text {-algebra }
$$

It's the smallest σ-algebra containing C.

Definition 2

$C=\{A \subseteq \mathbb{R}: A$ open $\}$, then

$$
a=\cap\{\mathbb{B}: C \subseteq \mathbb{B}, \mathbb{B} \sigma-\text { algebra }\}
$$

is a Borel σ-algebra. The elements of a are called the Borel Sets.

Remark. 1. open \Longrightarrow Borel
2. closed \Longrightarrow Borel
3. $\left\{X_{1}, X_{2}, \ldots\right\}=\bigcup_{i=1}^{\infty}\left\{X_{i}\right\}$, so countable \Longrightarrow Borel. (Note \mathbb{Q} is not open or closed but Borel)
4. $[a, b)=[a, b] \backslash\{b\}=[a, b] \cap(\mathbb{R} \backslash\{b\})$, so a half open interval is also Borel

1.2 Outer Measure

Goal: Define a function

$$
m: \mathcal{P}(\mathbb{R}) \mapsto[0, \infty) \cup\{\infty\} \text { (called a measure) }
$$

1. $m((a, b))=m([a, b])=m((a, b])=b-a$
2. $m(A \cup B) \leqslant m(A)+m(B)$
3. $A \cap B=\emptyset, m(A \cup B)=m(A)+m(B)$

Definition 3

We define a (Lebesgue) outer measure by

$$
\begin{aligned}
& m^{*}: \mathcal{P}(\mathbb{R}) \mapsto[0, \infty) \cup\{\infty\} \\
& m^{*}(A)=\inf \left\{\sum_{i=1}^{\infty} l\left(I_{i}\right): A \subseteq \bigcup_{i=1}^{\infty} I_{i}, I_{i} \text { open, bounded interval }\right\}
\end{aligned}
$$

Example 2

$\emptyset \Longrightarrow m^{*}(\emptyset)=0$. Since $\forall \varepsilon>0, \emptyset \subseteq(0, \varepsilon) \Longrightarrow m^{*}(\emptyset) \leqslant l((0, \varepsilon))$. Since $m^{*}(\emptyset) \geqslant 0$, we know $m^{*}(\emptyset)=0$

Example 3

$A=\left\{x_{1}, x_{2}, \ldots\right\}$ is countable, then

$$
A \subseteq \bigcup_{i=1}^{\infty}\left(x_{i}-\frac{\varepsilon}{2^{i+1}}, x_{i}+\frac{\varepsilon}{2^{i+1}}\right), \varepsilon>0
$$

then

$$
\begin{aligned}
m^{*}(A) & \leqslant \sum_{i=1}^{\infty} \frac{\varepsilon}{2^{i}} \\
& =\frac{\varepsilon}{2} \sum_{i=1}^{\infty} \frac{1}{2^{i-1}} \\
& =\frac{\varepsilon}{2}\left(\frac{1}{1-1 / 2}\right)=\varepsilon
\end{aligned}
$$

Since ε is arbitrary,

$$
m^{*}(A)=0
$$

It's also clear that finite set also have measure 0 . That is, both countable and finite sets have measure 0

1.3 Outer Measure 2

Proposition 2

If $A \subseteq B$, then $m^{*}(A) \leqslant m^{*}(B)$

Proof.

$$
\begin{aligned}
X & :=\left\{\sum l\left(I_{i}\right): A \subseteq \bigcup_{i=1}^{\infty} I_{i}\right\} \\
Y & :=\left\{\sum l\left(I_{i}\right): B \subseteq \bigcup_{i=1}^{\infty} I_{i}\right\} \\
Y & \subseteq X \\
\inf X & \leqslant \inf Y
\end{aligned}
$$

Lemma 3

If $a, b \in \mathbb{R}$ with $a \leqslant b$, then $m^{*}([a, b])=b-a$

Proof. Let $\varepsilon>0$ be given. Since $[a, b] \subseteq\left(a-\frac{\varepsilon}{2}, b+\frac{\varepsilon}{2}\right)$. We see that $m^{*}([a, b]) \leqslant b-a+\varepsilon$. Let I_{i} be bounded, open intervals such that $[a, b] \subseteq \bigcup_{i=1}^{\infty} I_{i}$. Since $[a, b]$ is compact, then there exists $n \in \mathbb{N}$, such that

$$
[a, b] \subseteq \bigcup_{i=1}^{n} I_{i}
$$

so

$$
b-a \leqslant \sum_{i=1}^{n} l\left(I_{i}\right) \leqslant \sum_{i=1}^{\infty} l\left(I_{i}\right)
$$

and so $m^{*}([a, b]) \geqslant b-a \Longrightarrow m^{*}([a, b])=b-a$. Note $m^{*}([a, b])>0$ because of the definition of inf.

Proposition 4

If I is an interval, then $m^{*}(I)=l(I)$

Proof.

1. If I is bounded with endpoints $a \leqslant b$, then

$$
\begin{aligned}
\varepsilon>0, I \subseteq[a, b] & \Longrightarrow m^{*}(I) \leqslant m^{*}([a, b])=b-a \\
{\left[a+\frac{\varepsilon}{2}, b-\frac{\varepsilon}{2}\right] \subseteq I } & \Longrightarrow b-a+\varepsilon \leqslant m^{*}(I) \\
\Longrightarrow b-a & \leqslant m^{*}(I)
\end{aligned}
$$

then $m^{*}(I)=b-a$
2. If I is unbounded

$$
\begin{aligned}
& \forall n \in \mathbb{N}, \exists I_{n}, l\left(I_{n}\right)=n \\
\Longrightarrow & m^{*}(I) \geqslant m^{*}\left(I_{n}\right)=n \\
\Longrightarrow & m^{*}(I)=\infty=l(I)
\end{aligned}
$$

1.4 Basic Properties of Outer Measure

Outer measure is

1. Translation Invariant
2. Countably Subadditive

Notation: $x \in \mathbb{R}, A \subseteq \mathbb{R}, x+A:=\{x+a: a \in A\}$

Proposition 5: Translation Invariant

$$
m^{*}(x+A)=m^{*}(A)
$$

Proof.

$$
\begin{aligned}
m^{*}(x+A) & =\inf \left\{\sum_{i=1}^{\infty} l\left(I_{i}\right): x+A \subseteq \bigcup_{i=1}^{\infty} I_{i}, \text { bounded, open }\right\} \\
& =\inf \left\{\sum_{i=1}^{\infty} l\left(I_{i}\right): A \subseteq \bigcup_{i=1}^{\infty} I_{i}-x, \text { bounded, open }\right\} \\
& =\inf \{\sum_{i=1}^{\infty} l(\underbrace{I_{i}-x}_{J_{i}}): A \subseteq \bigcup_{i=1}^{\infty} \underbrace{I_{i}-x}_{J_{i}}, \text { bounded, open }\} \\
& =\inf \left\{\sum_{i=1}^{\infty} l\left(J_{i}\right): A \subseteq \bigcup_{i=1}^{\infty} J_{i}\right\} \\
& =m^{*}(A)
\end{aligned}
$$

Proposition 6: Countably Subadditivity

If $A_{i} \subseteq \mathbb{R}(i \in \mathbb{N})$, then

$$
m^{*}\left(\bigcup_{i=1}^{\infty} A_{i}\right) \leqslant \bigcup_{i=1}^{\infty} m^{*}\left(A_{i}\right)
$$

Proof. We may assume each $m^{*}\left(A_{i}\right)<\infty$ (otherwise it's trivial). Let $\varepsilon>0$ be given and let's fix $i \in \mathbb{N}$. There exists open and bounded interval $I_{i, j}$ such that $A_{i} \subseteq \bigcup_{i=1}^{\infty} I_{i, j}$ and

$$
\sum_{i=1}^{\infty} l\left(I_{i, j}\right) \leqslant m^{*}\left(A_{i}\right)+\frac{\varepsilon}{2^{i}}
$$

We see that

$$
\bigcup_{i=1}^{\infty} A_{i} \subseteq \bigcup_{i, j} I_{i, j}
$$

and so

$$
\begin{aligned}
m^{*}\left(\bigcup_{i=1}^{\infty}\right) & \leqslant \sum_{i, j} l\left(I_{i, j}\right) \\
& \leqslant \sum_{i=1}^{\infty}\left(m^{*}\left(A_{i}\right)+\frac{\varepsilon}{2^{i}}\right) \\
& =\sum_{i=1}^{\infty} m^{*}\left(A_{i}\right)+\sum_{i=1}^{\infty} \frac{\varepsilon}{2^{i}} \\
& =\sum_{i=1}^{\infty} m^{*}\left(A_{i}\right)+\varepsilon
\end{aligned}
$$

Corollary 7: finite subadditivity

If $A_{1}, \ldots, A_{n} \in \mathcal{P}(\mathbb{R})$, then

$$
m^{*}\left(A_{1} \cup A_{2} \ldots \cup A_{n}\right) \leqslant m^{*}\left(A_{1}\right)+m^{*}\left(A_{2}\right)+\ldots+m^{*}\left(A_{n}\right)
$$

Later we will see that there exists $A, B \subseteq \mathbb{R}, A \cap B=\emptyset$ but $m^{*}(A \cup B) \leqslant m^{*}(A)+m^{*}(B)$, we will solve this by restricting the domain of m^{*} to only include the sets which measure "nicely".

1.5 Measurable Sets

Definition 4

We say $A \subseteq \mathbb{R}$ is measurable if $\forall X \subseteq \mathbb{R}$,

$$
m^{*}(X)=m^{*}(X \cap A)+m^{*}(X \backslash A)
$$

Remark. Always have

$$
m^{*}(X) \leqslant m^{*}(X \cap A)+m^{*}(X \backslash A)
$$

by $X=(X \backslash A) \cup(X \cap A)$
Remark. If $A \subseteq \mathbb{R}$ is measurable and $B \subseteq \mathbb{R}$ with $A \cap B=\emptyset$, then

$$
m^{*}(\underbrace{A \cup B}_{X})=m^{*}(X \cap A)+m^{*}(X \backslash A)=m^{*}(A)+m^{*}(B)
$$

Proposition 8

If $m^{*}(A)=0$, then A is measurable

Proof. Let $X \subseteq \mathbb{R}$, since $X \cap A \subseteq A$, we have

$$
0 \leqslant m^{*}(X \cap A) \leqslant m^{*}(A)=0
$$

so $m^{*}(X \cap A)=0$, then

$$
\begin{aligned}
& m^{*}(X \cap A)+m^{*}(X \backslash A) \\
= & m^{*}(X \backslash A) \\
\leqslant & m^{*}(X)
\end{aligned}
$$

the other direction is always true, so

$$
m^{*}(X)=m^{*}(X \cap A)+m^{*}(X \backslash A)
$$

Proposition 9

A_{1}, \ldots, A_{n} measurable, then $\bigcup_{i=1}^{n} A_{i}$ is measurable.

Proof. It suffices to prove the result when $n=2$.
Let $A, B \subseteq \mathbb{R}$ be measurable. Let $X \subseteq \mathbb{R}$, then

$$
\begin{aligned}
m^{*}(X) & =m^{*}(X \cap A)+m^{*}(\underbrace{X \backslash A}_{Y}) \\
& =m^{*}(X \cap A)+m^{*}(Y \cap B)+m^{*}(Y \backslash B) \\
& =m^{*}(X \cap A)+m^{*}((X \backslash A) \cap B)+m^{*}(X \backslash(A \cup B)) \\
& \geqslant m^{*}((X \cap A) \cup((X \backslash A) \cap B))+m^{*}(X \backslash(A \cup B)) \\
& =m^{*}(X \cap(A \cup B))+m^{*}(X \backslash(A \cup B))
\end{aligned}
$$

Proposition 10

$A_{1}, A_{2}, \ldots, A_{n}$ measurable, $A_{i} \cap A_{j}=\emptyset, i \neq j$. Let $A=A_{1} \cup \ldots \cup A_{n}$. If $X \subseteq \mathbb{R}$, then

$$
m^{*}(X \cap A)=\sum_{i=1}^{n} m^{*}\left(X \cap A_{i}\right)
$$

Proof. For $n=2$, let $A, B \subseteq \mathbb{R}$ measurable, $A \cap B=\emptyset$. Let $X \subseteq \mathbb{R}$, then

$$
\begin{aligned}
& m^{*}(X \cap(A \cup B)) \\
= & m^{*}((X \cap(A \cup B)) \cap A)+m^{*}((X \cap(A \cup B)) \backslash A) \\
= & m^{*}(X \cap A)+m^{*}(X \cap B)
\end{aligned}
$$

Note: we only need $n-1$ sets to be measurable, it's ok if one set is not.

Corollary 11: Finite Additive

A_{1}, \ldots, A_{n} measurable, $A_{i} \cap A_{j}=\emptyset$, then $m^{*}\left(A_{1} \cup \ldots \cup A_{n}\right)=\sum_{i=1}^{n} m^{*}\left(A_{i}\right)$

Proof. Take $X=\mathbb{R}$, use the proposition above.

1.6 Countably Additivity

Lemma 12

$A_{i} \subseteq \mathbb{R}$ measurable $\left(i \in \mathbb{N}\right.$). If $A_{i} \cap A_{j}=\emptyset$ for $i \neq j$, then $A:=\bigcup_{i=1}^{\infty} A_{i}$ is measurable.

Proof. Let $B_{n}=A_{1} \cup \ldots A_{n}$ and $X \subseteq \mathbb{R}$ arbitrary.

$$
\begin{aligned}
m^{*}(X) & =m^{*}\left(X \cap B_{n}\right)+m^{*}\left(X \backslash B_{n}\right) \\
& \geqslant m^{*}\left(X \cap B_{n}\right)+m^{*}(X \backslash A) \\
& =\sum_{i=1}^{m} m^{*}\left(X \cap A_{i}\right)+m^{*}(X \backslash A)
\end{aligned}
$$

Taking $n \rightarrow \infty$,

$$
\begin{aligned}
m^{*}(X) & \geqslant \sum_{i=1}^{\infty} m^{*}\left(X \cap A_{i}\right)+m^{*}(X \backslash A) \\
& =m^{*}\left(\bigcup_{i=1}^{\infty}\left(X \cap A_{i}\right)\right)+m^{*}(X \backslash A) \\
& =m^{*}(X \cap A)+m^{*}(X \backslash A)
\end{aligned}
$$

Proposition 13

$A \subseteq \mathbb{R}$ measurbale, then $\mathbb{R} \backslash A$ is measurable.

Proof. $X \subseteq \mathbb{R}$,

$$
\begin{aligned}
& m^{*}(X \cap(\mathbb{R} \backslash A))+m^{*}(X \backslash(\mathbb{R} \backslash A)) \\
= & m^{*}(X \backslash A)+m^{*}(X \cap A) \\
= & m^{*}(X) \text { by } A \text { measurable }
\end{aligned}
$$

Proposition 14

$A_{i} \subseteq \mathbb{R}$ measurable $(i \in \mathbb{N})$, then $A=\bigcup_{i=1}^{\infty} A_{i}$ is measurable.

Proof. $B_{n}=A_{n} \backslash\left(A_{1} \cup \ldots \cup A_{n-1}\right)=A_{n} \cap\left(\mathbb{R} \backslash\left(A_{1} \cup \ldots \cup A_{n-1}\right)\right)$, $\left(B_{1}=A_{1}\right), n \geqslant 2$, we can see that B_{n} is an intersection of measurable sets, hence measurable. And, for $i \neq j, B_{i} \cap B_{j}=\emptyset$. Also,

$$
\bigcup_{i=1}^{\infty} B_{i}=\bigcup_{i=1}^{\infty} A_{i}
$$

so A is measurable by lemma above.

Corollary 15

The collection \mathcal{L} of (Lebesgue) measurable sets is a σ-algebra of sets in \mathbb{R}

Proposition 16: Countably Additivity

$A_{i} \subseteq \mathbb{R}$ measurable $(i \in \mathbb{N})$, if $A_{i} \cap A_{j}=\emptyset$ for $i \neq j$, then

$$
m^{*}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} m^{*}\left(A_{i}\right)
$$

Proof.

$$
m^{*}\left(\bigcup_{i=1}^{\infty} A_{i}\right) \geqslant m^{*}\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{=1}^{\infty} m^{*}\left(A_{i}\right)
$$

Take $n \rightarrow \infty$, then

$$
m^{*}\left(\bigcup_{i=1}^{\infty} A_{i}\right) \geqslant \sum_{i=1}^{\infty} m^{*}\left(A_{i}\right)
$$

The other direction follows by the subadditivity.

1.7 Measurable Sets Continued

Proposition 17: I

$a \in \mathbb{R}$, then (a, ∞) is measurable

Proof. Let $X \subseteq \mathbb{R}$. We want to show that

$$
m^{*}(X \cap(a, \infty))+m^{*}(X \backslash(a, \infty)) \leqslant m^{*}(X)
$$

1. $a \notin X$,

We show

$$
m^{*}(\underbrace{X \cap(a, \infty)}_{X_{1}})+m^{*}(\underbrace{X \cap(-\infty, a)}_{X_{2}}) \leqslant m^{*}(X)
$$

Let $\left(I_{i}\right)$ be a sequence of bounded, open intervals such that $X \subseteq \bigcup I_{i}$. Define

$$
I_{i}^{\prime}=I_{i} \cap(a, \infty) \text { and } I_{i}^{\prime \prime}=I_{i} \cap(-\infty, a)
$$

Note that

$$
X_{1} \subseteq \bigcup I_{i}^{\prime}, X_{2} \subseteq \bigcup I_{i}^{\prime \prime}
$$

and so

$$
\begin{aligned}
& m^{*}\left(X_{1}\right) \leqslant \sum l\left(I_{i}^{\prime}\right) \\
& m^{*}\left(X_{2}\right) \leqslant \sum l\left(I_{i}^{\prime \prime}\right)
\end{aligned}
$$

We then see that

$$
\begin{aligned}
& m^{*}\left(X_{1}\right)+m^{*}\left(X_{2}\right) \\
\leqslant & \sum l\left(I_{i}^{\prime}\right)+\sum l\left(I_{i}^{\prime \prime}\right) \\
= & \sum\left(l\left(I_{i}^{\prime}\right)+l\left(I_{i}^{\prime \prime}\right)\right) \\
= & \sum l\left(I_{i}\right)
\end{aligned}
$$

By the definition of inf, we have

$$
m^{*}\left(X_{1}\right)+m^{*}\left(X_{2}\right) \leqslant m^{*}(X)
$$

2. $a \in X$, let $X^{\prime}=X \backslash\{a\}$, then

$$
\begin{aligned}
m^{*}(X \cap(a, \infty))+m^{*}(X \backslash(a, \infty)) & =m^{*}\left(\left(X^{\prime} \cup\{a\}\right) \cap(a, \infty)\right)+m^{*}\left(\left(X^{\prime} \cup\{a\}\right) \backslash(a, \infty)\right) \\
& =m^{*}\left(X^{\prime} \cap(a, \infty)\right)+m^{*}\left(\left(X^{\prime} \backslash(a, \infty)\right) \cup\{a\}\right) \\
& \leqslant m^{*}\left(X^{\prime} \cap(a, \infty)\right)+m^{*}\left(X^{\prime} \backslash(a, \infty)\right)+m^{*}(\{a\}) \\
& =m^{*}\left(X^{\prime}\right)+0 \leqslant m^{*}(X)
\end{aligned}
$$

The other direction is trivial by subadditivity.
Theorem 18
Borel set is measurable

Proof. (a, ∞) is measurable, so $\bigcap_{n=1}^{\infty}\left(a-\frac{1}{n}, \infty\right)=[a, \infty)$ is measurable. So $\mathbb{R} \backslash[a, \infty)=$ $(-\infty, a)$ is measurable, then $(a, b)=(a, \infty) \cap(-\infty, b)$ is measurable. Hence, every open set in \mathbb{R} is measurable (open sets can be expressed as countable union of open intervals), so

$$
\mathbb{B} \subseteq \mathcal{L}
$$

because \mathbb{B} is the smallest σ-algebra containing all open sets and \mathcal{L} is a σ-algebra containing all open sets.

