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1 Measure

1.1 Borel Set
Definition 1

X is a set. We call a ⊆ P(x) a σ-algebra of subsets of X if:

1. ∅ ∈ a

2. A ∈ a =⇒ X \ A ∈ a

3. A1, A2, A3, . . . ,∈ a =⇒
∞!
i=1

Ai ∈ a

Remark. a ⊆ P(X) is a σ-algebra

1. X ∈ a, X \ ∅ = X ∈ a

2. A,B ∈ a =⇒ A
!

B ∈ a by A
!

= A
!

B
!

∅ . . .
"

∅ . . .
# $% &

countably many

∈ a

3. A1, A2, . . . ∈ a =⇒
∞'
i=1

Ai ∈ a, by
∞'
i=1

Ai = X \
( ∞!

i=1

(X \ Ai)

)
∈ a

4. A,B ∈ a =⇒ A
'

B ∈ a

Example 1: σ-algebra

• {∅, X}

• a = P(x)

• a = {A ⊆ R : A is open} is not a σ-algebra. A = (0, 1) ∈ a, but R \ A =
(−∞, 0] ∪ [1,∞) /∈ a because it’s not open

• a = {A ⊆ R : A is open or closed} is not a σ-algebra, because Q =
!
q∈Q

{q} /∈ a (Q

is countable)

Proposition 1

X is a set, C ⊆ P(x), then

a :=
*

{B : B σ-algebra, C ⊆ B} is a σ-algebra

It’s the smallest σ-algebra containing C.
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Definition 2

C = {A ⊆ R : A open}, then

a = ∩{B : C ⊆ B,B σ − algebra}

is a Borel σ-algebra. The elements of a are called the Borel Sets.

Remark. 1. open =⇒ Borel

2. closed =⇒ Borel

3. {X1, X2, . . .} =
∞!
i=1

{Xi}, so countable =⇒ Borel. (Note Q is not open or closed but Borel)

4. [a, b) = [a, b] \ {b} = [a, b] ∩ (R \ {b}), so a half open interval is also Borel
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1.2 Outer Measure
Goal: Define a function

m : P(R) )→ [0,∞) ∪ {∞} (called a measure)

1. m((a, b)) = m([a, b]) = m((a, b]) = b− a

2. m(A ∪B) ! m(A) +m(B)

3. A ∩B = ∅, m(A ∪B) = m(A) +m(B)

Definition 3

We define a (Lebesgue) outer measure by

m∗ : P(R) )→ [0,∞) ∪ {∞}

m∗(A) = inf

+ ∞,

i=1

l(Ii) : A ⊆
∞"

i=1

Ii, Ii open, bounded interval

-

Example 2

∅ =⇒ m∗(∅) = 0. Since ∀ε > 0, ∅ ⊆ (0, ε) =⇒ m∗(∅) ! l((0, ε)). Since m∗(∅) " 0,
we know m∗(∅) = 0

Example 3

A = {x1, x2, . . .} is countable, then

A ⊆
∞"

i=1

.
xi −

ε

2i+1
, xi +

ε

2i+1

/
, ε > 0

then

m∗(A) !
∞,

i=1

ε

2i

=
ε

2

∞,

i=1

1

2i−1

=
ε

2

(
1

1− 1/2

)
= ε

Since ε is arbitrary,
m∗(A) = 0

It’s also clear that finite set also have measure 0. That is, both countable and finite sets have
measure 0
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1.3 Outer Measure 2
Proposition 2

If A ⊆ B, then m∗(A) ! m∗(B)

Proof.

X :=

+
,

l(Ii) : A ⊆
∞"

i=1

Ii

-

Y :=

+
,

l(Ii) : B ⊆
∞"

i=1

Ii

-

Y ⊆ X

infX ! inf Y

Lemma 3

If a, b ∈ R with a ! b, then m∗([a, b]) = b− a

Proof. Let ε > 0 be given. Since [a, b] ⊆
0
a− ε

2
, b+ ε

2

1
. We see that m∗([a, b]) ! b − a + ε.

Let Ii be bounded, open intervals such that [a, b] ⊆
∞!
i=1

Ii. Since [a, b] is compact, then there exists

n ∈ N, such that

[a, b] ⊆
n"

i=1

Ii

so

b− a !
n,

i=1

l(Ii) !
∞,

i=1

l(Ii)

and so m∗([a, b]) " b− a =⇒ m∗([a, b]) = b− a. Note m∗([a, b]) > 0 because of the definition
of inf.

Proposition 4

If I is an interval, then m∗(I) = l(I)

Proof.
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1. If I is bounded with endpoints a ! b, then

ε > 0, I ⊆ [a, b] =⇒ m∗(I) ! m∗([a, b]) = b− a
2
a+

ε

2
, b− ε

2

3
⊆ I =⇒ b− a+ ε ! m∗(I)

=⇒ b− a ! m∗(I)

then m∗(I) = b− a

2. If I is unbounded

∀n ∈ N, ∃In, l(In) = n

=⇒ m∗(I) " m∗(In) = n

=⇒ m∗(I) = ∞ = l(I)
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1.4 Basic Properties of Outer Measure
Outer measure is

1. Translation Invariant

2. Countably Subadditive

Notation: x ∈ R, A ⊆ R, x+ A := {x+ a : a ∈ A}
Proposition 5: Translation Invariant

m∗(x+ A) = m∗(A)

Proof.

m∗(x+ A) = inf

+ ∞,

i=1

l(Ii) : x+ A ⊆
∞"

i=1

Ii, bounded, open

-

= inf

+ ∞,

i=1

l(Ii) : A ⊆
∞"

i=1

Ii − x, bounded, open

-

= inf

4
5

6

∞,

i=1

l(Ii − x# $% &
Ji

) : A ⊆
∞"

i=1

Ii − x# $% &
Ji

, bounded, open

7
8

9

= inf

+ ∞,

i=1

l(Ji) : A ⊆
∞"

i=1

Ji

-

= m∗(A)

Proposition 6: Countably Subadditivity

If Ai ⊆ R(i ∈ N), then

m∗

: ∞"

i=1

Ai

;
!

∞"

i=1

m∗(Ai)

Proof. We may assume each m∗(Ai) < ∞(otherwise it’s trivial). Let ε > 0 be given and let’s fix

i ∈ N. There exists open and bounded interval Ii,j such that Ai ⊆
∞!
i=1

Ii,j and

∞,

i=1

l(Ii,j) ! m∗(Ai) +
ε

2i

We see that
∞"

i=1

Ai ⊆
"

i,j

Ii,j

9



and so

m∗

: ∞"

i=1

;
!

,

i,j

l(Ii,j)

!
∞,

i=1

.
m∗(Ai) +

ε

2i

/

=
∞,

i=1

m∗(Ai) +
∞,

i=1

ε

2i

=
∞,

i=1

m∗(Ai) + ε

Corollary 7: finite subadditivity

If A1, . . . , An ∈ P(R), then

m∗(A1 ∪ A2 . . . ∪ An) ! m∗(A1) +m∗(A2) + . . .+m∗(An)

Later we will see that there exists A,B ⊆ R, A ∩ B = ∅ but m∗(A ∪ B) ! m∗(A) +m∗(B),
we will solve this by restricting the domain of m∗ to only include the sets which measure ”nicely”.
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1.5 Measurable Sets
Definition 4

We say A ⊆ R is measurable if ∀X ⊆ R,

m∗(X) = m∗(X ∩ A) +m∗(X \ A)

Remark. Always have
m∗(X) ! m∗(X ∩ A) +m∗(X \ A)

by X = (X \ A) ∪ (X ∩ A)

Remark. If A ⊆ R is measurable and B ⊆ R with A ∩B = ∅, then

m∗(A ∪B# $% &
X

) = m∗(X ∩ A) +m∗(X \ A) = m∗(A) +m∗(B)

Proposition 8

If m∗(A) = 0, then A is measurable

Proof. Let X ⊆ R, since X ∩ A ⊆ A, we have

0 ! m∗(X ∩ A) ! m∗(A) = 0

so m∗(X ∩ A) = 0, then

m∗(X ∩ A) +m∗(X \ A)
=m∗(X \ A)
!m∗(X)

the other direction is always true, so

m∗(X) = m∗(X ∩ A) +m∗(X \ A)