Definition 5

We call $m: \mathcal{L} \mapsto[0, \infty) \cup\{\infty\}$ given by $m(A)=m^{*}(A)$, the Lebesgue Measure

Remark. $A \subseteq \mathbb{R}$ measurable, then $x+A$ is measurable $\forall x \in \mathbb{R}$
Proof. $\forall K \subseteq \mathbb{R}, K-x \subseteq \mathbb{R}$,

$$
\begin{aligned}
m^{*}(K-x) & =m^{*}(A \cap(K-x))+m^{*}(A \backslash(K-x)) \\
& =m^{*}((A+x) \cap K)+m^{*}((A+x) \backslash K) \\
& =m^{*}(K)
\end{aligned}
$$

1.8 Basic Properties of Lebesgue Measure

Proposition 19: Excision Properties

$A \subseteq B, A$ measurable, $m(A)<\infty$, then $m^{*}(B \backslash A)=m^{*}(B)-m(A)$

Proof.

$$
\begin{aligned}
m^{*}(B) & =m^{*}(B \cap A)+m^{*}(B \backslash A) \\
& =m^{*}(A)+m^{*}(B \backslash A) \\
& =\underbrace{m(A)}_{<\infty}+m^{*}(B \backslash A)
\end{aligned}
$$

Theorem 20: Continuity of Measure

1. $A_{1} \subseteq A_{2} \subseteq A_{3} \ldots$, measurable, then

$$
m\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\lim _{n \rightarrow \infty} m\left(A_{n}\right)
$$

2. $B_{1} \supseteq B_{2} \supseteq B_{3} \ldots$, measurable, and $m\left(B_{1}\right)<\infty$, then

$$
m\left(\bigcap_{i=1}^{\infty} B_{i}\right)=\lim _{n \rightarrow \infty} m\left(B_{n}\right)
$$

Proof.

1. Since $m\left(A_{k}\right) \leqslant m\left(\cup A_{i}\right), \forall k \in \mathbb{N}$, we have

$$
\lim _{n \rightarrow \infty} m\left(A_{n}\right) \leqslant m\left(\cup A_{i}\right)
$$

if $\exists k \in \mathbb{N}$ such that $m\left(A_{k}\right)=\infty$, then $\lim _{n \rightarrow \infty} m\left(A_{n}\right)=\infty$ and we are done, so assume $m\left(A_{k}\right)<\infty, \forall k \in \mathbb{N}$.
For each $k \in \mathbb{N}$, let $D_{k}=A_{k} \backslash A_{k-1}, A_{0} \neq \emptyset$. Note

- D_{k} 's are measurable
- D_{k} 's are parwise disjoint
- $\cup D_{i}=\cup A_{i}$

SO

$$
\begin{aligned}
m^{*}\left(\cup A_{i}\right) & =m^{*}\left(\cup D_{i}\right) \\
& =\sum_{i=1}^{\infty} m\left(D_{i}\right) \\
& =\sum_{i=1}^{\infty} m\left(A_{i}\right)-m\left(A_{i-1}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{\infty} m\left(A_{i}\right)-m\left(A_{i-1}\right) \\
& =\lim _{n \rightarrow \infty} m\left(A_{n}\right)-m\left(A_{0}\right) \\
& =\lim _{n \rightarrow \infty} m\left(A_{n}\right)
\end{aligned}
$$

2. For $k \in \mathbb{N}$, define

$$
D_{k}=B_{1} \backslash B_{k}
$$

Note:

- D_{k} 's measurable
- $D_{1} \subseteq D_{2} \subseteq D_{3} \subseteq \ldots$

By 1), we know $m\left(\cup D_{i}\right)=\lim _{n \rightarrow \infty} m\left(D_{n}\right)$, we see that

$$
\cup D_{i}=\bigcup_{i=1}^{\infty}\left(B_{1} \backslash B_{i}\right)=B_{1} \backslash\left(\bigcap_{i=1}^{\infty} B_{i}\right)
$$

and so,

$$
\lim _{n \rightarrow \infty} m\left(D_{n}\right)=m\left(\cup D_{i}\right)=m\left(B_{1} \backslash\left(\cap B_{i}\right)\right)=m\left(B_{1}\right)-m\left(\cap B_{i}\right)
$$

because $\cap B_{i}$ is measurable and has finite measure.
However,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} m\left(D_{n}\right) & =\lim _{n \rightarrow \infty} m\left(B_{1} \backslash B_{n}\right) \\
& =\lim _{n \rightarrow \infty} m\left(B_{1}\right)-m\left(B_{n}\right) \\
& =m\left(B_{1}\right)-\lim _{n \rightarrow \infty} m\left(B_{n}\right) \\
& =m\left(B_{1}\right)-m\left(\cap B_{i}\right)
\end{aligned}
$$

Hence,

$$
\lim _{n \rightarrow \infty} m\left(B_{n}\right)=m\left(\cap B_{i}\right)
$$

Example 4
 $B_{i}=(i, \infty)$, and $m\left(\cap B_{i}\right)=m(\emptyset)=0$, but $\lim _{n \rightarrow \infty} m\left(B_{n}\right)=\infty$

1.9 Non-Measurable Sets

Lemma 21

$A \subseteq \mathbb{R}$ bounded, measurable $\Lambda \subseteq \mathbb{R}$ bounded, countably infinite. If $\lambda+A, \lambda \in \Lambda$ are pairwise disjoint, then $m(A)=0$

Proof. $\bigcup_{\lambda \in \Lambda}(\lambda+A)$ is a bounded set, which is measurable, then

$$
\begin{aligned}
& m\left(\bigcup_{\lambda}(\lambda+A)\right)<\infty \\
& m\left(\bigcup_{\lambda}(\lambda+A)\right)=\sum_{\lambda} m(\lambda+A)=\sum_{\lambda} m(A)<\infty
\end{aligned}
$$

and $m(A) \geqslant 0$, so $m(A)=0(\Lambda$ is countably infinite $)$

Construction: Start with $\emptyset \neq A \subseteq \mathbb{R}$, consider $a \sim b \Longleftrightarrow a-b \in \mathbb{R}$. Then \sim is an equivalence relation.
Let C_{A} denotes a single choice of equivalence class representatives for A relative to \sim.
Remark. The sets $\lambda+C_{A}, \lambda \in \mathbb{Q}$ are pairwise disjoint
Proof. say $x \in\left(\lambda_{1}+C_{A}\right) \cap\left(\lambda_{2} \cap C_{A}\right)$

$$
\begin{aligned}
& x=\lambda_{1}+a=\lambda_{2}+b \\
\Longrightarrow & a, b \in C_{A} \\
\Longrightarrow & a-b=\lambda_{1}-\lambda_{2} \in \mathbb{Q} \\
\Longrightarrow & a \sim b \Longrightarrow a=b \text { by each equiv. class has one repre. } \\
\Longrightarrow & \lambda_{1}=\lambda_{2}
\end{aligned}
$$

Theorem 22: Vitali

Every set $A \subseteq \mathbb{R}$ with $m^{*}(A)>0$ contains a non-measurable subset.

Proof. By Quiz1, we may assume A is bounded, say $A \subseteq[-N, N]$, for some $N \in \mathbb{N}$.

Claim: C_{A} is non-measurable.
Assume C_{A} is measurable. Let $\Lambda \subseteq \mathbb{Q}$ be bounded, infinite. By the lemma and remark,

$$
m\left(C_{A}\right)=0
$$

Let $a \in A$, then $a \sim b$ for some $b \in C_{A}$. In particular, $a-b=\lambda \in \mathbb{Q}$. Moreover,

$$
\lambda \in[-2 N, 2 N]
$$

Taking $\Lambda_{0}=\mathbb{Q} \cap[-2 N, 2 N]$, have

$$
A \subseteq \bigcup_{\lambda \in \Lambda_{0}}\left(\lambda+C_{A}\right)
$$

so $m^{*}(A)=0$, contradiction

Corollary 23

$\exists A, B \subseteq \mathbb{R}$, such that

1. $A \cap B=\emptyset$, and
2. $m^{*}(A \cup B)<m^{*}(A)+m^{*}(B)$

Proof. Let C be a non-measurable set, $\exists X \subseteq \mathbb{R}$ such that

$$
m^{*}(X)<m^{*}(\underbrace{X \cap C}_{A})+m^{*}(\underbrace{X \backslash C}_{B})
$$

1.10 Cantor-Lebesgue Function

Recall: Cantor Set

$$
\begin{aligned}
I & =[0,1] \\
C_{1} & =[0,1 / 3] \cup[2 / 3,1] \\
C_{2} & =[0,1 / 9] \cup[2 / 9,3 / 9] \cup[6 / 9,7 / 9] \cup[8 / 9,1] \\
& \vdots \\
C & =\bigcap_{k=1}^{\infty} C_{k}
\end{aligned}
$$

Note C is countable and closed.

Proposition 24

The Cantor Set is Borel and has measure zero.

Proof. Closed \Longrightarrow Borel. And $C=\bigcap_{k=1}^{\infty} C_{k}$, where C_{k} 's measurable and

$$
C_{1} \supseteq C_{2} \supseteq C_{3} \supseteq \ldots
$$

By continuity of measure,

$$
\begin{aligned}
m(C) & =\lim _{k \rightarrow \infty} m\left(C_{k}\right) \\
& =\lim _{k \rightarrow \infty} \frac{2^{k}}{3^{k}}=0
\end{aligned}
$$

Construction: Cantor-Lebesgue Function (C-L fcn)

1. For $k \in \mathbb{N}, U_{k}=$ Union of open intervals deleted in the process of constructing $C_{1}, C_{2}, \ldots, C_{k}$ i.e. $U_{k}=[0,1] \backslash C_{k}$.
2. $U=\bigcup_{k=1}^{\infty} U_{k}$, i.e. $U=[0,1] \backslash C$
3. Say $U_{k}=I_{k, 1} \cup I_{k, 2} \cup \ldots \cup I_{k, 2^{k}-1}$ (In order: from left to right). Define

$$
\varphi: U_{k} \rightarrow[0,1] \text { by }\left.\varphi\right|_{I_{k, i}}=\frac{i}{2^{k}}
$$

e.g. $U_{1}=(1 / 3,2 / 3) \rightarrow \frac{1}{2^{1}}=\frac{1}{2}$ and

$$
\begin{array}{ccc}
U_{2}=(1 / 9,2 / 9) & \cup(1 / 3,2 / 3) & \cup(7 / 9,8 / 9) \\
\rightarrow \frac{1}{4} & \rightarrow \frac{2}{4} & \rightarrow \frac{3}{4}
\end{array}
$$

4. Define

$$
\varphi:[0,1] \rightarrow[0,1]
$$

by for $0 \neq x \in C, \varphi(x)=\sup \{\varphi(t): t \in U \cap[0, x]\}$ and $\varphi(0)=0$

Things to know about φ

1. φ is increasing. Take two points in U, for large enough k, both points in U_{k}. If they are in the Cantor Set, then it's increasing by definition
2. φ is continuous

- φ is continuous on U. (It's constant on a small interval)
- $x \in C, x \neq 0,1$. For large $k, \exists a_{k} \in I_{k, i}, \exists b_{k} \in I_{k, i+1}$ such that

$$
a_{k}<x<b_{k}
$$

but, $\varphi\left(b_{k}\right)-\varphi\left(a_{k}\right)=\frac{i+1}{2^{k}}-\frac{i}{2^{k}}=\frac{1}{2^{k}} \rightarrow 0$

- $x \in\{0,1\}$

3. $\varphi: u \rightarrow[0,1]$ is differentiable and $\varphi^{\prime}=0$
4. φ is onto,

$$
\varphi(0)=0, \varphi(1)=1
$$

by Intermediate Value Theorem.

1.11 A Non-Borel Set

Let φ be the Cantor-Lebesgue Function. Consider $\psi:[0,1] \rightarrow[0,2]$ defined by $\psi(x)=x+\varphi(x)$.

1. ψ is strictly increasing
2. ψ is continuous
3. ψ is onto

By 1),3), we know ψ is bijective, hence invertible.

Properties:

1. $\psi(C)$ is measurable and has positive measure.
2. ψ maps a particular (measurable) subset of C to a non-measurable set.

Proof.

1. By A1, ψ^{-1} is continuous, so $\psi(C)=\left(\psi^{-1}\right)^{-1}(C)$ is closed, so $\psi(C)$ is Borel implies that it's measurable.
Note that

$$
\begin{aligned}
{[0,1] } & =C \dot{\cup} U \\
\Longrightarrow[0,2] & =\psi(C \dot{\cup} U)=\psi(C) \dot{\cup} \psi(U) \text { by bijectivity } \\
\Longrightarrow 2 & =m(\psi(C))+m(\psi(U))
\end{aligned}
$$

It suffices to show that

$$
m(\psi(U))=1
$$

Say $U=\dot{\bigcup}_{i=1}^{\infty} I_{i}$, where I_{i} are disjoint open intervals. Then

$$
\psi(U)=\bigcup_{i=1}^{\infty} \psi\left(I_{i}\right) \Longrightarrow m(\psi(U))=\sum m\left(\psi\left(I_{i}\right)\right)
$$

Note that $\forall i \in \mathbb{N}, \exists r \in \mathbb{R}$, such that $\varphi(x)=r, \forall x \in I_{i}$
In particular, $\psi(x)=x+r, \forall x \in I_{i}$ and so

$$
\psi\left(I_{i}\right)=r+I_{i}
$$

so

$$
m(\psi(U))=\sum m\left(\psi\left(I_{i}\right)\right)=\sum m\left(I_{i}\right)=m\left(\dot{\cup} I_{i}\right)=m(U)
$$

Since $[0,1]=U \dot{\cup} C$, we have that $1=m(U)+m(C)=m(U)$, so $m(\psi(U))=m(U)=$ $1>0 \Longrightarrow m(\psi(C))=1$
2. By Vitali, $\psi(C)$ contains a subset $A \subseteq \psi(C)$ which is non-measurable. Let $B=\psi^{-1}(A) \subseteq$ C, B is measurable because $0=m(C) \geqslant m(B)=0$. Then $\psi(B)=\psi\left(\psi^{-1}(A)\right)=A$

Theorem 25

Cantor Set contains an element $\mathcal{L} \backslash \mathbb{B}$

Proof. $B \subseteq C \Longrightarrow B$ measurable. $\psi(B)$ is non-measurable. By A1, if B is Borel, then $\psi(B)$ is Borel, so B cannot be Borel.

1.12 Measurable Function

Definition 6

$A \subseteq \mathbb{R}$ measurable, we say $f: A \rightarrow \mathbb{R}$ is measurable iff for all open $U \subseteq \mathbb{R}, f^{-1}(U)$ measurable.

Proposition 26

If $A \subseteq \mathbb{R}$ is measurable and $f: A \rightarrow \mathbb{R}$ is continuous then f is measurable.

Proof. f is continuous $\Longrightarrow f^{-1}(U)$ open if U open $\Longrightarrow f^{-1}(U)$ Borel, measurable

Proposition 27

$A \subseteq \mathbb{R}$ measurable, $\chi_{A}: \mathbb{R} \rightarrow \mathbb{R}, \chi_{A}(x)=\left\{\begin{array}{ll}1, & x \in A \\ 0, & x \notin A\end{array}\right.$, then χ_{A} is measurable.

Proof.

$$
\begin{aligned}
& U \subseteq \mathbb{R}, \text { open } \\
& \chi_{A}^{-1}(U)=\mathbb{R}, \text { if } 0,1 \in U \\
& \chi_{A}^{-1}(U)=A, \text { if } 1 \in U, 0 \notin U \\
& \chi_{A}^{-1}(U)=A^{C}, \text { if } 0 \in U, 1 \notin U \\
& \chi_{A}^{-1}(U)=\emptyset, \text { if } 0,1 \notin U
\end{aligned}
$$

In any case, $\chi_{A}^{-1}(U)$ is measurable.

Proposition 28

$A \subseteq \mathbb{R}$ measurable, $f: A \rightarrow \mathbb{R}$, the following are equivalent,

1. f is measurable
2. $\forall a \in \mathbb{R}, f^{-1}(a, \infty)$ is measurable
3. $\forall a<b, f^{-1}(a, b)$ measurable

Proof.

-1) $\Longrightarrow 2$), trivial

- 2) $\Longrightarrow 3)$, let $b \in \mathbb{R}$ such that $f^{-1}(b, \infty)$ is measurable, then $\mathbb{R} \backslash f^{-1}(b, \infty)=f^{-1}(\mathbb{R} \backslash$ $(b, \infty)=f^{-1}((-\infty, b])$ is measurable as well.
We see that $(-\infty, b)=\bigcup_{n=1}^{\infty}\left(-\infty, b-\frac{1}{n}\right]$ and so

$$
f^{-1}(-\infty, b)=\bigcup_{n=1}^{\infty} f^{-1}\left(\left(-\infty, b-\frac{1}{n}\right]\right)
$$

so it's measurable.
Finally, for $a<b$,

$$
(a, b)=(a, \infty) \cap(-\infty, b)
$$

so

$$
f^{-1}((a, b))=f^{-1}((a, \infty) \cap(-\infty, b))=f^{-1}((a, \infty)) \cap f^{-1}((-\infty, b))
$$

so it's measurable.
-3) $\Longrightarrow 1)$ Trivial. Any open set is a countable union of intervals.

1.13 Properties of Measurable Function

Proposition 29

$A \subseteq \mathbb{R}$ measurable, $f, g: A \rightarrow \mathbb{R}$ measurable.

1. $\forall a, b \in \mathbb{R}, a f+b g$ is measurable
2. The function $f g$ is measurable.

Proof.

1. Let $a \in \mathbb{R}$. For $\alpha \in \mathbb{R},(a f)^{-1}(\alpha, \infty)=\{x \in A: a f(x)>\alpha\}$
(a) if $a>0$,

$$
(a f)^{-1}(\alpha, \infty)=\{x \in A: f(x)>\alpha / a\}=f^{-1}(\alpha / a, \infty) \Longrightarrow \text { measurable }
$$

(b) $a<0$,

$$
(a f)^{-1}(\alpha, \infty)=f^{-1}(-\infty, \alpha / a) \Longrightarrow \text { measurable }
$$

(c) $a=0$,

$$
a f \text { constant } \Longrightarrow \text { continuous } \Longrightarrow \text { measurable }
$$

We now show that $f+g$ measurable. For $\alpha \in \mathbb{R}$,

$$
\begin{aligned}
(f+g)^{-1}(\alpha, \infty) & =\{x \in A: f(x)+g(x)>\alpha\} \\
& =\{x \in A: f(x)>\alpha-g(x)\} \\
& =\{x \in A: \exists q \in \mathbb{Q}, f(x)>q>\alpha-g(x)\} \\
& =\bigcup_{q \in \mathbb{Q}}(\{x \in A: f(X)>q\} \cap\{x \in A: g(x)>\alpha-q\}) \\
& =\bigcup_{q \in \mathbb{Q}} f^{-1}(q, \infty) \cap g^{-1}(\alpha-q, \infty) \Longrightarrow \text { measurable }
\end{aligned}
$$

so $f+g$ is measurable.
2. By the quiz, $|f|$ is measurable. For $\alpha \in \mathbb{R}$,

$$
\begin{aligned}
& \left(f^{2}\right)^{-1}(\alpha, \infty) \\
= & \left\{x \in A: f(x)^{2}>\alpha\right\} \\
= & \begin{cases}A, & \alpha<0 \\
\{x \in A:|f(x)|>\sqrt{\alpha}\}, & \alpha \geqslant 0\end{cases} \\
= & \begin{cases}A, & \alpha<0 \\
|f|^{-1}(\sqrt{\alpha}, \infty), & \alpha \geqslant 0\end{cases}
\end{aligned}
$$

is measurable, so f^{2} is measurable.
Since $(f+g)^{2}$ is also measurable, and

$$
2 f g=(f+g)^{2}-f^{2}-g^{2}
$$

so $2 f g$ is measurable. By 1),

Example 5

$\psi:[0,1] \rightarrow \mathbb{R}, \psi(x)=x+\varphi(x)$. There exists $A \subseteq[0,1]$ such that A is measurable but $\psi(A)$ is not measurable. Extend $\psi: \mathbb{R} \rightarrow \mathbb{R}$ continuously to a strictly increasing surjective function such that ψ^{-1} is continuous. Consider $\chi_{A} \circ \psi^{-1}$ where both χ_{A} and ψ^{-1} are measurable. Then,

$$
\begin{aligned}
& \left(\chi_{A} \circ \psi^{-1}\right)^{-1}\left(\frac{1}{2}, \frac{3}{2}\right) \\
= & \psi\left(\chi_{A}^{-1}(1 / 2,3 / 2)\right) \\
= & \psi(A) \text { NOT measurable }
\end{aligned}
$$

Proposition 30

$A \subseteq \mathbb{R}$ measurable. If $g: A \rightarrow \mathbb{R}$ is measurable and $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous then $f \circ g$ is measurable.