Proposition 9

A1, . . . , An measurable, then
n!

i=1

Ai is measurable.
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Proof. It suffices to prove the result when n = 2.
Let A,B ⊆ R be measurable. Let X ⊆ R, then

m∗(X) = m∗(X ∩ A) +m∗(X \ A# $% &
Y

)

= m∗(X ∩ A) +m∗(Y ∩B) +m∗(Y \B)

= m∗(X ∩ A) +m∗((X \ A) ∩B) +m∗(X \ (A ∪B))

" m∗((X ∩ A) ∪ ((X \ A) ∩B)) +m∗(X \ (A ∪B))

= m∗(X ∩ (A ∪B)) +m∗(X \ (A ∪B))

Proposition 10

A1, A2, . . . , An measurable, Ai ∩ Aj = ∅, i ∕= j. Let A = A1 ∪ . . . ∪ An. If X ⊆ R, then

m∗(X ∩ A) =
n,

i=1

m∗(X ∩ Ai)

Proof. For n = 2, let A,B ⊆ R measurable, A ∩B = ∅. Let X ⊆ R, then

m∗(X ∩ (A ∪B))

=m∗((X ∩ (A ∪B)) ∩ A) +m∗((X ∩ (A ∪B)) \ A)
=m∗(X ∩ A) +m∗(X ∩B)

Note: we only need n− 1 sets to be measurable, it’s ok if one set is not.

Corollary 11: Finite Additive

A1, . . . , An measurable, Ai ∩ Aj = ∅, then m∗(A1 ∪ . . . ∪ An) =
<n

i=1 m
∗(Ai)

Proof. Take X = R, use the proposition above.
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1.6 Countably Additivity

Lemma 12

Ai ⊆ R measurable (i ∈ N). If Ai ∩ Aj = ∅ for i ∕= j, then A :=
∞!
i=1

Ai is measurable.

Proof. Let Bn = A1 ∪ . . . An and X ⊆ R arbitrary.

m∗(X) = m∗(X ∩Bn) +m∗(X \Bn)

" m∗(X ∩Bn) +m∗(X \ A)

=
m,

i=1

m∗(X ∩ Ai) +m∗(X \ A)

Taking n → ∞,

m∗(X) "
∞,

i=1

m∗(X ∩ Ai) +m∗(X \ A)

= m∗

: ∞"

i=1

(X ∩ Ai)

;
+m∗(X \ A)

= m∗(X ∩ A) +m∗(X \ A)

Proposition 13

A ⊆ R measurbale, then R \ A is measurable.

Proof. X ⊆ R,

m∗(X ∩ (R \ A)) +m∗(X \ (R \ A))
=m∗(X \ A) +m∗(X ∩ A)

=m∗(X) by A measurable

Proposition 14

Ai ⊆ R measurable (i ∈ N), then A =
!∞

i=1 Ai is measurable.
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Proof. Bn = An \ (A1∪ . . .∪An−1) = An∩ (R \ (A1∪ . . .∪An−1)), (B1 = A1), n " 2 , we can
see that Bn is an intersection of measurable sets, hence measurable. And, for i ∕= j, Bi ∩ Bj = ∅.
Also,

∞"

i=1

Bi =
∞"

i=1

Ai

so A is measurable by lemma above.

Corollary 15

The collection L of (Lebesgue) measurable sets is a σ-algebra of sets in R

Proposition 16: Countably Additivity

Ai ⊆ R measurable (i ∈ N), if Ai ∩ Aj = ∅ for i ∕= j, then

m∗

: ∞"

i=1

Ai

;
=

∞,

i=1

m∗(Ai)

Proof.

m∗

: ∞"

i=1

Ai

;
" m∗

:
n"

i=1

Ai

;
=

∞,

=1

m∗(Ai)

Take n → ∞, then

m∗

: ∞"

i=1

Ai

;
"

∞,

i=1

m∗(Ai)

The other direction follows by the subadditivity.
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1.7 Measurable Sets Continued
Proposition 17: I

a ∈ R, then (a,∞) is measurable

Proof. Let X ⊆ R. We want to show that

m∗(X ∩ (a,∞)) +m∗(X \ (a,∞)) ! m∗(X)

1. a /∈ X ,
We show

m∗(X ∩ (a,∞)# $% &
X1

) +m∗(X ∩ (−∞, a)# $% &
X2

) ! m∗(X)

Let (Ii) be a sequence of bounded, open intervals such that X ⊆
!