Proof. Let $U \subseteq \mathbb{R}$ open, then

$$
(f \circ g)^{-1}(U)=g^{-1}(\underbrace{f^{-1}(U)}_{\text {open }})
$$

which is always measurable by g being measurable.

1.14 More Properties for Measurable Functions

Definition 7

$A \subseteq \mathbb{R}$, we say a property $P(x)(x \in A)$ is true almost everywhere if

$$
m(\{x \in A: P(x) \text { false }\})=0
$$

Proposition 31

$f: A \rightarrow \mathbb{R}$ measurable. If $g: A \rightarrow \mathbb{R}$ is a function and $f=g$ a.e., then g is measurable.

Proof. $B:=\{x \in A: f(x) \neq g(x)\}$, and $m(B)=0$. Let $\alpha \in \mathbb{R}$, then

$$
\begin{aligned}
& g^{-1}(\alpha, \infty)=\{x \in A: g(x)>\alpha\} \\
= & \{x \in A \backslash B: g(x)>\alpha\} \cup\{x \in B: g(x)>\alpha\} \\
= & \{x \in A \backslash B: f(x)>\alpha\} \cup\{x \in B: g(x)>\alpha\} \\
= & (\underbrace{f^{-1}(\alpha, \infty)}_{\text {measurable }} \cap \underbrace{A \backslash B}_{A, B \text { measurable, so it's measurable }}) \cup \underbrace{\{x \in B: g(x)>\alpha\}}_{\subseteq B, \text { so measure zero, measurable }}
\end{aligned}
$$

Hence, $g^{-1}(a, \infty)$ is measurable, so g is measurable.

Proposition 32

A is measurable, and $B \subseteq A$ is measurable. A function $f: A \rightarrow \mathbb{R}$ is measurable if and only if $\left.f\right|_{B}$ and $\left.f\right|_{A \backslash B}$ are measurable.

Proof.

- \Longrightarrow Suppose $f: A \rightarrow \mathbb{R}$ is measurable. Let $\alpha \in \mathbb{R}$, then,

$$
\left(\left.f\right|_{B}\right)^{-1}(\alpha, \infty)=\{x \in B: f(x)>\alpha\}=f^{-1}(\alpha, \infty) \cap B \Longrightarrow \text { measurable }
$$

so $\left.f\right|_{B}$ is measurable, the proof for $\left.f\right|_{A \backslash B}$ is identical.

- \Longleftarrow Suppose $\left.f\right|_{B}$ and $\left.f\right|_{A \backslash B}$ are measurable. For $\alpha \in \mathbb{R}$,

$$
\begin{aligned}
f^{-1}(\alpha, \infty) & =\{x \in A: f(x)>\alpha\} \\
& =\{x \in B: f(x)>\alpha\} \cup\{x \in A \backslash B: f(x)>\alpha\} \\
& =\left(\left.f\right|_{B}\right)^{-1}(\alpha, \infty) \cup\left(\left.f\right|_{A \backslash B}\right)^{-1}(\alpha, \infty)
\end{aligned}
$$

is measurable, so f is measurable.

Proposition 33

$\left(f_{n}\right)$ measurable, $A \rightarrow \mathbb{R}$. If $f_{n} \rightarrow f$ pointwise a.e. then f is measurable.

Proof. Let $B=\left\{x \in A: f_{n}(x) \nrightarrow f(x)\right\}$ so that $m(B)=0$.
For $\alpha \in \mathbb{R}$,

$$
\left(\left.f\right|_{B}\right)^{-1}(\alpha, \infty)=\underbrace{f^{-1}(\alpha, \infty) \cap B}_{\text {measure zero }} \text { is measurable }
$$

It suffices to show that $\left.f\right|_{A \backslash B}$ is measurable. By replacing f by $\left.f\right|_{A \backslash B}$, we may assume $f_{n} \rightarrow f$ pointwise. Let $\alpha \in \mathbb{R}$, since $f_{n} \rightarrow f$ pointwise, we set that for $x \in A$,

$$
f(x)>\alpha \Longleftrightarrow \exists n, N \in \mathbb{N}, \forall i \in \mathbb{N}, f_{i}(x)>\alpha+\frac{1}{n}\left(\text { to avoid } f_{n} \rightarrow \alpha\right)
$$

We then see that

$$
\begin{aligned}
& f^{-1}(\alpha, \infty) \\
= & \bigcup_{n \in \mathbb{N}} \bigcup_{N \in \mathbb{N}} \underbrace{f_{i}^{-1}\left(\alpha+\frac{1}{n}, \infty\right)}_{\text {measurable }}
\end{aligned}
$$

is measurable, which implies that f is measurable.

1.15 Simple Approximation

Definition 8

A function $\varphi: A \rightarrow \mathbb{R}$ is called simple if

1. φ is measurable
2. $\varphi(A)$ is finite

Remark. [Conical Representation]

$$
\varphi: A \rightarrow \mathbb{R} \text { is simple }
$$

and

$$
\varphi(A)=\{\underbrace{c_{1}, c_{2}, \ldots, c_{k}}_{\text {distinct }}\}
$$

then

$$
\begin{aligned}
A_{i} & =\varphi^{-1}\left(\left\{c_{i}\right\}\right) \text { measurable } \\
A & =\bigcup_{i=1}^{k} A_{i} \\
\varphi & =\sum_{i=1}^{k} c_{i} \chi_{A_{i}}
\end{aligned}
$$

Lemma 34

$f: A \rightarrow \mathbb{R}$ measurable and bounded. $\forall \varepsilon>0$, there exists simple function, $\varphi_{\varepsilon}, \psi_{\varepsilon}: A \rightarrow \mathbb{R}$ such that $\forall x \in A$,

1. $\varphi_{\varepsilon} \leqslant f \leqslant \psi_{\varepsilon}$ and
2. $0 \leqslant \psi_{\varepsilon}-\varphi_{\varepsilon}<\varepsilon$

Proof.

$$
f(A) \subseteq[a, b]
$$

Given $\varepsilon>0$,

$$
\begin{aligned}
& a=y_{0}<y_{1}<y_{2} \ldots<y_{n}=b \\
& y_{i+1}-y_{i}<\varepsilon \\
& \underbrace{I_{k}}_{\text {Borel }}=\left[y_{k-1}, y_{k}\right), A_{k}=f^{-1}\left(I_{k}\right) \Longrightarrow \text { measurable } \\
& \varphi_{\varepsilon}: A \rightarrow \mathbb{R}, \psi_{\varepsilon}: A \rightarrow \mathbb{R} \\
& \varphi_{\varepsilon}=\sum_{k=1}^{n} y_{k-1} \chi_{A_{k}} \\
& \psi_{\varepsilon}=\sum_{k=1}^{n} y_{k} \chi_{A_{k}}
\end{aligned}
$$

Let $x \in A$. Since $f(x) \in[a, b], \exists k \in\{1, \ldots, n\}$ such that $f(x) \in I_{k}$ i.e. $y_{k-1} \leqslant f(x) \leqslant y_{k}$, $x \in A_{k}$. Moreover,

$$
\varphi_{\varepsilon}(x)=y_{k-1} \leqslant f(x) \leqslant y_{k}=\psi_{\varepsilon}(x)
$$

and so

$$
\varphi_{\varepsilon} \leqslant f \leqslant \psi_{\varepsilon}
$$

For the same x,

$$
0 \leqslant \psi_{\varepsilon}(x)-\varphi_{\varepsilon}(x)=y_{k}-y_{k-1}<\varepsilon
$$

Theorem 35: Simple Approximation

$A \subseteq \mathbb{R}$ is measurable. A function $f: A \rightarrow \mathbb{R}$ is measurable if and only if there is a sequence $\left(\varphi_{n}\right)$ of simple functions on A such that

1. $\varphi_{n} \rightarrow f$ pointwise
2. $\forall n,\left|\varphi_{n}\right| \leqslant|f|$

Proof.

- \Longleftarrow Simple functions are measurable and pointwise limit of measurable functions is also measurable
- \Longrightarrow Suppose $f: A \rightarrow \mathbb{R}$ is measurable,

1. $f \geqslant 0$

For $n \in \mathbb{N}$, define

$$
A_{n}=\{x \in A: f(x) \leqslant n\}
$$

such that A_{n} is measurable and $\left.f\right|_{A_{n}}$ is measurable and bounded.
By the lemma, there exists simple functions φ_{n} and ψ_{n} such that

$$
0 \leqslant \varphi_{n} \leqslant f \leqslant \psi_{n} \text { on } A_{n} \text { and } 0 \leqslant \psi_{n}-\varphi_{n}<\frac{1}{n}
$$

Fix $n \in \mathbb{N}$, extend $\varphi_{n}: A \rightarrow \mathbb{R}$ by setting $\varphi_{n}(x)=n$ if $x \notin A_{n}$, so $0 \leqslant \varphi_{n} \leqslant f$
For each $n \in \mathbb{N}, \varphi_{n}: A \rightarrow \mathbb{R}$ is simple (it's just a simple function with one more value on a disjoint set).
Claim: $\varphi_{n} \rightarrow f$ pointwise
Let $x \in A$ and let $N \in \mathbb{N}$ such that $f(x) \leqslant N$ (i.e. $x \in A_{N}$. For $n \geqslant N, x \in A_{n}$ and so

$$
0 \leqslant f(x)-\varphi_{n}(x) \leqslant \psi_{n}(x)-\varphi_{n}(x)<\frac{1}{n}
$$

2. $f: A \rightarrow \mathbb{R}$ is measurable. And $B=\{x \in A: f(x) \geqslant 0\}$ and $C=\{x \in A: f(x)<$ $0\}$ are both measurable.
Define $g, h: A \rightarrow \mathbb{R}$,

$$
g=\chi_{B} f, h=-\chi_{B} f
$$

so that g, h measurable and non-negative.
By Case 1 , there exists a sequence $\left(\varphi_{n}\right),\left(\psi_{n}\right)$ of simple functions such that $\varphi_{n} \rightarrow g$ pointwise, $\psi_{n} \rightarrow h$ pointwsie, $0 \leqslant \varphi_{n} \leqslant g, 0 \leqslant \psi_{n} \leqslant h$. Then

$$
\underbrace{\varphi_{n}-\psi_{n}}_{\text {simple }} \rightarrow g-h=f \text { pointwise }
$$

and

$$
\left|\varphi_{n}-\psi_{n}\right| \leqslant\left|\psi_{n}\right|+\left|\varphi_{n}\right|=\varphi_{n}+\psi_{n} \leqslant g+h=|f|
$$

1.16 Littlewood's Principle

Up to certain finiteness conditions

1. Measurable sets are "almost" finite, disjoint unions of bounded open intervals.
2. Measurable functions are "almost" continuous.
3. Pointwise limits of measurable functions are "almost" uniform limits

Theorem 36: [Littlewood 1]

A be measurable set, $m(A)<\infty . \forall \varepsilon>0$, there exists finitely many open, bounded, disjoint intervals $I_{1}, I_{2}, \ldots, I_{n}$ such that $m(A \triangle U)<\varepsilon$, where $U=I_{1} \cup I_{2} \cup \ldots \cup I_{n}$. Note: $m(A \triangle U)=m(A \backslash U)+m(U \backslash A)$.

Proof. Let $\varepsilon>0$ be given. We may find an open set U and $A \subseteq U$ and

$$
m(U \backslash A)<\frac{\varepsilon}{2}
$$

By PMATH351, there exists open, bounded, disjoint intervals $I_{i}(i \in \mathbb{N})$ such that

$$
U=\bigcup_{i=1}^{\infty} I_{i}
$$

Note that,

$$
\sum_{i=1}^{\infty} l\left(I_{i}\right)=m(U)=m(U \backslash A)+m(A)<\infty
$$

In particular, there exists $N \in \mathbb{N}$ such that

$$
\sum_{i=N+1}^{\infty} l\left(I_{i}\right)=\frac{\varepsilon}{2}
$$

Take $V=I_{1} \cup \ldots \cup I_{N}$, we see that

$$
\begin{aligned}
m(A \backslash V) & \leqslant m(U \backslash V) \\
& =m\left(\bigcup_{N+1}^{\infty} I_{i}\right) \\
& =\sum_{N+1}^{\infty} l\left(I_{i}\right)<\frac{\varepsilon}{2}
\end{aligned}
$$

and

$$
m(V \backslash A) \leqslant m(U \backslash A)<\frac{\varepsilon}{2}
$$

Lemma 37

Let A be measurable and $m(A)<\infty,\left(f_{n}\right)$ be measurable, $A \rightarrow \mathbb{R}$. Assume $f: A \rightarrow \mathbb{R}$ such that $f_{n} \rightarrow f$ pointwise. $\forall \alpha, \beta>0$, there exists a measurable subset $B \subseteq A$ and $N \in \mathbb{N}$ such that

1. $\left|f_{n}(x)-f(x)\right|<\alpha, \forall x \in B, n \geqslant N$
2. $m(A \backslash B)<\beta$

Proof. Let $\alpha, \beta>0$ be given. For $n \in \mathbb{N}$, define

$$
\begin{aligned}
A_{n} & =\left\{x \in A:\left|f_{k}(x)-f(x)\right|<\alpha, \forall k \geqslant n\right\} \\
& =\bigcap_{k=n}^{\infty} \underbrace{\left|f_{k}-f\right|^{-1}(-\infty, \alpha)}_{\text {measurable }}
\end{aligned}
$$

So every A_{n} is measurable. Since $f_{n} \rightarrow f$ pointwise,

$$
A=\bigcup_{n=1}^{\infty} A_{n}
$$

Since $\left(A_{n}\right)$ is ascending, by continuity of measure,

$$
m(A)=\lim _{n \rightarrow \infty} m\left(A_{n}\right)<\infty
$$

we may find $N \in \mathbb{N}$ such that $\forall n \geqslant N$,

$$
m(A)-m\left(A_{n}\right)<\beta
$$

Pick $B=A_{N}$ we get what's required.

Theorem 38: Littlewood 3, Egoroff's Theorem

A is measurable, $m(A)<\infty,\left(f_{n}\right)$ is measurable, $A \rightarrow \mathbb{R}, f_{n} \rightarrow f$ pointwise. $\forall \varepsilon>0$, there exists a closed set $C \subseteq A$ such that

1. $f_{n} \rightarrow f$ uniformly on C
2. $m(A \backslash C)<\varepsilon$

Proof. Let $\varepsilon>0$ be given. By the lemma, for every $n \in \mathbb{N}$, there exists a measurable set $A_{n} \subseteq A$ and $N(n) \in \mathbb{N}$ such that

1. $\forall x \in A_{n}$ and $k \geqslant N(n)$,

$$
\left|f_{k}(x)-f(x)\right|<\frac{1}{n}
$$

2. $m\left(A \backslash A_{n}\right)<\frac{\varepsilon}{2^{n+1}}$

Take $B=\bigcap_{n=1}^{\infty} A_{n}$ (measurable). For $n \in \mathbb{N}$ such that $\frac{1}{n}<\varepsilon, k \geqslant N(n)$, and $x \in B$,

$$
\left|f_{k}(x)-f(x)\right|<\frac{1}{n}<\varepsilon
$$

so $f_{n} \rightarrow f$ uniformly on B. Moreover,

$$
m(A \backslash B)=m\left(A \backslash \cap A_{n}\right)=m\left(\cup\left(A \backslash A_{n}\right)\right) \leqslant \sum m\left(A \backslash A_{n}\right)<\sum \frac{\varepsilon}{2^{n+1}}=\frac{\varepsilon}{2}
$$

By A1, there exists a closed set C such that $C \subseteq B$ and $m(B \backslash C)<\frac{\varepsilon}{2}$, so

1. Since $C \subseteq B, f_{k} \rightarrow f$ uniformly on C
2. $m(A \backslash C)=m(A \backslash B)+m(B \backslash C)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$

Warning:
$\overline{f_{n}: \mathbb{R}} \rightarrow \mathbb{R}, f_{n}(x)=\frac{x}{n}$ and $f_{n} \rightarrow 0$ pointwise. But $f_{n} \nrightarrow 0$ uniformly on any measurable set $B \subseteq \mathbb{R}$ such that $m(\mathbb{R} \backslash B)<1$

Proof. Suppose such B exists. Since B measurable, $B \subseteq \mathbb{R}$, we know

$$
m(\mathbb{R} \backslash B)=m(\mathbb{R})-m(B)<1 \Longrightarrow m(B)=\infty
$$

That is, B has to be unbounded.
Since $f_{n} \rightarrow 0$ uniformly on $B, \forall \varepsilon>0, \exists N \in \mathbb{N}, s / t \forall k \geqslant N, \forall x \in B$,

$$
\left|0-f_{k}(x)\right|<\varepsilon \Longrightarrow\left|\frac{x}{k}\right|<\varepsilon
$$

However, since B is unbounede, we can always find $x \in B$ such that $|x|=(\varepsilon+1)|k|$, so $|x / k|=$ $\varepsilon+1>\varepsilon$.
That is, no matter how big the N is, I can always find points where the uniformly convergence condition fails. Contradiction! So no such B exists.

Lemma 39

$f: A \rightarrow \mathbb{R}$ simple. $\forall \varepsilon>0$, there exists a continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$ and a closed $C \subseteq A$ such that

1. $f=g$ on C
2. $m(A \backslash C)<\varepsilon$

Proof. $f=\sum_{i=1}^{n} a_{i} \chi_{A_{i}}$, conical representation. $A_{i}=\left\{x \in A: f(x)=a_{i}\right\}$ is measurable. By A1, $C_{i} \subseteq A_{i}$ closed,

$$
m\left(A_{i} \backslash C_{i}\right)<\frac{\varepsilon}{n}
$$

AND

$$
A=\bigcup_{i=1}^{n} A_{i}, C:=\bigcup_{i=1}^{n} C_{i} \text { closed }
$$

1. $\forall x \in C_{i}, f(x)=a_{i}$. By A1, f is continuous on $C \Longrightarrow$ we then extend $\left.f\right|_{C}$ to a continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$
2. $m(A \backslash C)=m\left(\cup_{i=1}^{n} A_{i} \backslash C_{i}\right)=\sum_{i=1}^{n} m\left(A_{i} \backslash C_{i}\right)<\varepsilon$

Theorem 40: Littlewood 2, Lusin Theorem

$f: A \rightarrow \mathbb{R}$ is measurable. $\forall \varepsilon>0$, there exists a continuous $g: \mathbb{R} \rightarrow \mathbb{R}$ and a closed set $C \subseteq A$ such that

1. $f=g$ on C and
2. $m(A \backslash C)<\varepsilon$

Proof. Let $\varepsilon>0$ given.

1. $m(A)<\infty$

Let $f: A \rightarrow \mathbb{R}$ be measurable. By the Simple Approximation Theorem, there exists $\left(f_{n}\right)$ simple such that $f_{n} \rightarrow f$ pointwise. By the lemma, there exists continuous $g_{n}: \mathbb{R} \rightarrow \mathbb{R}$ and closed $C_{n} \subseteq A$ such that
(a) $f_{n}=g_{n}$ on C_{n}
(b) $m\left(A \backslash C_{n}\right)<\frac{\varepsilon}{2^{n+1}}$

By Egoroff, there exists a closed set $C_{0} \subseteq A$ such that $f_{n} \rightarrow f$ uniformly on C_{0} and $m\left(A \backslash C_{0}\right)<\frac{\varepsilon}{2}$.

Let $C=\bigcap_{i=0}^{\infty} C_{i}$
(a) $g_{n}=f_{n} \rightarrow f$ uniformly on $C \subseteq C_{0}$, so f is continuous on C. By A1, extend $\left.f\right|_{C}$ to a continuouse function $g: \mathbb{R} \rightarrow \mathbb{R}$.
(b)

$$
\begin{aligned}
m(A \backslash C) & =m\left(A \backslash \cap_{i=0}^{\infty} C_{i}\right)=m\left(\cup_{i=0}^{\infty}\left(A \backslash C_{i}\right)\right) \\
& \leqslant \sum_{i=0}^{\infty} m\left(A \backslash C_{i}\right)=m\left(A \backslash C_{0}\right)+\sum_{i=1}^{\infty} m\left(A \backslash C_{i}\right) \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

2. $m(A)=\infty$

For $n \in \mathbb{N}$,

$$
A_{n}=\{a \in A:|a| \in[n-1, n)\}
$$

such that

$$
A=\bigcup_{n=1}^{\infty} A_{n}
$$

By case 1 , there exists continuous functions $g_{n}: \mathbb{R} \rightarrow \mathbb{R}$ and closed $C_{n} \subseteq A_{n}$ such that
(a) $f=g_{n}$ on C_{n}
(b) $m\left(A_{n} \backslash C_{n}\right)<\frac{\varepsilon}{2^{n}}$

Consider $C=\dot{\bigcup}_{n=1}^{\infty} C_{n}$, and C is closed.
(a) $m(A \backslash C)=m\left(\dot{\cup}\left(A_{n} \backslash C_{n}\right)\right)=\sum m\left(A_{n} \backslash C_{n}\right)<\varepsilon$
(b) $g: C \rightarrow \mathbb{R}$. Let $x \in C$ such that $x \in C_{n}$ for one $n \in \mathbb{N}$. Define $g(x)=g_{n}(x)=f(x)$. By A1, extend g on \mathbb{R}.

2 Integration

2.1 Integration

1. Simple functions

$$
\varphi: A \rightarrow \mathbb{R}, m(A)<\infty
$$

2. $f: A \rightarrow \mathbb{R}$, bounded measure, $m(A)<\infty$,

$$
\varphi_{\varepsilon} \leqslant f \leqslant \psi_{\varepsilon}
$$

3. $f: A \rightarrow \mathbb{R}$ measurable, $f \geqslant 0$,

$$
\sup \left\{\int_{A} h: h \in(2), 0 \leqslant h \leqslant f\right\}
$$

4. $f: A \rightarrow \mathbb{R}$ measurable,

$$
\begin{gathered}
f^{+}=\max \{f, 0\} \\
f^{-}=\max \{-f, 0\}
\end{gathered}
$$

Step 1: $\varphi: A \rightarrow \mathbb{R}$ simple, $m(A)<\infty$

Definition 9

$m(A)<\infty, \varphi: A \rightarrow \mathbb{R}$ simple. Conical Rep.: $\varphi=\sum_{i=1}^{n} a_{i} \chi_{A_{i}}$. The (Lebesgue) Integral of φ over A is

$$
\int_{A} \varphi=\sum_{i=1}^{n} a_{i} m\left(A_{i}\right)
$$

Lemma 41

$m(A)<\infty(A$ measurable $)$. If $B_{1}, B_{2}, \ldots, B_{n} \subseteq A$ are measurable and disjoint and φ : $A \rightarrow \mathbb{R}$ defined by

$$
\varphi=\sum_{i=1}^{n} b_{i} \chi_{B_{i}}
$$

then

$$
\int_{A} \varphi=\sum_{i=1}^{n} b_{i} m\left(B_{i}\right)
$$

Proof. For $n=2$,
If $b_{1} \neq b_{2}$, then $\varphi=b_{1} \chi_{B_{1}}+b_{2} \chi_{B_{2}}$ is the conical representation.
If $b_{1}=b_{2}$, then

$$
b_{1} \chi_{B_{1}}+b_{1} \chi_{B_{2}}=b_{1}\left(\chi_{B_{1}}+\chi_{B_{2}}\right)=\underbrace{b_{1} \chi_{B_{1} \cup B_{2}}}_{\text {conical rep. }}
$$

$$
\begin{aligned}
\int_{A} \varphi & =b_{1} m\left(B_{1} \dot{\cup} B_{2}\right) \\
& =b_{1}\left(m\left(B_{1}\right)+m\left(B_{2}\right)\right) \\
& =b_{1} m\left(B_{1}\right)+b_{2} m\left(B_{2}\right)
\end{aligned}
$$

Then simple dicuss other cases.

Proposition 42

$\varphi, \psi: A \rightarrow \mathbb{R}$ simple, $m(A)<\infty$. For all $\alpha, \beta \in \mathbb{R}$,

$$
\int_{A}(\alpha \varphi+\beta \psi)=\alpha \int_{A} \varphi+\beta \int_{A} \psi
$$

Proof.

$$
\begin{aligned}
& \varphi(A)=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \\
& \psi(A)=\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}
\end{aligned}
$$

where the elements are distinct for each set.
Define

$$
C_{i j}=\left\{x \in A: \varphi(x)=a_{i}, \psi(x)=b_{j}\right\}=\varphi^{-1}\left(\left\{a_{i}\right\}\right) \cap \psi^{-1}\left(\left\{b_{j}\right\}\right)
$$

which is measurable.

$$
\alpha \varphi+\beta \psi=\sum_{i, j}\left(\alpha a_{i}+\beta b_{j}\right) \chi_{C_{i j}}
$$

By the lemma,

$$
\begin{aligned}
\int_{A} \alpha \varphi+\beta \psi & =\sum_{i, j}\left(\alpha a_{i}+\beta b_{j}\right) m\left(C_{i j}\right) \\
& =\sum_{i, j} \alpha a_{i} m\left(C_{i j}\right)+\sum_{i, j} \beta b_{j} m\left(C_{i j}\right) \\
& =\sum_{i} \alpha a_{i} \sum_{j} m\left(C_{i j}\right)+\sum_{j} \beta b_{j} \sum_{i} m\left(C_{i j}\right) \\
& =\sum_{i} \alpha a_{i} m\left(\left\{x \in A: \varphi(x)=a_{i}\right\}\right)+\sum_{j} \beta b_{j} m\left(\left\{x \in A: \varphi(x)=a_{i}\right\}\right) \\
& =\alpha \int_{A} \varphi+\beta \int_{A} \psi
\end{aligned}
$$

Proposition 43
$\varphi, \psi: A \rightarrow \mathbb{R}$ simple, $m(A)<\infty$. If $\varphi \leqslant \psi$, then

$$
\int_{A} \varphi \leqslant \int_{A} \psi
$$

Proof.

$$
\int_{A} \psi-\int_{A} \varphi=\int_{A} \underbrace{(\psi-\varphi)}_{\geqslant 0} \geqslant 0
$$

Step2: $f: A \rightarrow \mathbb{R}$ bounded, measurable $m(A)<\infty$

Definition 10

$f: A \rightarrow \mathbb{R}$ be bounded, measurable and $m(A)<\infty$. Then

- Lower Lebesgue Integral:

$$
\underline{\int_{A}} f=\sup \left\{\int_{A} \varphi: \varphi \leqslant f \text { simple }\right\}
$$

- Lower Lebesgue Integral:

$$
\overline{\int_{A}} f=\inf \left\{\int_{A} \psi: f \leqslant \psi \text { simple }\right\}
$$

Proposition 44

$m(A)<\infty, f: A \rightarrow \mathbb{R}$ bounded, measurable. Then

$$
\underline{\int_{A}} f=\overline{\int_{A}} f
$$

Proof. $\forall n \in \mathbb{N}$, there exists simple functions, $\varphi_{n}, \psi_{n}: A \rightarrow \mathbb{R}$ such that

1. $\varphi_{n} \leqslant f \leqslant \psi_{n}$
2. $\psi_{n}-\varphi_{n} \leqslant \frac{1}{n}$

We see that

$$
\begin{aligned}
0 & \leqslant \overline{\int_{A}} f-\int_{A} f \\
& \leqslant \int_{A} \psi_{n}-\int_{A} \varphi_{n} \\
& =\int_{A}\left(\psi_{n}-\varphi_{n}\right) \\
& \leqslant \int_{A} \frac{1}{n} \\
& =\frac{1}{n} m(A)<\infty \\
& \rightarrow 0
\end{aligned}
$$

Definition 11

$m(A)<\infty, f: A \rightarrow \mathbb{R}$ bounded, measurable, we define the (Lebesgue) integral of f over A by

$$
\int_{A} f:={\underline{\int_{A}}} f=\bar{\int}_{A} f
$$

Proposition 45

$f, g: A \rightarrow \mathbb{R}$ bounded, measurable, $m(A)<\infty$. For $\alpha, \beta \in \mathbb{R}$,

$$
\int_{A}(\alpha f+\beta g)=\alpha \int_{A} f+\beta \int_{A} g
$$

Proof. Scalar multiplication is easy.
Now, have $\varphi_{1}, \varphi_{2}, \psi_{1}, \psi_{2}$ all simple,

$$
\varphi_{1} \leqslant f \leqslant \psi_{1}, \varphi_{2} \leqslant g \leqslant \psi_{2}
$$

1.

$$
\begin{aligned}
\int_{A} f+g & =\int_{A} f+g \\
& \leqslant \int_{A} \psi_{1}+\psi_{2} \\
& =\int_{A} \psi_{1}+\int_{A} \psi_{2}
\end{aligned}
$$

so

$$
\begin{aligned}
\int_{A} f+g & \leqslant \inf \left\{\int_{A} \psi_{1}+\int_{A} \psi_{2}: f \leqslant \psi_{1}, g \leqslant \psi_{2}, \psi_{1}, \psi_{2} \text { simple }\right\} \\
& =\inf \left\{\int_{A} \psi_{1}: f \leqslant \psi_{1} \text { simple }\right\}+\inf \left\{\int_{A} \psi_{2}: g \leqslant \psi_{2} \text { simple }\right\} \\
& =\int_{A} f+\int_{A} g
\end{aligned}
$$

2.

$$
\int_{A} f+g=\underline{\int_{A}} f+g \geqslant \int_{A} \varphi_{1}+\int_{A} \varphi_{2}
$$

so

$$
\begin{aligned}
\int_{A} f+g & \geqslant \sup \left\{\int_{A} \varphi_{1}+\int_{A} \varphi_{2}: f \geqslant \varphi_{1}, g \geqslant \varphi_{2}, \varphi_{1}, \varphi_{2} \text { simple }\right\} \\
& =\sup \left\{\int_{A} \varphi_{1}: f \geqslant \varphi_{1}, \varphi_{1} \text { simple }\right\}+\sup \left\{\int_{A} \varphi_{2}: f \geqslant \varphi_{2}, \varphi_{2} \text { simple }\right\} \\
& =\int_{A} f+\int_{A} g
\end{aligned}
$$

SO

$$
\int_{A} f+g=\int_{A} f+\int_{A} g
$$

Proposition 46

$f, g: A \rightarrow \mathbb{R}$ bounded, measurable and $m(A) \leqslant \infty$. If $f \leqslant g$, then $\int_{A} f \leqslant \int_{A} g$.

Proof. Since $g-f \geqslant 0$, where 0 is also a simple function, we have

$$
\int_{A}(g-f)={\underline{\int_{A}}}(g-f) \geqslant \int_{A} 0=0 \Longrightarrow \int_{A} g \geqslant \int_{A} f
$$

2.2 Bounded Convergence Theorem

Proposition 47

$f: A \rightarrow \mathbb{R}$ bounded, measurable, $B \subseteq A$ measurable, $m(A)<\infty$, then

$$
\int_{B} f=\int_{A} f \chi_{B}
$$

Proof.

1. $f=\chi_{C}, C \subseteq A$ measurable.

$$
\begin{aligned}
\int_{A} \chi_{C} \chi_{B} & =\int_{A} \chi_{B \cap C} \\
& =1 * m(B \cap C) \\
& =\int_{B} \chi_{\left.C\right|_{B}}
\end{aligned}
$$

2. f is simple, $f=\sum_{i=1}^{n} a_{i} \chi_{A_{i}}$,

$$
\int_{A} f \chi_{B}=\sum a_{i} \int_{A} \chi_{A_{i}} \chi_{B}=\sum a_{i} \int_{B} \chi_{A_{i}}=\int_{B}\left(\sum a_{i} \chi_{\left.A_{i}\right|_{B}}\right)=\int_{B} f
$$

3. $f: A \rightarrow \mathbb{R}$ be bounded and measurable.

First we take $f \leqslant \psi$, simple, then

$$
\int_{A} f \chi_{B} \leqslant \int_{A} \psi \chi_{B}=\int_{B} \psi
$$

By taking the inf over all such ψ, we have that

$$
\int_{A} f \chi_{B} \leqslant \overline{\int_{A}} f=\int_{B} f
$$

Similarly, taking $\varphi \leqslant f, \varphi$ simple, we obtain,

$$
\underline{\int_{B}} f=\int_{B} f \leqslant \int_{A} f \chi_{B}
$$

so we have

$$
\int_{A} f \chi_{B}=\int_{B} f
$$

Proposition 48

$f: A \rightarrow \mathbb{R}$ be bounded, measurable, $m(A)<\infty$. If $B, C \subseteq A$ are measurable and disjoint, then

$$
\int_{B \cup C} f=\int_{B} f+\int_{C} f
$$

Proof.

$$
\begin{aligned}
\int_{B \cup C} f & =\int_{A} f \chi_{B \cup C} \\
& =\int_{A} f\left(\chi_{B}+\chi_{C}\right) \\
& =\int_{A} f \chi_{B}+\int_{A} f \chi_{C} \\
& =\int_{B} f+\int_{C} f
\end{aligned}
$$

Proposition 49

$f: A \rightarrow \mathbb{R}$ be bounded, measurable, $m(A)<\infty$, then $\left|\int_{A} f\right| \leqslant \int_{A}|f|$.

Proof.

$$
\begin{gathered}
-|f| \leqslant f \leqslant|f| \\
-\int_{A}|f| \leqslant \int_{A}|f| \leqslant \int_{A}|f|
\end{gathered}
$$

Proposition 50

$\left(f_{n}\right)$ is bounded, measurable, $A: \rightarrow \mathbb{R}, m(A)<\infty$. If $f_{n} \rightarrow f$ uniformly, then

$$
\lim _{n \rightarrow \infty} \int_{A} f_{n}=\int_{A} f
$$

Proof. Let $\varepsilon>0$ be given, let $N \in \mathbb{N}$ such that

$$
\left|f_{n}-f\right| \leqslant \frac{\varepsilon}{m(A)+1}
$$

then, for $n \geqslant N$

$$
\begin{aligned}
& \left|\int_{A} f_{n}-\int_{A} f\right| \\
= & \left|\int_{A}\left(f_{n}-f\right)\right| \\
\leqslant & \int_{A}\left|f_{n}-f\right| \\
\leqslant & m(A) * \frac{\varepsilon}{m(A)+1} \\
< & \varepsilon
\end{aligned}
$$

Example 6
$f_{n}:[0,1] \rightarrow \mathbb{R}$,

$$
f_{n}(x)= \begin{cases}0, & 0 \leqslant x<\frac{1}{n} \\ n, & \frac{1}{n} \leqslant x<\frac{2}{n} \\ 0, & \frac{2}{n} \leqslant x\end{cases}
$$

then $f_{n} \rightarrow 0$ pointwisely, but

$$
\int_{[0,1]} f_{n}=1, \int_{[0,1]} 0=0
$$

Theorem 51: [BCT]

$\left(f_{n}\right): A \rightarrow \mathbb{R}$ measurable, $m(A)<\infty$. If there exists $M>0$ such that $\left|f_{n}\right| \leqslant M$ for all n and $f_{n} \rightarrow f$ pointwise then

$$
\lim _{n \rightarrow \infty} \int_{A} f_{n}=\int_{A} f
$$

Proof. Let $\varepsilon>0$ be given. By Egoroff's theorem, there exists measurable $B \subseteq A$ and $N \in \mathbb{N}$ such that for $n \geqslant N$,

1. $\left|f_{n}-f\right|<\frac{\varepsilon}{2(m(B)+1)}$ on B
2. $m(A \backslash B)<\frac{\varepsilon}{4 M}$
$\forall n \geqslant N$,

$$
\begin{aligned}
\left|\int_{A} f_{n}-\int_{A} f\right| & \leqslant \int_{A}\left|f_{n}-f\right| \\
& =\int_{B}\left|f_{n}-f\right|+\int_{A \backslash B}\left|f_{n}-f\right| \\
& \leqslant \int_{B}\left|f_{n}-f\right|+\int_{A \backslash B}\left(\left|f_{n}\right|+|f|\right) \\
& \leqslant \int_{B}\left|f_{n}-f\right|+2 M * m(A \backslash B) \\
& =\leqslant m(B) \frac{\varepsilon}{2(M(B)+1)}+2 M \frac{\varepsilon}{4 M} \\
& \leqslant \frac{\varepsilon}{2}+\frac{\varepsilon}{2} \\
& =\varepsilon
\end{aligned}
$$

Definition 12

$f: A \rightarrow \mathbb{R}$ measurable

1. We say f has finite support if

$$
A_{0}:=\{x \in A: f(x) \neq 0\}
$$

has finite measure.
2. We say f is a $\underline{B F}$ function. If f is bounded and has finite support.
3. If $f: A \rightarrow \mathbb{R}$ is BF , then

$$
\int_{A} f:=\int_{A_{0}} f
$$

Definition 13

$f: A \rightarrow \mathbb{R}$ measurable, $f \geqslant 0$,

$$
\int_{A} f=\sup \left\{\int_{A} h: 0 \leqslant h \leqslant f, \mathrm{BF}\right\}
$$

Proposition 52

$f, g: A \rightarrow \mathbb{R}$ measurable, $f, g \geqslant 0$

1. $\forall \alpha, \beta \in \mathbb{R}$,

$$
\int_{A}(\alpha f+\beta g)=\alpha \int_{A} f+\beta \int_{A} g
$$

2. If $f \leqslant g$, then $\int_{A} f \leqslant \int_{A} g$
3. If $B, C \subseteq A$ are measurable and $B \cap C=\emptyset$ then

$$
\int_{B \cup C} f=\int_{B} f+\int_{C} f
$$

Theorem 53: [Chebychev's Inequality]

$f: A \rightarrow \mathbb{R}$ measurable, non-negative; $\forall \varepsilon>0$,

$$
m(\{x \in A: f(x) \geqslant \varepsilon\}) \leqslant \frac{1}{\varepsilon} \int_{A} f
$$

Proof. Let $\varepsilon>0$ given and let

$$
A_{\varepsilon}=\{x \in A: f(x) \geqslant \varepsilon\}
$$

1. $m\left(A_{\varepsilon}\right)<\infty$

$$
\underbrace{\varphi}_{\mathrm{BF}}=\varepsilon \chi_{A_{\varepsilon}} \leqslant f
$$

so

$$
\varepsilon m\left(A_{\varepsilon}\right)=\int_{A} \varphi \leqslant \int_{A} f
$$

2. $m\left(A_{\varepsilon}\right)=\infty$ For $n \in \mathbb{N}, A_{\varepsilon, n}:=A_{\varepsilon} \cap[-n, n]$. By the continuity of measure,

$$
\infty=m\left(A_{\varepsilon}\right)=\lim _{n \rightarrow \infty} m\left(A_{\varepsilon, n}\right)
$$

For $n \in \mathbb{N}, \varphi_{n}:=\varepsilon \chi_{\varepsilon, n}(\mathrm{BF})$, we see that $\varphi_{n} \leqslant f$.
Therefore,

$$
\begin{aligned}
\infty & =m\left(A_{\varepsilon}\right) \\
& =\lim _{n \rightarrow \infty} m\left(A_{\varepsilon, n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{\varepsilon} \int_{A} \varphi_{n} \\
& \leqslant \frac{1}{\varepsilon} \int_{A} f
\end{aligned}
$$

Proposition 54

$f: A \rightarrow \mathbb{R}$ measurable, $f \geqslant 0$

$$
\int_{A} f=0 \Longleftrightarrow f=0 \text { a.e. }
$$

Proof.