Ii. Define

I ′i = Ii ∩ (a,∞) and I ′′i = Ii ∩ (−∞, a)

Note that
X1 ⊆

"
I ′i, X2 ⊆

"
I ′′i

and so

m∗(X1) !
,

l(I ′i)

m∗(X2) !
,

l(I ′′i )

We then see that

m∗(X1) +m∗(X2)

!
,

l(I ′i) +
,

l(I ′′i )

=
,

(l(I ′i) + l(I ′′i ))

=
,

l(Ii)

By the definition of inf, we have

m∗(X1) +m∗(X2) ! m∗(X)

2. a ∈ X , let X ′ = X \ {a}, then

m∗(X ∩ (a,∞)) +m∗(X \ (a,∞)) = m∗((X ′ ∪ {a}) ∩ (a,∞)) +m∗((X ′ ∪ {a}) \ (a,∞))

= m∗(X ′ ∩ (a,∞)) +m∗((X ′ \ (a,∞)) ∪ {a})
! m∗(X ′ ∩ (a,∞)) +m∗(X ′ \ (a,∞)) +m∗({a})
= m∗(X ′) + 0 ! m∗(X)
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The other direction is trivial by subadditivity.

Theorem 18

Borel set is measurable

Proof. (a,∞) is measurable, so
'∞

n=1

0
a− 1

n
,∞

1
= [a,∞) is measurable. So R \ [a,∞) =

(−∞, a) is measurable, then (a, b) = (a,∞) ∩ (−∞, b) is measurable. Hence, every open set in
R is measurable (open sets can be expressed as countable union of open intervals), so

B ⊆ L

because B is the smallest σ-algebra containing all open sets and L is a σ-algebra containing all
open sets.

Definition 5

We call m : L )→ [0,∞) ∪ {∞} given by m(A) = m∗(A), the Lebesgue Measure

Remark. A ⊆ R measurable, then x+ A is measurable ∀x ∈ R

Proof. ∀K ⊆ R, K − x ⊆ R,

m∗(K − x) = m∗(A ∩ (K − x)) +m∗(A \ (K − x))

= m∗((A+ x) ∩K) +m∗((A+ x) \K)

= m∗(K)
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1.8 Basic Properties of Lebesgue Measure

Proposition 19: Excision Properties

A ⊆ B, A measurable, m(A) < ∞, then m∗(B \ A) = m∗(B)−m(A)

Proof.

m∗(B) = m∗(B ∩ A) +m∗(B \ A)
= m∗(A) +m∗(B \ A)
= m(A)# $% &

<∞

+m∗(B \ A)

Theorem 20: Continuity of Measure

1. A1 ⊆ A2 ⊆ A3 . . ., measurable, then

m

: ∞"

i=1

Ai

;
= lim

n→∞
m(An)

2. B1 ⊇ B2 ⊇ B3 . . ., measurable, and m(B1) < ∞, then

m

: ∞*

i=1

Bi

;
= lim

n→∞
m(Bn)

Proof.

1. Since m(Ak) ! m(∪Ai), ∀k ∈ N, we have

lim
n→∞

m(An) ! m(∪Ai)

if ∃k ∈ N such that m(Ak) = ∞, then limn→∞ m(An) = ∞ and we are done, so assume
m(Ak) < ∞, ∀k ∈ N.
For each k ∈ N, let Dk = Ak \ Ak−1, A0 ∕= ∅. Note

• Dk’s are measurable

• Dk’s are parwise disjoint

• ∪Di = ∪Ai

17



so

m∗(∪Ai) = m∗(∪Di)

=
∞,

i=1

m(Di)

=
∞,

i=1

m(Ai)−m(Ai−1)

= lim
n→∞

∞,

i=1

m(Ai)−m(Ai−1)

= lim
n→∞

m(An)−m(A0)

= lim
n→∞

m(An)

2. For k ∈ N, define
Dk = B1 \Bk

Note:

• Dk’s measurable

• D1 ⊆ D2 ⊆ D3 ⊆ . . .