- (\Longrightarrow) Suppose $\int_{A}(f)=0$,

$$
\begin{aligned}
& m(\{x \in A: f(x) \neq 0\}) \\
\leqslant & \sum m\left(\left\{x \in A: f(x) \geqslant \frac{1}{n}\right\}\right) \\
\underbrace{\leqslant}_{\text {Chebychev }} & \sum n \int_{A} f=0
\end{aligned}
$$

- \Longleftarrow Suppose $B=\{x \in A: f(x) \neq 0\}$ has measure 0 .

$$
\begin{aligned}
\int_{A} f & =\int_{B} f+\int_{A \backslash B} \underbrace{f}_{=0} \\
& =\int_{B} f+0 \\
& =0
\end{aligned}
$$

$\int_{B} f=0$ because for any $h \mathrm{BF}$ and $0 \leqslant h \leqslant f$, there is a $M_{h} \geqslant 0$ such that $h \leqslant M_{h}$, then

$$
\int_{B} 0 \leqslant \int_{B} h \leqslant \int_{B} M_{h}=\int_{B} M_{h} \chi_{B}=M_{h} m(B)=M_{h} * 0=0
$$

so $\int_{B} h$ is always zero, hence

$$
\int_{B} f=\sup \left\{\int_{B} h: 0 \leqslant h \leqslant f, h \mathrm{BF}\right\}=0
$$

2.3 Fatou's Lemma and MCT

Theorem 55: Fatou's Lemma

$\left(f_{n}\right)$ measurable, non-negative, $A \rightarrow \mathbb{R}$. If $f_{n} \rightarrow f$ pointwise then

$$
\int_{A} f \leqslant \liminf \int_{A} f_{n}
$$

Proof. Let $0 \leqslant h \leqslant f$ be a BF function. Say $A_{0}=\{x \in A: h(x) \neq 0\}$. It suffices to show

$$
\int_{A} h \leqslant \liminf \int_{A} f_{n}
$$

Since h is BF, $m\left(A_{0}\right)<\infty$. For each $n \in \mathbb{N}$, let

$$
h_{n}=\min \left\{h, f_{n}\right\} \text { (meas.) }
$$

Note:

1. $0 \leqslant h_{n} \leqslant h \leqslant M$, for some $M>0, \forall n \in \mathbb{N}$
2. For $x \in A_{0}$ and $n \in \mathbb{N}$,
(a) $h_{n}(x)=h(x)$ or
(b) $h_{n}(x)=f_{n}(x) \leqslant h(x)$ and

$$
0 \leqslant h(x)-h_{n}(x)=h(x)-f_{n}(x) \leqslant f(x)-f_{n}(x) \rightarrow 0
$$

$$
\text { so } h_{n}(x) \rightarrow h \text { on } A_{0}
$$

By BCT,

$$
\lim _{n \rightarrow \infty} \int_{A_{0}} h_{n}=\int_{A_{0}} h \Longrightarrow \lim _{n \rightarrow \infty} \int_{A} h_{n}=\int_{A} h
$$

Since $h_{n} \leqslant f_{n}$ on A,

$$
\int_{A}=\lim _{n \rightarrow \infty} \int_{A} h_{n}=\liminf _{n \rightarrow \infty} \int_{A} h_{n} \leqslant \liminf _{n \rightarrow \infty} \int_{A} f_{n}
$$

Example 7

$$
\begin{aligned}
& A=(0,1] \\
& f_{n}=n \chi(0,1 / n) \\
& f_{n} \rightarrow 0 \text { pointwise } \\
& \int_{A} 0=0 \\
& \int_{A} f_{n}=n \cdot m(0,1 / n)=1 \\
& \liminf \int_{A} f_{n}=1
\end{aligned}
$$

Theorem 56: [MCT]

$\left(f_{n}\right)$ non-negative, measurable, $A \rightarrow \mathbb{R}$. If $\left(f_{n}\right)$ is increasing and $f_{n} \rightarrow f$ pointwise, then

$$
\lim _{n \rightarrow \infty} \int_{A} f_{n}=\int_{A} f
$$

Proof.

$$
\begin{aligned}
\int_{A} f & \leqslant \liminf \int_{A} f_{n} \text { by Fatou's Lemma } \\
& \leqslant \limsup \int_{A} f_{n} \\
& \leqslant \int_{A} f \text { by } f_{n} \nearrow \text { and converge to } f
\end{aligned}
$$

so $\lim _{n \rightarrow \infty} \int_{A} f_{n}=\liminf \int_{A} f_{n}=\limsup \int_{A} f_{n}$

Remark.

1. If $\varphi: A \rightarrow \mathbb{R}$ is simple and $m(A)<\infty$, then

$$
\int_{A} \varphi<\infty
$$

2. If $f: A \rightarrow \mathbb{R}$ is bounded, measurable and $m(A)<\infty$, then

$$
\int_{A} f<\infty
$$

Definition 14

If $f: A \rightarrow \mathbb{R}$ is measurable and $f \geqslant 0$, then we say f is integrable if and only if

$$
\int_{A} f<\infty
$$

2.4 The General Integral

Definition 15

$f: A \rightarrow \mathbb{R}$ measurable,

$$
\begin{aligned}
& f^{+}(x)=\max \{f(x), 0\} \\
& f^{-}(x)=\max \{-f(x), 0\}
\end{aligned}
$$

Notes:

1. $f^{+}+f^{-}=|f|$
2. $f^{+}-f^{-}=f$
3. f^{+}, f^{-}measurable

Proposition 57

$f: A \rightarrow \mathbb{R}$ measurable. Then f^{+}, f^{-}are integrable if and only if $|f|$ is integrable.

Proof.

- $|f|=f^{+}+f^{-}$

$$
\int_{A}|f|=\underbrace{\int_{A} f^{+}}_{<\infty}+\underbrace{\int_{A} f^{-}}_{<\infty}<\infty
$$

\bullet

$$
\int_{A} f^{+} \leqslant \int_{A}|f|<\infty ; \int_{A} f^{-} \leqslant \int_{A}|f|<\infty
$$

Definition 16

$f: A \rightarrow \mathbb{R}$ measurable. We say f is integrable if and only if $|f|$ is integrable if and only if f^{+}, f^{-}are integrable, and define

$$
\int_{A} f=\int_{A} f^{+}-\int_{A} f^{-}
$$

Proposition 58: [Comparison Test]

$f: A \rightarrow \mathbb{R}$ measurable, $g: A \rightarrow \mathbb{R}$ non-negative integrable. If $|f| \leqslant g$ then f is integrable and $\left|\int_{A} f\right| \leqslant \int_{A}|f|$

Proof.

1. $\underbrace{\int_{A}|f|}_{<\infty} \leqslant \int_{A} g<\infty$
2. $\left|\int_{A} f\right|=\left|\int_{A} f^{+}-\int_{A} f^{-}\right| \leqslant\left|\int_{A} f^{+}\right|+\left|\int_{A} f^{-}\right|=\int_{A} f^{+}+\int_{A} f^{-}=\int_{A}\left(f^{+}+f^{-}\right)=\int_{A}(f)$

Proposition 59

$f, g: A \rightarrow \mathbb{R}$ integrable.

1. $\forall \alpha, \beta \in \mathbb{R}, \alpha f+\beta g$ is integrable, and

$$
\int_{A} \alpha f+\beta g=\alpha \int_{A} f+\beta \int_{A} g
$$

2. If $f \leqslant g$, then $\int_{A} f \leqslant \int_{A} g$
3. If $B, C \subseteq A$ are measurable with $B \cap C=\emptyset$, then

$$
\int_{B \cup C} f=\int_{B} f+\int_{C} f
$$

Proof.

- Comparison Test

- Results hold for $f^{+}, f^{-}, g^{+}, g^{-}$

Theorem 60: [Lebesgue Dominated Convergence Theorem]

$f_{n}: A \rightarrow \mathbb{R}$ measurable. $f_{n} \rightarrow f$ pointwise. If there exists a $g: A \rightarrow \mathbb{R}$ integrable such that $\left|f_{n}\right| \leqslant g, \forall n \in \mathbb{N}$, then f is integrable and $\lim _{n \rightarrow \infty} \int_{A} f_{n}=\int_{A} f$

Proof. Since $\left|f_{n}\right| \rightarrow|f|$, and so $|f| \leqslant g$.
By comparison test, f is integrable. Next, observe $g-f \geqslant 0$. By Fatou,
1.

$$
\begin{aligned}
& \int_{A} g-\int_{A} f=\int_{A} g-f \\
& \leqslant \liminf \int_{A} g-f_{n} \\
&=\int_{A} g-\limsup \int_{A} f_{n} \\
& \Longrightarrow \limsup \int_{A} f_{n} \leqslant \int_{A} f
\end{aligned}
$$

2.

$$
\begin{gathered}
\int_{A} g+\int_{A} f=\int_{A} g+f \leqslant \liminf \int_{A} g+f_{n}=\int_{A} g+\liminf \int_{A} f_{n} \\
\Longrightarrow \int_{A} f=\liminf \int_{A} f_{n}=\limsup \int_{A} f_{n}=\lim \int_{A} f_{n}
\end{gathered}
$$

2.5 Riemann Integration

Definition 17

$f:[a, b] \rightarrow \mathbb{R}$ bounded

1. A partition of $[a, b]$ is a finite set such that

$$
P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} \subseteq \mathbb{R} \text { and } a=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=b
$$

2. Relative to P, we define the lower Darboux sum:

$$
\begin{aligned}
L(f, P) & =\sum_{i=1}^{n} m_{i}\left(x_{i}-x_{i-1}\right) \\
m_{i} & =\inf \left\{f(x): x \in\left[x_{i-1}, x_{i}\right]\right\}
\end{aligned}
$$

3. Similarly, we define the upper Darboux sum:

$$
\begin{aligned}
U(f, P) & =\sum_{i=1}^{n} M_{i}\left(x_{i}-x_{i-1}\right) \\
M_{i} & =\sup \left\{f(x): x \in\left[x_{i-1}, x_{i}\right]\right\}
\end{aligned}
$$

Definition 18

$f:[a, b] \rightarrow \mathbb{R}$, bounded,

1. Lower Riemann Integral

$$
R \underline{\int_{a}^{b}} f=\sup \{L(f, P): P \text { partition }\}
$$

2. Upper Riemann Integral

$$
R \overline{\int_{a}^{b}} f=\inf \{U(f, P): P \text { partition }\}
$$

3. We say f is Riemann Integrable if and only if

$$
\underbrace{R \int_{a}^{b} f=R \int_{a}^{b} f}_{R \int_{a}^{b} f}
$$

Definition 19

Let I_{1}, \ldots, I_{n} be pairwise disjoint intervals such that

$$
[a, b]=\dot{\cup}_{i=1}^{n} I_{i}
$$

A step function is a functions of the form

$$
f=\sum_{i=1}^{n} a_{i} \chi_{I_{i}}
$$

for some $a_{i} \in \mathbb{R}$

Remark. $f:[a, b] \rightarrow \mathbb{R}$ bounded. $a=x_{0}<x_{1}<\ldots<x_{n}=b . I_{i}=\left[x_{i-1}, x_{i}\right], i=1, \ldots, n$. Then

$$
L(f, P)=\sum_{i=1}^{n} m_{i} \cdot l\left(I_{i}\right)=R \int_{a}^{b} \varphi
$$

where $\varphi(x)=m i$ on $I_{i}(\varphi \leqslant f)$.

$$
U(f, P)=\sum_{i=1}^{n} M_{i} \cdot l\left(I_{i}\right)=R \int_{a}^{b} \psi
$$

where $\psi(x)=M i$ on $I_{i}(f \leqslant \psi)$.

Remark. $f:[a, b] \rightarrow \mathbb{R}$ bounded,

$$
\begin{aligned}
& R \int_{a}^{b} f=\sup \{L(f, P): P\}=\sup \left\{R \int_{a}^{b} \varphi: \varphi \leqslant f \text { step }\right\} \\
& R \int_{a}^{b} f=\inf \{U(f, P): P\}=\inf \left\{R \int_{a}^{b} \psi: f \leqslant \psi \operatorname{step}\right\}
\end{aligned}
$$

2.5.1 Riemann Integral VS Lebesgue Integral

Definition 20

Let $f:[a, b] \rightarrow \mathbb{R}$ bounded. Let $x \in[a, b]$ and $\delta>0$

1. $m_{\delta}(x)=\inf \{f(x): x \in(x-\delta, x+\delta) \cap[a, b]\}$
2. $M_{\delta}(x)=\sup \{f(x): x \in(x-\delta, x+\delta) \cap[a, b]\}$
3. Lower Boundary of f,

$$
m(x)=\lim _{\delta \rightarrow 0} m_{\delta}(x)
$$

4. Upper Boundary of f,

$$
M(x)=\lim _{\delta \rightarrow 0} M_{\delta}(x)
$$

5. Oscillation of f,

$$
\omega(x)=M(x)-m(x)
$$

Remark. $f:[a, b] \rightarrow \mathbb{R}$ bounded, TFAE

1. f is continuous at $x \in[a, b]$
2. $M(x)=m(x)$
3. $\omega(x)=0$

Lemma 61

$f:[a, b] \rightarrow \mathbb{R}$ bounded,

1. m is measure
2. If $\varphi:[a, b] \rightarrow \mathbb{R}$ is a step function with $\varphi \leqslant f$, then $\varphi(x) \leqslant m(x)$ at all points of continuity of φ
3. $R \underline{\int_{a}^{b} f=\int_{[a, b]} m}$

Lemma 62

$f:[a, b] \rightarrow \mathbb{R}$ bounded,

1. M is measure
2. If $\psi:[a, b] \rightarrow \mathbb{R}$ is a step function with $\psi \geqslant f$, then $\psi(x) \geqslant M(x)$ at all points of continuity of ψ
3. $R \overline{\int_{a}^{b}} f=\int_{[a, b]} M$

Theorem 63: [Lebesgue]

Let $f:[a, b] \rightarrow \mathbb{R}$ be bounded. Then f Riemann integrable if and only if f is continuous a.e., in that case,

$$
R \int_{a}^{b} f=\int_{[a, b]} f
$$

Proof.

$$
R \int_{a}^{b} f=\int_{[a, b]} m \leqslant \int_{[a, b]} M=R \overline{\int_{a}^{b}} f
$$

f Riemann Integrable

$$
\Longleftrightarrow \int_{[a, b]} m=\int_{[a, b]} M
$$

$$
\Longleftrightarrow \int_{[a, b]}(\underbrace{M-m}_{\geqslant 0})=0
$$

$$
\Longleftrightarrow M=m \text { a.e. }
$$

$$
\Longleftrightarrow \omega=0 \text { a.e. }
$$

$$
\Longleftrightarrow f \text { is continuous a.e. }
$$

If f is continuous a.e. $\Longrightarrow f$ is measurable and

$$
R \int_{\underline{a}}^{b} f=\int_{[a, b]} m \leqslant \int_{[a, b]} f \leqslant \int_{[a, b]} M=R \overline{\int_{a}^{b}} f \Longrightarrow R \int_{a}^{b} f=\int_{[a, b]} f
$$

because $M=m$ a.e.

Example 8
$f:[0,1] \rightarrow \mathbb{R}$

$$
f(x)=\left\{\begin{array}{l}
1, x \in \mathbb{Q} \\
0, x \notin \mathbb{Q}
\end{array}\right.
$$

f is discontinuous on $[0,1] \Longrightarrow f$ is NOT Riemann Integrable. But $f=0$ a.e. ans so

$$
\int_{[0,1]} f=\int_{[0,1]} 0=0
$$

Example 9

$\mathbb{Q} \cap[0,1]=\left\{q_{1}, q_{2}, \ldots\right\}, f_{n}=\chi_{\left\{q_{1}, \ldots, q_{n}\right\}} . f_{n} \rightarrow f$ pointwise $(f$ in the previous example). f_{n} is increasing, continuous a.e. on $[0,1]$, and it's bounded by 1 , so it's Riemann Integrable.

$$
0=R \int_{[0,1]} f_{n} \nrightarrow R \int_{[0,1]} f
$$

$3 L^{p}$ Spaces

$3.1 L^{P}$ Spaces

Recall

1. For $1 \leqslant p<\infty,\left(C([a, b]),\|\cdot\|_{p}\right)$ is a normed-vector space, where $\|f\|_{p}^{p}=\int_{a}^{b}|f|^{p}$
2. For $p=\infty,\left(C([a, b]),\|\cdot\|_{\infty}\right),\|f\|_{\infty}=\sup \{|f(x)|: x \in[a, b]\}$ is a Banach Space.

Problem: $A \subseteq \mathbb{R}$ measurable, $1 \leqslant p<\infty,\|f\|_{p}=\left(\int_{A}|f|^{p}\right)^{\frac{1}{p}}$ is NOT a norm on the vector space of integrable functions $f: A \rightarrow \mathbb{R}$. WHY? $\int_{A}|f|^{p}=0 \Longleftrightarrow f=0$ a.e.

Definition 21

$A \subseteq \mathbb{R}$ measurable,

1. $M(A)=\{f: A \rightarrow \mathbb{R}$ measurable $\} \rightarrow$ vector space,

$$
f \sim g \Longleftrightarrow f=g \text { a.e. }
$$

let $[f]$ represent the equivalence class.
2. $M(A) / \sim=\{[f]: f \in M(A)\} . \alpha[f]+\beta[g]=[\alpha f+\beta g]$ shows that it's a vector space.