By 1), we know m(∪Di) = limn→∞ m(Dn), we see that

∪Di =
∞"

i=1

(B1 \Bi) = B1 \
: ∞*

i=1

Bi

;

and so,
lim
n→∞

m(Dn) = m(∪Di) = m(B1 \ (∩Bi)) = m(B1)−m(∩Bi)

because ∩Bi is measurable and has finite measure.
However,

lim
n→∞

m(Dn) = lim
n→∞

m(B1 \Bn)

= lim
n→∞

m(B1)−m(Bn)

= m(B1)− lim
n→∞

m(Bn)

= m(B1)−m(∩Bi)

Hence,
lim
n→∞

m(Bn) = m(∩Bi)

Example 4

Bi = (i,∞), and m(∩Bi) = m(∅) = 0, but limn→∞ m(Bn) = ∞

18



1.9 Non-Measurable Sets
Lemma 21

A ⊆ R bounded, measurable Λ ⊆ R bounded, countably infinite. If λ + A, λ ∈ Λ are
pairwise disjoint, then m(A) = 0

Proof.
!
λ∈Λ

(λ+ A) is a bounded set, which is measurable, then

m

:
"

λ

(λ+ A)

;
< ∞

m

:
"

λ

(λ+ A)

;
=

,

λ

m(λ+ A) =
,

λ

m(A) < ∞

and m(A) " 0, so m(A) = 0 (Λ is countably infinite)

Construction: Start with ∅ ∕= A ⊆ R, consider a ∼ b ⇐⇒ a− b ∈ R. Then ∼ is an equivalence
relation.
Let CA denotes a single choice of equivalence class representatives for A relative to ∼.

Remark. The sets λ+ CA, λ ∈ Q are pairwise disjoint

Proof. say x ∈ (λ1 + CA) ∩ (λ2 ∩ CA)

x = λ1 + a = λ2 + b

=⇒ a, b ∈ CA

=⇒ a− b = λ1 − λ2 ∈ Q
=⇒ a ∼ b =⇒ a = b by each equiv. class has one repre.
=⇒ λ1 = λ2

Theorem 22: Vitali

Every set A ⊆ R with m∗(A) > 0 contains a non-measurable subset.

Proof. By Quiz1, we may assume A is bounded, say A ⊆ [−N,N ], for some N ∈ N.

Claim: CA is non-measurable.
Assume CA is measurable. Let Λ ⊆ Q be bounded, infinite. By the lemma and remark,

m(CA) = 0
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Let a ∈ A, then a ∼ b for some b ∈ CA. In particular, a− b = λ ∈ Q. Moreover,

λ ∈ [−2N, 2N ]

Taking Λ0 = Q ∩ [−2N, 2N ], have

A ⊆
"

λ∈Λ0

(λ+ CA)

so m∗(A) = 0, contradiction

Corollary 23

∃A,B ⊆ R, such that

1. A ∩B = ∅, and

2. m∗(A ∪B) < m∗(A) +m∗(B)

Proof. Let C be a non-measurable set, ∃X ⊆ R such that

m∗(X) < m∗(X ∩ C# $% &
A

) +m∗(X \ C# $% &
B

)
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1.10 Cantor-Lebesgue Function
Recall: Cantor Set

I = [0, 1]

C1 = [0, 1/3] ∪ [2/3, 1]

C2 = [0, 1/9] ∪ [2/9, 3/9] ∪ [6/9, 7/9] ∪ [8/9, 1]

...

C =
∞*

k=1

Ck

Note C is countable and closed.

Proposition 24

The Cantor Set is Borel and has measure zero.

Proof. Closed =⇒ Borel. And C =
'∞

k=1 Ck, where Ck’s measurable and

C1 ⊇ C2 ⊇ C3 ⊇ . . .

By continuity of measure,

m(C) = lim
k→∞

m(Ck)

= lim
k→∞

2k

3k
= 0
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Construction: Cantor-Lebesgue Function (C-L fcn)

1. For k ∈ N, Uk= Union of open intervals deleted in the process of constructing C1, C2, . . . , Ck

i.e. Uk = [0, 1] \ Ck.