Remark. If $f \sim g$ and f is integrable, then g is integrable and $\int_{A} f=\int_{A} g$

Definition 22

$A \subseteq \mathbb{R}$ measurable, $1 \leqslant p<\infty$,

$$
L^{p}(A)=\left\{[f] \in M(A) / \sim: \int_{A}|f|^{p}<\infty\right\}
$$

Remark. Suppose $[f],[g] \in L^{p}(A)$. Then $\int_{A}|f|^{p}, \int_{A}|g|^{p}<\infty$

1. $|f+g|^{p} \leqslant(|f|+|g|)^{p} \leqslant(2 \max \{|f|,|g|\})^{p} \leqslant 2^{p}\left(|f|^{p}+|g|^{p}\right) \Longrightarrow|f+g|^{p}$ integrable by comparison.
2. so $L^{p}(A)$ is a subspace of $M(A) / \sim$

Definition 23

$A \subseteq \mathbb{R}$ measurable,

$$
L^{\infty}(A)=\{[f] \in M(A) / \sim: f \text { bounded a.e. }\}
$$

Remark.

1. $[f],[g] \in L^{\infty}(A)$

$$
\begin{aligned}
& |f| \leqslant M \text { off } B \subseteq A, m(B)=0 \\
& |g| \leqslant N \text { off } C \subseteq A, m(C)=0
\end{aligned}
$$

off $B \subseteq A$ means on $A \backslash B$.
For $x \notin B \cup C$,

$$
|f(x)+g(x)| \leqslant|f(x)|+|g(x)| \leqslant M+N
$$

2. $L^{\infty}(A)$ is a subspace of $M(A) / \sim$

Proposition 64

$A \subseteq \mathbb{R}$ measurable, then

$$
\|[f]\|_{\infty}=\inf \{M \geqslant 0:|f| \leqslant M \text { a.e. }\}
$$

is a norm on $L^{\infty}(A)$
Remark.

1. $|f| \leqslant\|[f]\|_{\infty}+\frac{1}{n}$ off $m\left(A_{N}\right)=0$, and $B=\cup_{n=1}^{\infty} A_{n}$ has measure 0
2. $|f| \leqslant\|f\|_{\infty}$ off B.

Proof.

1. $\|[f]\|_{\infty}=0 \Longrightarrow|f| \leqslant\|[f]\|_{\infty}$ a.e. $\Longrightarrow|f|=0$ a.e. $\Longrightarrow f=0$ a.e., then

$$
[f]=[0]
$$

in $L^{\infty}(A)$.
2. $|f| \leqslant\|[f]\|_{\infty}$ off $B,|g| \leqslant\|[g]\|_{\infty}$ off C. Off $B \cup C \Longrightarrow$ measure 0 :

$$
|f+g| \leqslant|f|+|g| \leqslant\|[f]\|_{\infty}+\|[g]\|_{\infty}
$$

By the definition of inf, we have

$$
\|[f+g]\|_{\infty}=\|[f]+[g]\|_{\infty} \leqslant\|[f]\|_{\infty}+\|[g]\|_{\infty}
$$

$3.2 L^{p}$ Norm

Example 10

 $p=1, A \subseteq \mathbb{R}$ measurable, $[f],[g] \in L^{1}(A)$,$$
\begin{aligned}
& |f+g| \leqslant|f|+|g| \\
\Longrightarrow & \int_{A}|f+g| \leqslant \int_{A}|f|+\int_{A}|g| \\
\Longrightarrow & \|f+g\|_{1} \leqslant\|[f]\|_{1}+\|[g]\|_{1}
\end{aligned}
$$

Abusive Notation:

$$
f \equiv[f] \in L^{p}(A)
$$

Remember !
$f=g$ in $L^{p}(A)$ means $f=g$ a.e.

Definition 24

For $p \in(1, \infty)$ we define $q=\frac{p}{p-1}$ to be the Holder Conjugate of p.

Note:

1. $q=\frac{p}{p-1} \Longleftrightarrow p=\frac{q}{q-1}$
2. $\frac{1}{p}+\frac{1}{q}=1$

Definition 25

We define 1 and ∞ to be a pair of Holder conjugate.

Proposition 65: [Young's Inequality

$p, q \in(1, \infty)$ Holder conjugate. $\forall a, b>0$,

$$
a b \leqslant \frac{a^{p}}{p}+\frac{b^{q}}{q}
$$

Proof.

$$
\begin{aligned}
& f(x)=\frac{1}{p} x^{p}+\frac{1}{q}-x \text { on }(0, \infty) \\
& f^{\prime}(x)=x^{p-1}-1 \\
& f(1)=\frac{1}{p}+\frac{1}{q}-1=0 \\
\Longrightarrow & f \geqslant 0 \text { on }(0, \infty) \\
\Longrightarrow & x \leqslant \frac{1}{p} x^{p}+\frac{1}{q}, \forall x>0
\end{aligned}
$$

Taking:

$$
\begin{aligned}
& x=\frac{q}{b^{q-1}} \\
\Longrightarrow & \frac{a}{b^{q-1}} \leqslant \frac{1}{p} \frac{a^{p}}{b^{(q-1)} p} \\
\Longrightarrow & \frac{a}{b^{q-1}} \leqslant \frac{1}{p} \frac{a^{p}}{b^{p}}+\frac{1}{q} \\
\Longrightarrow & a b \leqslant \frac{1}{p} a^{p}+\frac{1}{q} b^{q}
\end{aligned}
$$

Proposition 66: [Holder's Inequality]

$A \subseteq \mathbb{R}$ measurable, $1 \leqslant p<\infty, q$ is the Holder Conjugate. If $f \in L^{p}(A)$ and $g \in L^{q}(A)$ then $f g \in L^{1}(A)$ and $\int_{A}|f g| \leqslant\|f\|_{p}\|g\|_{q}$

Proof.

1. $p=1, q=\infty$

$$
|f g|=|f||g| \leqslant|f|\|g\|_{\infty} \text { a.e. }
$$

then $f g \in L^{1}(A)$ and

$$
\int_{A}|f g| \leqslant \int_{A}|f|\|g\|_{\infty}=\|g\|_{\infty}\|f\|_{1}
$$

2. $1<p<\infty, q \mathrm{HC}$,

$$
|f g|=|f||g| \leqslant \frac{|f|^{p}}{p}+\frac{|g|^{q}}{q} \Longrightarrow f g \in L^{1}(A)
$$

Also,

$$
\int_{A}|f g| \leqslant \frac{1}{p} \int_{A}|f|^{p}+\frac{1}{q} \int_{A}|g|^{q}=\frac{1}{p}\|f\|_{p}^{p}+\frac{1}{q}\|g\|_{q}^{q}
$$

(a) $\|f\|_{p}=\|g\|_{q}=1$,

$$
\int_{A}|f g| \leqslant \frac{1}{p}+\frac{1}{q}=1=\|f\|_{p}\|g\|_{q}
$$

(b) $\frac{f}{\|f\|_{p}}, \frac{g}{\|g\|_{q}}$. By case a),

$$
\frac{1}{\|f\|_{p}\|g\|_{q}} \int_{A}|f g| \leqslant 1 \Longrightarrow \int_{A}|f g| \leqslant\|f\|_{p}\|g\|_{q}
$$

Lemma 67

$p, q \mathrm{HC}, f \in L^{p}(A)$. If $f \neq 0$,

$$
f^{*}=\|f\|_{p}^{1-p} \operatorname{sgn}(\mathrm{f})|\mathrm{f}|^{\mathrm{p}-1}
$$

is in $L^{q}(A)$ and

$$
\int_{A} f f^{*}=\|f\|_{p}, \text { and }\left\|f^{*}\right\|_{q}=1
$$

Proof.

1. $p=1, q=\infty$

$$
\begin{aligned}
& f^{*}=\operatorname{sgn}(\mathrm{f}) \in \mathrm{L}^{\infty}(\mathrm{A}) \\
& \int_{A} f f^{*}=\int_{A}|f|=\|f\|_{1},\left\|f^{*}\right\|_{\infty}=1
\end{aligned}
$$

2. $1<p<\infty, q$ HC

$$
\begin{aligned}
\int_{A} f f^{*} & =\|f\|_{p}^{1-p} \int_{A}|f|^{p}=\|f\|_{p}^{1-p}\|f\|_{p}^{p}=\|f\|_{p} \\
\left\|f^{*}\right\|_{q}^{q} & =\|f\|_{p}^{(1-p) q} \int_{A}|f|^{(p-1) q} \\
& =\|f\|_{p}^{-p} \int_{A}|f|^{p} \\
& =\|f\|_{p}^{-p}\|f\|_{p}^{p}=1
\end{aligned}
$$

Theorem 68: [Minkowski's Inequality]

$A \subseteq \mathbb{R}$ measurable and $1 \leqslant p<\infty$. If $f, g \in L^{p}(A)$ then

$$
\|f+g\|_{p} \leqslant\|f\|_{p}+\|g\|_{p}
$$

Proof. 1. $p=1$ Done
2. $1<p<\infty$

$$
\begin{aligned}
\|f+g\|_{p} & =\int_{A}(f+g)(f+g)^{*} \\
& =\int_{a} f(f+g)^{*}+\int_{A} g(f+g)^{*} \\
& \underbrace{\leqslant}_{\text {Holder }}\|f\|_{p}\left\|(f+g)^{*}\right\|_{q}+\|g\|_{p}\left\|(f+g)^{*}\right\|_{q} \\
& =\|f\|_{p}+\|g\|_{p}
\end{aligned}
$$

3.3 Completeness

Theorem 69: [Riesz-Fisher]

For all measurable $A \subseteq \mathbb{R}$ and $1 \leqslant p \leqslant \infty, L^{P}(A)$ is a Banach space.

Proof.

1. $p=\infty$, piazza
2. $1 \leqslant p<\infty$, Let $\left(f_{n}\right) \subseteq L^{P}(A)$ be strongly Cauchy Sequence. Therefore, there exists $\left(\varepsilon_{n}\right) \subseteq \mathbb{R}$ suCh that
(a) $\left\|f_{n+1}-f_{n}\right\|_{p} \leqslant \varepsilon_{n}^{2}$
(b) $\sum \varepsilon_{n}<\infty$

Idea: Since \mathbb{R} is complete, if $\left(f_{n}(x)\right)$ is strongly-Cauchy then it converges. For each $n \in \mathbb{N}$,

$$
\begin{aligned}
A_{n} & =\left\{x \in A:\left|f_{n+1}(x)-f_{n}(x)\right| \geqslant \varepsilon_{n}\right\} \\
& =\left\{x \in A:\left|f_{n+1}(x)-f_{n}(x)\right|^{p} \geqslant \varepsilon_{n}^{p}\right\}
\end{aligned}
$$

By Chebyshev's Inequality:

$$
\begin{aligned}
m\left(A_{n}\right) & \leqslant \frac{1}{\varepsilon_{n}^{p}} \int_{A}\left|f_{n+1}-f_{n}\right|^{p} \leqslant \frac{1}{\varepsilon_{n}^{p}} \varepsilon_{n}^{2 P}=\varepsilon_{n}^{p} \\
\sum m\left(A_{n}\right) & \leqslant \sum \varepsilon_{n}^{p} \leqslant\left(\sum \varepsilon_{n}\right)^{p}<\infty
\end{aligned}
$$

which implies that $m\left(\limsup \left(A_{n}\right)\right)=0$
Fix $x \notin \limsup \left(A_{n}\right)$. Let $N=\max \left\{n: x \in A_{n}\right\}$. For $n>N$,

$$
\begin{aligned}
& \left|f_{n+1}(x)-f_{n}(x)\right|<\varepsilon_{n}^{2}, \sum \varepsilon_{n}<\infty \\
\Longrightarrow & \left(f_{n}(x)\right) \text { Cauchy } \\
\Longrightarrow & f_{n}(x) \rightarrow f(x) \in \mathbb{R}
\end{aligned}
$$

so $f_{n} \rightarrow f$ pointwise a.e.
For $k \in \mathbb{N}$,

$$
\left\|f_{n+k}-f_{n}\right\|_{p} \leqslant\left\|f_{n+k}-f_{n+k-1}\right\|_{p}+\ldots+\left\|f_{n+1}-f_{n}\right\|_{p} \leqslant \varepsilon_{n+k-1}^{2}+\ldots+\varepsilon_{n}^{2} \leqslant \sum_{i=n}^{\infty} \varepsilon_{i}^{2}
$$

so $\left|f_{n+k}-f_{n}\right|^{p} \rightarrow\left|f_{n}-f\right|^{p}$ pointwise a.e. as $k \rightarrow \infty$.

By Fatou's Lemma,

$$
\begin{aligned}
& \int_{A}\left|f_{n}-f\right|^{p} \\
\leqslant & \liminf _{k \rightarrow \infty} \int_{A}\left|f_{n+k}-f_{n}\right|^{p} \\
= & \liminf _{k \rightarrow \infty}\left\|f_{n+k}-f_{n}\right\|_{p}^{p} \\
\leqslant & {\left[\sum_{i=n}^{\infty} \varepsilon_{i}^{2}\right]^{p} \rightarrow 0 }
\end{aligned}
$$

so f_{n} converges w.r.t p-norm.

3.3.1 Separability:

Recall: A metric space X is separable if it has a countable, dense subset.

Example 11

$$
p=\infty ?
$$

Suppose $\left\{f_{n}: n \in \mathbb{N}\right\}$ is dense in $L^{\infty}[0,1]$. For every $x \in[0,1]$, we may find

$$
\left\|\chi_{[0, x]}-f_{\theta(x)}\right\|_{\infty}<\frac{1}{2}
$$

For $x \neq y$ in $[0,1]$,

$$
\left\|x_{[0, x]}-\chi_{[0, y]}\right\|_{\infty}=1
$$

so $\theta(x) \neq \theta(y)$ and $\theta[0,1] \rightarrow \mathbb{N}$ is injective, contradiction ($[0,1]$ not countable).
Notation:

- $\operatorname{Simp}(A)=\operatorname{Simple}$ functions on measure A
- Step $[a, b]=$ Step functions on $[a, b]$
- Step $_{\mathbb{Q}}[a, b]=$ Step functions on $[a, b]$ with rational partition (not including a, b) and functions values.

Proposition 70

$A \subseteq \mathbb{R}$ measurable, $1 \leqslant p<\infty, \operatorname{Simp}(A)$ is dense in $L^{P}(A)$

Proof.

$$
f r \in L^{P}(A) \rightarrow f \text { measurable }
$$

then there exists φ_{n} simple

1. $\varphi_{n} \rightarrow f$ pointwise
2. $\left|\varphi_{n}\right| \leqslant|f| \Longrightarrow\left|\varphi_{n}\right|^{p} \leqslant|f|^{p}$

By comparison, $\left(\varphi_{n}\right) \subseteq L^{P}(A)$.
Note,

$$
\begin{aligned}
\left\|\varphi_{n}-f\right\|_{p}^{p} & =\int_{A}\left|\varphi_{n}-f\right|^{p} \\
\left|\varphi_{n}-f\right|^{p} & \leqslant 2^{p}\left(\left|\varphi_{n}\right|^{p}+|f|^{p}\right) \\
& \leqslant 2^{p+1}|f|^{p}
\end{aligned}
$$

so by the Lebesgue Dominate Convergence Theorem

$$
\lim _{n \rightarrow \infty}\left\|\varphi_{n}-f\right\|_{p}^{p}=\lim _{n \rightarrow \infty} \int_{A}\left|\varphi_{n}-f\right|^{p}=\int 0=0
$$

Fact: the above proposition is true for $p=\infty$ (but it's not seperable).

Proposition 71

$1 \leqslant p<\infty$. Step $[a, b]$ is dense in $L^{P}[a, b]$

Proof. $A \subseteq[a, b]$ measurable, $\chi_{A}[a, b] \rightarrow \mathbb{R}$.
Littlewood 1: $\exists \dot{U}_{i=1}^{n} I_{i}=U$, where I_{i} s are bounded open intervals. And $m\left(U \triangle A<\varepsilon\right.$ and χ_{U} : $[a, b] \rightarrow \mathbb{R}$ is a step function.

$$
\begin{aligned}
& \left\|\chi_{U}-\chi_{A}\right\|_{p}^{p} \\
= & \int_{A} \| \chi_{U}-\left.\chi_{A}\right|^{p} \\
= & \int_{U \triangle A} 1^{p} \\
= & m(U \triangle A) \\
\Longrightarrow & \left\|\chi_{U}-\chi_{A}\right\|_{p}<\varepsilon
\end{aligned}
$$

so for all characteristic function, we can approach as close as we want by a step function. Simple function is just made of finitely many characteristic functions.

Corollary 72

$1 \leqslant p<\infty$. Step $_{\mathbb{Q}}[a, b]$ is dense in $L^{p}[a, b]$ (step functions are dense, so for each step function, you can modify the function a little bit by rationals). Therefore, $L^{p}[a, b]$ is separable.

Proposition 73

$1 \leqslant p<\infty, L^{p}(\mathbb{R})$ is separable.

Proof. $1 \leqslant p<\infty, L^{p}(\mathbb{R})$ is separable.

$$
F_{n}=\left\{f \in L^{p}(\mathbb{R})|f|_{[-n, n]} \in \operatorname{Step}_{\mathbb{Q}}[-n, n],\left.f\right|_{\mathbb{R} \backslash[-n, n]}=0\right\}
$$

$F=\cup_{n=1}^{\infty} F_{n}$ countable. Take $f \in L^{p}(\mathbb{R})$. Fix $n \in \mathbb{N}$, we have $\left.f\right|_{[-n, n]} \in L^{p}([-n, n])$ We show

$$
f \chi_{[-n, n]} \rightarrow f \text { in } L^{p}(\mathbb{R})
$$

Note:
1.

$$
\begin{aligned}
& \left\|f \chi_{[-n, n]}-f\right\|_{p}^{p} \\
= & \int_{\mathbb{R}}\left|f \chi_{[-n, n]}-f\right|^{p} \\
= & \int_{\mathbb{R} \backslash[-n, n]}|f|^{p} \\
= & \int_{\mathbb{R}}|f|^{p} \chi_{\mathbb{R} \backslash[-n, n]}
\end{aligned}
$$

2. $\left||f|^{p} \chi_{\mathbb{R} \backslash[-n, n]}\right| \leqslant|f|^{p}$ which is integrable
3. By the Lebesgue Dominated Convergence Theorem

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left\|f \chi_{[-n, n]}-f\right\|_{p}^{p} \\
= & \lim _{n \rightarrow \infty} \int_{\mathbb{R}}\left|f \chi_{[-n, n]}-f\right|^{p}=\int_{\mathbb{R}} 0=0
\end{aligned}
$$

so $\left\|f \chi_{[-n, n]}-f\right\|_{p} \rightarrow 0$
For each $n \in \mathbb{N}, \exists \varphi_{n} \in F$ such that $\left\|f \chi_{[-n, n]}-\varphi_{n}\right\|_{p}<\frac{1}{n}$, so

$$
\left\|\varphi_{n}-f\right\|_{p} \rightarrow 0
$$

Theorem 74
$1 \leqslant p<\infty, A \subseteq \mathbb{R}$ measurable, $L^{p}(A)$ is separable.

Proof. F as before, $\left\{\left.f\right|_{A}: f \in F\right\}$ is a countable dense subset of $L^{p}(A)$

4 Fourier Analysis

4.1 Hilbert Space

$\mathbb{F}=\mathbb{R}$ or \mathbb{C}

Definition 26

V is a vector space over \mathbb{F}. An inner product on V is a map $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{F}$ such that

1. $\forall v \in V,\langle v,\rangle \in \mathbb{F},\langle v, v\rangle \geqslant 0$ with $\langle v, v\rangle=0$ if and only $v=0$
2. $\forall v, w \in V$,

$$
\langle v, w,\rangle=\overline{\langle w, v\rangle}
$$

3. $\forall \alpha \in \mathbb{F}, u, v, w \in V$,

$$
\langle\alpha u+v, w\rangle=\alpha\langle u, w\rangle+\langle v, w\rangle
$$

We call $(V,\langle\cdot, \cdot\rangle$ an inner product space.

Proposition 75

Let V be an inner product space. Then

$$
\|v\|=\sqrt{\langle v, v\rangle}
$$

is a norm on V. We call $\|\cdot\|$ the norm induced by $\langle\cdot, \cdot\rangle$

Example 12

$A \subseteq \mathbb{R}$ measurable. $V=L^{2}(A),\langle f, g\rangle=\int_{A} f g$ is an inner product space.
Note: $\sqrt{\langle f, f\rangle}=\left(\int_{A}|f|^{2}\right)^{\frac{1}{2}}=\|f\|_{2}$

Example 13

$A \subseteq \mathbb{R}$ measurable. $V=L^{2}(A, \mathbb{C}),\langle f, g\rangle=\int_{A} f \bar{g}$ and $\sqrt{\langle f, f\rangle}=\|f\|_{2}$

Proposition 76: [Parallelogram Law]

Let V be an inner product space. $\forall u, v \in V$,

$$
\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right)
$$

Proof.

$$
\begin{aligned}
& \|u+v\|^{2}+\|u-v\|^{2} \\
= & \langle u+v, u+v\rangle+\langle u-v, u-v\rangle \\
= & \langle u, u\rangle+2\langle u, v\rangle+\langle v, v\rangle+\langle u, u\rangle-2\langle u, v\rangle+\langle v, v\rangle \\
= & 2\|u\|^{2}+2\|v\|^{2} \\
= & 2\left(\|u\|^{2}+\|v\|^{2}\right)
\end{aligned}
$$

Example 14

$1 \leqslant p<\infty, V=L^{p}[0,2]$ and $f=\chi_{[0,1]}, g=\chi_{[1,2]}$

$$
\begin{aligned}
&\|f\|_{p}^{2}=\left(\int_{[0,2]}|f|^{p}\right)^{\frac{2}{p}} \\
&=1^{\frac{2}{p}}=1 \\
&\|g\|_{p}^{2}=1^{\frac{2}{p}}=1 \\
&\|f+g\|_{p}^{2}=2^{\frac{2}{p}} \\
&\|f-g\|_{p}^{2}=2^{\frac{2}{p}}
\end{aligned}
$$

so by Parallelogram Law

$$
2^{\frac{2}{p}}+2^{\frac{2}{p}}=2(1+1) \Longleftrightarrow 2^{\frac{2}{2}}=2 \Longleftrightarrow p=2
$$

so $\|\cdot\|_{p}$ is induced by an inner product if and only if $p=2$. You can also show that $\|\cdot\|_{\infty}$ is not induced by an inner product.

Definition 27

A Hilbert Space is a complete inner product space (i.e. A Banach Space whose norm is induced by an inner product).

Example 15

$L^{2}(A), L^{2}(A, \mathbb{C})$ are Hilbert Spaces.

4.2 Orthogonality

Definition 28

Let V be an inner product space. We say $v, w \in V$ are orthogonal if $\langle v, w\rangle=0$.

Example 16

$f, g \in L^{2}([-\pi, \pi], \mathbb{C}), m \neq n, f(x)=e^{i n x}, g(x)=e^{i m x}$, then

$$
\begin{aligned}
\langle f, g\rangle & =\int_{[-\pi, \pi]} f \bar{g} \\
& =\int_{[-\pi, \pi]} e^{i n x} e^{-i m x} d x \\
& =\int_{[-\pi, \pi]} e^{i x(n-m)} d x \\
& =\int_{[-\pi, \pi]} \cos ((n-m) x)+i \int_{[-\pi, \pi]} \sin ((n-m) x) \\
& =R \int_{-\pi}^{\pi} \cos ((n-m) x)+i R \int_{-\pi}^{\pi} \sin ((n-m) x) d x \\
& =0
\end{aligned}
$$

Theorem 77: [Pythagorean Theorem]

Let V be an inner product space. If $v_{1}, \ldots, v_{n} \in V$ are pairwise orthogonal, then,

$$
\left\|\sum V_{i}\right\|^{2}=\sum\left\|V_{i}\right\|^{2}
$$

Definition 29

Let V be an inner product space. We say $A \subseteq V$ is orthonormal if the elements of A are pairwise orthogonal and $\|v\|=1, \forall v \in A$.

Corollary 78

Let V be an inner product space, $\left\{v_{1}, \ldots, v_{n}\right\}$ orthonormal,

$$
\left\|\sum \alpha_{i} v_{i}\right\|^{2}=\sum\left|\alpha_{i}\right|^{2}
$$

Example 17

$$
L^{2}([-\pi, \pi], \mathbb{C}), A=\left\{\frac{1}{\sqrt{2 \pi}} e^{i n x}: n \in \mathbb{Z}\right\} \Longrightarrow \text { pairwise orthogonal. }
$$

$$
\begin{aligned}
& \frac{1}{2 \pi}\left\|e^{i n x}\right\|_{2}^{2} \\
& =\frac{1}{2 \pi} \int_{[-\pi, \pi]} e^{i n x} e^{-i n x} d x \\
& =\frac{1}{2 \pi} \int_{[-\pi, \pi]} 1=1
\end{aligned}
$$

so A is orthonormal

Definition 30

Let V be an inner product space. An orthonormal basis is a maximal (w.r.t \subseteq) orthonormal subset of V. (Note it might not ba basis).

Fact: An inner product space always has an orthonormal basis.
Fact: Let H be a Hilbert space. If $W \subseteq H$ is closed subspace then there exists a subspace $W^{\perp} \subseteq H$ such that

$$
H=W \oplus W^{\perp}
$$

and $\langle w, z\rangle=0$ for all $w \in W$ and $z \in W^{\perp}$.

Theorem 79

Let H be a Hilbert space, then H has a countable ONB (orthonormal basis) if and only if H is separable.

Proof.

- \Longrightarrow Let be B be a countable orthonormal basis for H.

Claim: $w=\operatorname{Span}(\mathrm{B}), \bar{w}=H$
Suppose $\bar{w} \neq H$. Since $H=\bar{w} \oplus \bar{w}^{\perp}$. We may find $0 \neq x \in \bar{w}^{\perp}$. We may assume $\|x\|=1$. so $B \cup\{x\}$ is orthonormal. Contradiction! So $\bar{w}=H$.
We can also show that $\overline{\operatorname{Span}_{\mathbb{Q}}(B)}=H$ where $\operatorname{Span}_{\mathbb{Q}}(\mathrm{B})$ is the span of B only using rational numbers as the coefficients. Hence, H is separable.

- \Longleftarrow Suppose H doesn't have an orthonormal basis which is countable. Let B be ONB for H, so B is uncountable.
For $u \neq v$ in B,

$$
\|u-v\|^{2}=\|u\|^{2}+\|v\|^{2}=2 \Longrightarrow\|u-v\|=\sqrt{2}
$$

Suppose $X \subseteq H$ such that $\bar{X}=H . \forall u \in B$, there exists $x_{n} \in X$ such that

$$
\left\|x_{n}-u\right\|<\frac{\sqrt{2}}{2}
$$

but for $u \neq v$ in B, we have that

$$
x_{u} \neq x_{v}
$$

so

$$
\varphi: B \mapsto X, \varphi(u)=x_{u}
$$

is an injection. So X is uncountable because B is uncountable, so H is not separable, contradiction.

Example 18

$\left\{\frac{1}{\sqrt{2 \pi}} e^{i n x}: n \in \mathbb{Z}\right\}$ is a countable orthonormal set in $L^{2}([-\pi, \pi], \mathbb{C})$. We can clearly see that it is countable, orthonormal, but what about maximal?

4.3 Big Theorems

Remark. Let H be an inner product space, $\left\{v_{1}, \ldots, v_{n}\right\}$ orthonormal.
If $v=\sum \lambda_{i} v_{i}$ then $\lambda_{i}=\left\langle v, v_{i}\right\rangle$. We call $\left\langle v, v_{i}\right\rangle$ the Fourier Coefficients of v w.r.t. $\left\{v_{1}, \ldots, v_{n}\right\}$

Definition 31

Let H be a Hilbert space, $\left\{v_{1}, v_{2}, \ldots\right\}$ orthonormal. For $v \in H$, we call

$$
\sum_{i=1}^{\infty}\left\langle v, v_{i}\right\rangle v_{i}
$$

the Fourier Series of v relative to $\left\{v_{1}, v_{2}, \ldots\right\}$ and write

$$
v \sim \sum_{i=1}^{\infty}\left\langle v, v_{i}\right\rangle v_{i}
$$

- Does this series converge?
- Does it converge to v ?

Theorem 80: [Best Approximation]

Let H be a Hilbert Space, $\left\{v_{1}, \ldots, v_{n}\right\}$ orthonormal. For $v \in H,\left\|v-\sum \lambda_{i} v_{i}\right\|$ is minimized when $\lambda_{i}=\left\langle v, v_{i}\right\rangle$
Moreover,

$$
\left\|v-\sum\left\langle v, v_{i}\right\rangle v_{i}\right\|^{2}=\|v\|^{2}-\sum\left|\left\langle v, v_{i}\right\rangle\right|^{2}
$$

Proof.

1. $W=\operatorname{Span}\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ closed, $v=W \oplus W^{\perp}$
2. $x \in W, v=w+z, w \in W, z \in W^{\perp}$,

$$
\|v-x\|^{2}=\|w+z-x\|^{2}=\|w-x+z\|^{2}=\|w-x\|^{2}+\|z\|^{2} \geqslant\|z\|^{2}=\|v-x\|^{2}
$$

so $\|v-x\| \geqslant\|v-w\|$, the closet point in W to v is w, the orthonormal projection.
3. $v=\sum \lambda_{i} v_{i}+z, z \in W^{\perp}$,

$$
\left\langle v, v_{i}\right\rangle=\lambda_{i}+\underbrace{\left\langle z, v_{i}\right\rangle}_{0}=\lambda_{i}
$$

4. $v=\sum\left\langle v, v_{i}\right\rangle v_{i}+z, z \in W^{\perp}$, then

$$
\begin{aligned}
\|v\|^{2} & =\left\|\sum\left\langle v, v_{i}\right\rangle v_{i}\right\|^{2}+\|z\|^{2} \\
& =\sum\left|\left\langle v, v_{i}\right\rangle\right|^{2}+\|z\|^{2}
\end{aligned}
$$

SO,

$$
\left\|v-\sum\left\langle v, v_{i}\right\rangle v_{i}\right\|^{2}=\|z\|^{2}=\|v\|^{2}-\sum\left|\left\langle v, v_{i}\right\rangle\right|^{2}
$$

Theorem 81: [Bessel's Inequality]

Let H be a Hilber Space, $\left\{v_{1}, \ldots, v_{n}\right\}$ be orthonormal. If $v \in H$,

$$
\sum_{i=1}^{n}\left|\left\langle v, v_{i}\right\rangle\right|^{2} \leqslant\|v\|^{2}
$$

Proof.

$$
\|v\|^{2}-\sum\left|\left\langle v, v_{i}\right\rangle\right|^{2}=\left\|v-\sum\left\langle v, v_{i}\right\rangle v_{i}\right\|^{2} \geqslant 0
$$

Theorem 82: [Parseral's Identity]

Let H be a Hilbert space, $\left\{v_{1}, v_{2}, \ldots\right\}$ orthonormal.
For $v \in H$,

$$
\sum_{i=1}^{\infty}\left|\left\langle v, v_{i}\right\rangle\right|^{2}=\|v\|^{2} \Longleftrightarrow \lim _{n \rightarrow \infty}\left\|v-\sum_{i=1}^{n}\left\langle v, v_{i}\right\rangle v_{i}\right\|^{2}=0
$$

Theorem 83: [Orthonormal Basis Test]

Let H be a separable Hilbert Space $\left\{v_{1}, v_{2}, \ldots\right\}$ orthonormal. TFAE:

1. $\left\{v_{1}, v_{2}, \ldots\right\}$ is an orthonormal basis.
2. $\overline{\operatorname{Span}\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots\right\}}=H$
3. $\lim _{n \rightarrow \infty}\left\|v-\sum_{i=1}^{n}\left\langle v, v_{i}\right\rangle v_{i}\right\|=0, \forall v \in H$

Proof.

- $(1) \Longrightarrow(2)$ Done
- $(2) \Longrightarrow(3)$
 \mathbb{N}. Since $C=\{x \in H:\langle x, u\rangle=0\}$ is closed, $u \notin \overline{\operatorname{Span}\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots\right\}}(u \notin C,\langle u, u\rangle=1$, $\operatorname{Span}\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots\right\} \subseteq C$).
- (2) $\Longrightarrow(3)$

Let $v \in H$ and let $\varepsilon>0$ be given. Let $\sum_{i=1}^{N} \alpha_{i} v_{i} \in \operatorname{Span}\left\{\mathrm{v}_{1}, \ldots\right\}$ such that

$$
\left\|v-\sum_{i=1}^{N} \alpha_{i} v_{i}\right\|<\varepsilon
$$

so $\left\|v-\sum_{i=1}^{N}\left\langle v, v_{i}\right\rangle v_{i}\right\|<\varepsilon$.
For $n \geqslant \mathbb{N}$,

$$
\begin{aligned}
&\left\|v-\sum_{i=1}^{n}\left\langle v, v_{i}\right\rangle v_{i}\right\| \\
& \leqslant\left\|v-\sum_{i=1}^{N}\left\langle v, v_{i}\right\rangle v_{i}\right\|+\left\|\sum_{i=N+1}^{n}\left\langle v, v_{i}\right\rangle v_{i}\right\| \\
&<\varepsilon+\sqrt{\sum_{N+1}^{\infty}\left|\left\langle v, v_{i}\right\rangle\right|^{2}} \longrightarrow 0 \text { as } N \rightarrow \infty
\end{aligned}
$$

because by Bessel's Inequality, $\sum_{i=1}^{N}\left|\left\langle v, v_{o}\right\rangle\right|^{2}$ is a bounded increasing sequence, so $\sum_{N+1}^{\infty}\left|\left\langle v, v_{i}\right\rangle\right|^{2}$ will go to 0 .

- $(3) \Longrightarrow(2)$, similar.

4.4 Fourier Series

1. Is $\left\{\frac{1}{\sqrt{2 \pi}} e^{i n x}: n \in \mathbb{Z}\right\}$ an ONB for $L^{2}([-\pi, \pi], \mathbb{C})$?
2. Is Span $\left\{\mathrm{e}^{\mathrm{inx}}: \mathrm{n} \in \mathbb{Z}\right\}$ dense in $Ł^{2}([-\pi, \pi], \mathbb{C})$?
3. Is Span $\left\{\mathrm{e}^{\mathrm{inx}}: \mathrm{n} \in \mathbb{Z}\right\}$ dense in $L^{1}([-\pi, \pi], \mathbb{C})$

Definition 32

Let $T=[-\pi, \pi)$. We call T the Torus or the circle. We define.

$$
L^{p}(T)=L^{p}([-\pi, \pi], \mathbb{C})
$$

for $1 \leqslant p<\infty$.
Using the norm,

$$
\|f\|_{p}=\left(\frac{1}{2 \pi} \int_{T}|f|^{p}\right)^{\frac{1}{p}}
$$

$L^{p}(T)$ is a separale Banach Space.

Remark.

1. As a group under addition module 2π,

$$
T \cong \mathbb{R} / \mathbb{Z} \cong\{z \in \mathbb{C}:|z|=1\}
$$

2. In this way, T is a locally compact abelion group.
3. There is a one-to-one correspondence between

$$
f: T \mapsto \mathbb{C}
$$

and 2π-periodic function

$$
f: \mathbb{R} \mapsto \mathbb{C}
$$

Definition 33

$f \in L^{1}(T)$

1. We define the $n^{\text {th }}(n \in \mathbb{Z})$ Fourier Coefficients of f by

$$
\left\langle f, e^{i n x}\right\rangle:=\frac{1}{2 \pi} \int_{T} f(x) e^{-i n x} d x
$$

2. We define the Fourier Series of f by

$$
f \sim \sum_{n \in \mathbb{Z}} a_{n} e^{i n x}
$$

where $a_{n}=\left\langle f, e^{i n x}\right\rangle$.
3. We let

$$
S_{N}(f, x)=\sum_{-N}^{N} a_{n} e^{i n x}
$$

denote the $N^{t h}$ partial sum of the above Fourier series.

Proposition 84

Consider the trignometric polynomial $f \in L^{1}(T)$ given by

$$
f(x)=\sum_{n=-N}^{N} a_{n} e^{i n x}
$$

for some $a_{i} \in \mathbb{C}$.
For each $-N \leqslant n \leqslant N$,

$$
\left\langle f, e^{i n x}\right\rangle=a_{n}
$$

Why?

$$
\frac{1}{2 \pi} \int_{T} e^{i m x} e^{-i n x} d x=\delta_{m, n}=\left\{\begin{array}{l}
1, m=n \\
0, m \neq n
\end{array}\right.
$$

Remark. Suppose $f \in L^{1}(T)$ is real-valued, $f \sim \sum_{n \in \mathbb{Z}} a_{n} e^{i n x}$.

For $N \in \mathbb{N}$,

$$
\begin{aligned}
S_{N}(f, x) & =\sum_{n=-N}^{N} a_{n} e^{i n x} \\
& =a_{0}+\sum_{n=1}^{N}\left(a_{n} e^{i n x}+a_{-n} e^{-i n x}\right) \\
& =a_{0}+\sum_{n=1}^{N}\left(a_{n}+a_{-n}\right) \cos (n x)+i\left(a_{n}-a_{-n}\right) \sin (n x) \\
& =a_{0}+\sum_{n=1}^{N} b_{n} \cos (n x)+c_{n} \sin (n x)
\end{aligned}
$$

Now,

$$
\begin{aligned}
& a_{0}=\frac{1}{2 \pi} \int_{T} f(x) e^{-i 0 x} d x=\frac{1}{2 \pi} \int_{T} f(x) d x \\
& b_{n}=a_{n}+a_{-n} \\
& \quad=\frac{1}{2 \pi} \int_{T} f(x)\left(e^{-i n x}+e^{i n x}\right) d x \\
& \\
& =\frac{1}{\pi} \int_{T} f(x) \cos (n x) d x \\
& c_{n}= \\
& \quad=\frac{i}{2 \pi} \int_{T} f(x)\left(e^{-i n x}-e^{i n x}\right) d x \\
& \\
& =\frac{1}{\pi} \int_{T} f(x) \sin (n x) d x
\end{aligned}
$$

are all real-valued.

4.5 Fourier Coefficients

Proposition 85

$f, g \in L^{1}(T)$

1. $\left\langle f+g, e^{i n x}\right\rangle=\left\langle f, e^{i n x}\right\rangle+\left\langle g, e^{i n x}\right\rangle$
2. For $\alpha \in \mathbb{C},\left\langle\alpha f, e^{i n x}\right\rangle=\alpha\left\langle f, e^{i n x}\right\rangle$
3. If $\bar{f}: T \mapsto \mathbb{C}$ is defined by $\bar{f}(x)=\overline{f(x)}$, then $\bar{f} \in L^{1}(T)$ and $\left\langle\bar{f}, e^{i n x}\right\rangle=\overline{\left\langle f, e^{i n x}\right\rangle}$

Proof.