2. U =
!∞

k=1 Uk, i.e. U = [0, 1] \ C

3. Say Uk = Ik,1 ∪ Ik,2 ∪ . . . ∪ Ik,2k−1 (In order: from left to right). Define

ϕ : Uk → [0, 1] by ϕ|Ik,i=
i

2k

e.g. U1 = (1/3, 2/3) → 1
21

= 1
2

and

U2 =(1/9, 2/9) ∪(1/3, 2/3) ∪(7/9, 8/9)

→ 1

4
→ 2

4
→ 3

4

4. Define
ϕ : [0, 1] → [0, 1]

by for 0 ∕= x ∈ C, ϕ(x) = sup{ϕ(t) : t ∈ U ∩ [0, x]} and ϕ(0) = 0
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Things to know about ϕ

1. ϕ is increasing. Take two points in U , for large enough k, both points in Uk. If they are in
the Cantor Set, then it’s increasing by definition

2. ϕ is continuous

• ϕ is continuous on U . (It’s constant on a small interval)

• x ∈ C, x ∕= 0, 1. For large k, ∃ak ∈ Ik,i, ∃bk ∈ Ik,i+1 such that

ak < x < bk

but, ϕ(bk)− ϕ(ak) =
i+1
2k

− i
2k

= 1
2k

→ 0

• x ∈ {0, 1}

3. ϕ : u → [0, 1] is differentiable and ϕ′ = 0

4. ϕ is onto,
ϕ(0) = 0, ϕ(1) = 1

by Intermediate Value Theorem.
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1.11 A Non-Borel Set
Let ϕ be the Cantor-Lebesgue Function. Consider ψ : [0, 1] → [0, 2] defined by ψ(x) = x+ ϕ(x).

1. ψ is strictly increasing

2. ψ is continuous

3. ψ is onto

By 1),3), we know ψ is bijective, hence invertible.

Properties:

1. ψ(C) is measurable and has positive measure.

2. ψ maps a particular (measurable) subset of C to a non-measurable set.

Proof.

1. By A1, ψ−1 is continuous, so ψ(C) = (ψ−1)−1(C) is closed, so ψ(C) is Borel implies that
it’s measurable.
Note that

[0, 1] = C∪̇U
=⇒ [0, 2] = ψ(C∪̇U) = ψ(C)∪̇ψ(U) by bijectivity

=⇒ 2 = m(ψ(C)) +m(ψ(U))

It suffices to show that
m(ψ(U)) = 1

Say U =
!̇∞

i=1Ii, where Ii are disjoint open intervals. Then

ψ(U) =
"̇∞

i=1
ψ(Ii) =⇒ m(ψ(U)) =

,
m(ψ(Ii))

Note that ∀i ∈ N, ∃r ∈ R, such that ϕ(x) = r, ∀x ∈ Ii
In particular, ψ(x) = x+ r, ∀x ∈ Ii and so

ψ(Ii) = r + Ii

so
m(ψ(U)) =

,
m(ψ(Ii)) =

,
m(Ii) = m(∪̇Ii) = m(U)

Since [0, 1] = U ∪̇C, we have that 1 = m(U) + m(C) = m(U), so m(ψ(U)) = m(U) =
1 > 0 =⇒ m(ψ(C)) = 1

2. By Vitali, ψ(C) contains a subset A ⊆ ψ(C) which is non-measurable. Let B = ψ−1(A) ⊆
C, B is measurable because 0 = m(C) " m(B) = 0. Then ψ(B) = ψ(ψ−1(A)) = A

24



Theorem 25

Cantor Set contains an element L \ B

Proof. B ⊆ C =⇒ B measurable. ψ(B) is non-measurable. By A1, if B is Borel, then ψ(B) is
Borel, so B cannot be Borel.
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1.12 Measurable Function
Definition 6

A ⊆ R measurable, we say f : A → R is measurable iff for all open U ⊆ R, f−1(U)
measurable.

Proposition 26

If A ⊆ R is measurable and f : A → R is continuous then f is measurable.

Proof. f is continuous =⇒ f−1(U) open if U open =⇒ f−1(U) Borel, measurable

Proposition 27

A ⊆