1. Trivial

2. Trivial

3. $|f|=|\bar{f}| \Longrightarrow \bar{f} \in L^{1}(T)$,

$$
\begin{aligned}
& \left\langle\bar{f}, e^{i n x}\right\rangle \\
= & \frac{1}{2 \pi} \int_{T} \bar{f}(x) e^{-i n x} d x \\
= & \frac{1}{2 \pi} \int_{T} \overline{f(x) e^{i n x}} d x \\
= & \frac{1}{2 \pi} \int_{T} \operatorname{Re}\left(\overline{f(x) e^{i n x}}\right) d x+\frac{i}{2 \pi} \int_{T} \operatorname{Im}\left(\overline{f(x) e^{i n x}}\right) d x \\
= & \frac{1}{2 \pi} \int_{T} \operatorname{Re}\left(f(x) e^{i n x}\right) d x-\frac{i}{2 \pi} \int_{T} \operatorname{Im}\left(f(x) e^{i n x}\right) d x \\
= & \frac{1}{2 \pi} \int_{T} f(x) e^{i n x} d x \\
= & \overline{\left\langle f, e^{-i n x}\right\rangle}
\end{aligned}
$$

Proposition 86

$f \in L^{1}(T), \alpha \in \mathbb{R}$. By a previous remark, we may view $f: \mathbb{R} \mapsto \mathbb{C}$ as a 2π-periodic function which is integrable over T. For $\alpha \in \mathbb{R}, f_{\alpha}: \mathbb{R} \mapsto \mathbb{C}$ given by $f_{\alpha}(x)=f(x-\alpha)$ is integrable over T and $\left\langle f_{\alpha}, e^{i n x}\right\rangle=\left\langle f, e^{i n x}\right\rangle e^{-i n \alpha}$

Proposition 87

$f \in L^{1}(T) . \forall n \in \mathbb{Z},\left|\left\langle f, e^{i n x}\right\rangle\right| \leqslant\|f\|_{1}$

Proof.

$$
\begin{aligned}
\left|\left\langle f, e^{i n x}\right\rangle\right| & =\left|\frac{1}{2 \pi} \int_{T} f(x) e^{-i n x} d x\right| \\
& \leqslant \frac{1}{2 \pi} \int_{T}\left|f(x) e^{-i n x}\right| d x \\
& =\frac{1}{2 \pi} \int_{T}|f(x)| d x
\end{aligned}
$$

Corollary 88

$$
f_{k} \mapsto f \text { in } L^{1}(t),
$$

$$
\forall n \in \mathbb{Z},\left\langle f_{k}, e^{i n x}\right\rangle \mapsto\left\langle f, e^{i n x}\right\rangle
$$

Proof.

$$
\begin{aligned}
& \left|\left\langle f_{k}, e^{i n x}\right\rangle-\left\langle f, e^{i n x}\right\rangle\right| \\
= & \left|\left\langle f_{k}-f, e^{i n x}\right\rangle\right| \\
\leqslant & \left\|f_{k}-f\right\|_{1} \longrightarrow 0
\end{aligned}
$$

Remark. Let $\operatorname{Trig}(\mathrm{T})$ denote the set of Trigonometric polynomials on T. By A3, $\overline{\operatorname{Trig}(T)}=L^{1}(T)$

Theorem 89: [Riemann-Lebesgue Lemma]

If $f \in L^{1}(T)$, then

$$
\lim _{|n| \rightarrow \infty}\left\langle f, e^{i n x}\right\rangle=0
$$

Proof. Let $\varepsilon>0$ be given and let $P \in \operatorname{Trig}(\mathrm{~T})$ such that $\|f-P\|_{1} \leqslant \varepsilon$. Say $P(x)=\sum_{k=-N}^{N} a_{k} e^{i k x}$. For $|n|>N$, we have that $\left\langle P, e^{i n x}\right\rangle=0$, so

$$
\left|\left\langle f, e^{i n x}\right\rangle\right|=\left|\left\langle f-P, e^{i n x}\right\rangle\right| \leqslant\|f-P\|_{1}<\varepsilon
$$

4.6 Vector-Valued Integration

Definition 34

Let B be a Banch space and let $f:[a, b] \rightarrow B$ be a function. Consider a partition $P: a=$ $t_{0}<t_{1}<\ldots<t_{n}=b$ of $[a, b]$. We define a Riemann sum of f over P by

$$
S(f, P)=\sum_{i=1}^{n} f\left(t_{i}^{*}\right)\left(t_{i}-t_{i-1}\right) \in B
$$

where each $t_{i}^{*} \in\left[t_{i-1}, t_{i}\right]$.

Definition 35

Let B and f Be as above. We say f is Riemann Integrable if there exists $z \in B$ such that $\forall \varepsilon>0$, there is a partition P_{ε} of $[a, b]$ such that whenever P is a refinement of P_{ε} and $S(f, p)$ is a Riemann sum then

$$
\|S(f, P)-z\|<\varepsilon
$$

We call z the integral of f over $[a, b]$ and write $z=R \int_{a}^{b} f(x) d x$.
A natural question to ask would be: Why are we doing this only for Banach Space?

Theorem 90: [Cauchy Criterion]

Let B be a Banach space and let $f:[a, b] \rightarrow B$ be a function. Then f is Riemann Integrable if and only if $\forall \varepsilon>0$, there exists a partition P_{ε} of $[a, b]$ such that whenever P and Q are refinements of P_{ε} we have,

$$
\|S(f, p)-S(f, Q)\|<\varepsilon
$$

for any Riemann sums $S(f, P)$ and $S(f, Q)$.

Proof. Suppose f is Riemann integrable with $z=R \int_{a}^{b} f(x) d x$. Let $\varepsilon>0$ be given. We may find a partition $P_{\varepsilon / 2}$ such that whenever P is a refinement partition of $P_{\varepsilon / 2}$ then

$$
\|S(f, P)-S(f, Q)\| \leqslant\|S(f, P)-z\|+\|z-S(f, Q)\|<\varepsilon
$$

Conversely, assume the Cauchy Criterion holds. In particular, for each $n \in \mathbb{N}$, we may find a partition P_{n} of $[a, b]$ which corresponds to $\varepsilon=\frac{1}{n}$, as per Cauchy Criterion. Without loss of generality, we may assume that each P_{n+1} is a refinement of P_{n}. For each $n \in \mathbb{N}$, let $S\left(f, P_{n}\right)$ be a Riemann sum. Let $\varepsilon>0$ be given. Choosing $N \in \mathbb{N}$ such that $\frac{1}{N}<\frac{\varepsilon}{2}$, we see that for $m, n \geqslant \mathbb{N}$,

$$
\left\|S\left(f, P_{m}\right)-S\left(f, P_{n}\right)\right\|<\frac{1}{N}<\varepsilon
$$

Since B is a Banach Space, $S\left(f, P_{n}\right) \rightarrow z \in B$
We claim that f is Riemann Integrable with $R \int_{a}^{b} d x=z$. Let N and P_{N} be as above. Moreover,
we know $\exists M>N$ such that $\left\|S\left(f, P_{M}\right)-z\right\|<\frac{\varepsilon}{2} \|$. Now if P is any refinement partition of P_{N}, then

$$
\|S(f, P)-z\| \leqslant\left\|S(f, P)-S\left(f, P_{M}\right)\right\|+\left\|S\left(f, P_{M}\right)-z\right\|<\varepsilon
$$

Theorem 91

If B is a Banach Space and $f:[a, b] \rightarrow B$ is continuous, then f is Riemann integrable.

4.7 Summability Kernels

Definition 36

$f, g \in L^{1}(T)$. The convolution of f and g is the functions

$$
f * g: T \mapsto \mathbb{C}
$$

given by

$$
(f * g)(x)=\frac{1}{2 \pi} \int_{T} f(t) g(x-t) d t=\frac{1}{2 \pi} \int_{T} f(t) g_{t}(x) d t
$$

Facts:

1. Given $f, g \in L^{1}(T), f * g \in L^{1}(T)$ as well.
2. $\|f * g\|_{1} \leqslant\|f\|_{1}\|g\|_{1}$
3. This means $L^{1}(T)$ a Banach Algebra (Banach Space with continuous multiplication, we can think convolution as a "multiplication").

Let $C(T)$ denote the set of continuous functions $T \rightarrow \mathbb{C}$

Definition 37

A summability kernel is a sequence $\left(K_{n}\right) \subseteq C(T)$ such that

1. $\frac{1}{2 \pi} \int_{T} K_{n}=1$
2. $\exists M, \forall n,\left\|K_{n}\right\|_{1} \leqslant M$
3. $\forall 0<\delta<\pi$,

$$
\lim _{n \rightarrow \infty}\left(\int_{-\pi}^{-\delta}\left|K_{n}\right|+\int_{\delta}^{\pi}\left|K_{n}\right|\right)=0
$$

This means summability kernels are concentrated at 0 .

Proposition 92

Let $\left(B,\|\cdot\|_{B}\right)$ be a Banach Space (with scaler \mathbb{C}. Let $\varphi: T \mapsto B$ be continuous. Let $\left(K_{n}\right) \subseteq C(t)$ be a summability kernel. Then

$$
\lim _{n \rightarrow \infty} \frac{1}{2 \pi} \underbrace{\int_{T} K_{n}(t) \varphi(t) d t}_{\text {Riemann vector-valued integral }}=\varphi(0)
$$

in the B-norm.

Proof. Appendix using (2), (3)

Remark. $\varphi: T \rightarrow L^{1}(T)$, given by

$$
\varphi(t)=f_{t}=f(x-t)
$$

is continuous.

Theorem 93

$f \in L^{1}(T), K_{n}$ is a summability kernel. In $L^{1}(T)$,

$$
f=\lim _{n \rightarrow \infty} K_{n} * f
$$

Proof. Let $\varphi(t)=f(x-t)$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{2 \pi} \int_{T} K_{n}(t) \varphi(t) d t=\varphi(0) \\
\Longrightarrow & \lim _{n \rightarrow \infty} \frac{1}{2 \pi} \int_{T} K_{n}(t) f(x-t) d t=\varphi(0)=f(x-0)=f(x) \\
\Longrightarrow & \lim _{n \rightarrow \infty}\left(K_{n} * f\right)(x)=f(x)
\end{aligned}
$$

4.8 Dirichlet Kernel

We want to find $\left(K_{n}\right)$ such that $K_{n} * f=S_{n}(f)$, which is the $n^{t h}$ partial sum of Fourier Series of f.

Remark. Let $f \in L^{1}(T)$. For $n \in \mathbb{Z}$ consider

$$
\varphi_{n}(x)=e^{i n x} \in L^{1}(T)
$$

Then

$$
\begin{aligned}
& \left(\varphi_{n} * f\right)(x) \\
= & \frac{1}{2 \pi} \int_{T} \varphi_{n}(t) f_{t}(x) d t \\
= & \frac{1}{2 \pi} \int_{T} e^{i n t} f(x-t) d t \\
= & \frac{1}{2 \pi} e^{i n x} \int_{T} e^{-i n(x-t)} f(x-t) d t \\
= & \frac{1}{2 \pi} e^{i n x} \int_{T} e^{-i n(-t)} f(-t) d t \\
= & \frac{1}{2 \pi} e^{i n x} \int_{T} e^{-i n t} f(t) d t \\
= & e^{i n x}\left\langle f, e^{i n x}\right\rangle
\end{aligned}
$$

Remark. $f \in L^{1}(T)$, if $P(x)=\sum_{k=-n}^{n} a_{k} e^{i k x}$, then

$$
\begin{aligned}
& (P * f)(x) \\
= & \frac{1}{2 \pi} \int_{T} P(t) f(x-t) d t \\
= & \sum_{k=-n}^{n} \frac{a_{n}}{2 \pi} \int_{T} e^{i k t} f(x-t) d t \\
= & \sum_{k=-n}^{n} a_{n}\left(\varphi_{n} * f\right)(x) \\
= & \sum_{k=-n}^{n} a_{n} e^{i k x}\left\langle f, e^{i k x}\right\rangle
\end{aligned}
$$

Definition 38

$D_{n}(x)=\sum_{k=-n}^{n} e^{i k x}$ is the Dirichlet Kernel of order n. And

$$
\begin{aligned}
& \left(D_{n} * f\right)(x) \\
= & \sum_{k=-n}^{n} e^{i k x}\left\langle f, e^{i k x}\right\rangle \\
= & S_{n}(f, x)
\end{aligned}
$$

which is the $n^{t h}$ partial sum we want.However, it's NOT a summability kernel.

4.9 Fejér Kernel

Idea: $\left(x_{n}\right) \subseteq \mathbb{C}$, consider

$$
y_{n}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}
$$

Exer: If $x_{n} \rightarrow x$, then $y_{n} \rightarrow y$.

Definition 39

The Fejér Kernel of order n is

$$
F_{n}(x)=\frac{D_{0}(x)+D_{1}(x)+\ldots+D_{n}(x)}{n+1}
$$

Remark.

$$
\begin{aligned}
F_{0}(x) & =D_{0}(x)=1 \\
F_{1}(x) & =\frac{e^{-x}+2 e^{i 0 x}+e^{i x}}{2} \\
F_{2}(x) & =\frac{e^{-2 x}+2 e^{-x}+3 e^{i 0 x}+2 e^{i x}+e^{i 2 x}}{3} \\
& \vdots \\
F_{n}(x) & =\sum_{k=-n}^{n}\left(1-\frac{|k|}{n+1}\right) e^{i k x}
\end{aligned}
$$

Remark. $\left(F_{n}\right)$ is a summability kernel.

Definition 40

$$
\begin{aligned}
F_{n} * f & =\frac{1}{n+1} \sum_{k=0}^{n} D_{k} * f \\
& =\frac{1}{n+1} \sum_{k=0}^{n} S_{k}(f) \\
& =\frac{S_{0}(f)+S_{1}(f)+\ldots+S_{n}(f)}{n+1} \\
& =: \sigma_{n}(f)
\end{aligned}
$$

which is the $\underline{n}^{t h}$ Cesaro mean.

Theorem 94

$f \in L^{1}(T),\left(F_{n}\right)$ Fejér.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} F_{n} * f \\
= & \lim _{n \rightarrow \infty} \sigma_{n}(f) \\
= & f
\end{aligned}
$$

in $L^{1}(T)$.

Remark. If $\left(S_{n}(f)\right)$ converges in $L^{1}(T)$ then $S_{n}(f) \rightarrow f$ in $L^{1}(T)$.

4.10 Fejér's Theorem

Idea: L^{1} convergence is great theoretically, but pointwise convergence is practical.

Theorem 95: [Fejér's Theorem]

For $f \in L^{1}(T)$ and $t \in T$ consider

$$
\omega_{f}(t)=\frac{1}{2} \lim _{x \rightarrow 0^{+}}(f(t+x)+f(t-x))
$$

provided the limit exists, then

$$
\sigma_{n}(f, t) \rightarrow \omega_{f}(t)
$$

In particular, if f is continuous at t then

$$
\sigma_{n}(f, t) \rightarrow f(t)
$$

In practice:

1. Fix $x \in T$
2. Prove $\left(S_{n}(f, x)\right)$ converged
3. Then

$$
S_{n}(f, x) \rightarrow \omega_{f}(x)
$$

4. If f is continuous at x then $S_{n}(f, x) \rightarrow f(x)$, i.e. $S(f, x)=f(x)$.

Example 19
$f \in L^{1}(T), f(x)=|x|$,

$$
\begin{aligned}
S_{n}(f, x) & =a_{0}+\sum_{k=1}^{n}\left(b_{k} \cos (k x)+c_{k} \sin (k x)\right) \\
a_{0} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi}|x| d x=\frac{\pi}{2} \\
b_{k} & =\frac{1}{\pi} \int_{-\pi}^{\pi}|x| \cos (k x) d x \\
& =\frac{2(-1)^{k}-2}{k^{2} \pi} \\
c_{k} & =\frac{1}{\pi} \int_{\pi}^{\pi}|x| \sin (k x) d x=0
\end{aligned}
$$

so

$$
\begin{aligned}
& S_{n}(f, x) \\
= & \frac{\pi}{2}+\frac{2}{\pi} \sum_{k=1}^{n}\left(\frac{(-1)^{k}-1}{k^{2}} \cos (k x)\right) \\
= & \frac{\pi}{2}+\frac{2}{\pi} \sum_{k=1}^{(n+1) / 2}\left(\frac{-2}{(2 k-1)^{2}} \cos ((2 k-1) x)\right)
\end{aligned}
$$

Note: $\left(S_{n}(f, x)\right)$ converges by comparison with $\sum \frac{1}{(2 x-1)^{2}}$.
Since f is continuous,

$$
f(x)=\frac{\pi}{2}-\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\cos ((2 k-1) x)}{(2 k-1)^{2}}
$$

1. Taking $x=0$:

$$
0=\frac{\pi}{2}-\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}} \Longrightarrow \sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}}=\frac{\pi^{2}}{8}
$$

2.

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{1}{k^{2}}=\sum_{k=1}^{\infty} \frac{1}{(2 k)^{2}}+\sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}} \\
&=\frac{1}{4} \sum_{k=1}^{\infty} \frac{1}{k^{2}}+\frac{\pi^{2}}{8} \\
& \Longrightarrow \quad \sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
\end{aligned}
$$

4.11 Homogeneous Banach Space

Definition 41

A homogeneous Banach Space is a Banach Space $\left(B,\|\cdot\|_{b}\right)$ such that

1. B is a subspace of $L^{1}(T)$
2. $\|\cdot\|_{1} \leqslant\|\cdot\|_{b}$
3. $\forall f \in B, \forall \alpha \in T,\left\|f_{\alpha}\right\|_{B}=\|f\|_{B}$ (assuming $f_{\alpha} \in B$).
4. $\forall f \in B, \forall t_{0} \in T$,

$$
\lim _{t \rightarrow t_{0}}\left\|f_{t}-f_{t_{0}}\right\|_{B}=0
$$

Example 20

$\left(L^{p}(T),\|\cdot\|_{p}\right)(p<\infty)$.

Theorem 96

Let B be a homogeneous Banach Space $\left(K_{n}\right)$ summability kernel. $\forall f \in B$,

$$
\lim _{n \rightarrow \infty}\left\|K_{n} * f-f\right\|_{B}=0
$$

Proof.

1. $\underbrace{\frac{1}{2 \pi} \int_{T} K_{n}(t) f_{t} d t}_{\text {B-valued }}=\underbrace{K_{n} * f}_{L^{1}-\text { valued }}$
2. $\lim _{n \rightarrow \infty} \frac{1}{2 \pi} \int_{T} K_{n}(t) \varphi(t) d t=\varphi(0)$, for all continuous $\varphi: T \rightarrow B$
3. $\varphi: T \rightarrow B, \varphi(t)=f_{t}$ is continuous $\forall f \in B$
4. $\left\|K_{n} * f-f\right\|_{B} \rightarrow 0$

Remark. 1. B norm Banach Space. Taking $K_{n}=F_{n}$ we have

$$
\left\|\sigma_{n}(f)-f\right\|_{B} \rightarrow 0
$$

for all $f \in B$.
2. Taking $B=L^{p}(T)$
(a) $\left\|\sigma_{n}(f)-f\right\|_{p} \rightarrow 0$
(b) $\overline{\operatorname{Trig}(T)}=L^{p}(T)$

Remark. In $L^{2}(T)$

1. $\overline{\operatorname{Trig}(T)}=L^{2}(T)$
2. $\overline{\operatorname{Span}\left\{\mathrm{e}^{\mathrm{inx}}: \mathrm{n} \in \mathbb{Z}\right\}}=L^{2}(T)$
3. $\left\{e^{i n x}: n \in \mathbb{Z}\right\}$ ONB
4. Let the above ONB be written as $\left\{v_{1}, v_{2}, \ldots\right\}$, for all $f \in L^{2}(T)$

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left\langle f, v_{i}\right\rangle v_{i}=f
$$

5. If $v=e^{i k x}$,

$$
\langle f, v\rangle v=\left(\frac{1}{2 \pi} \int_{T} f(x) e^{-i k x} d x\right) e^{i k x}=\left\langle f, e^{i k x}\right\rangle e^{i k x}
$$

6. $\forall f \in L^{2}(T)$,

$$
\left\|S_{n}(f)-f\right\|_{2} \rightarrow 0
$$

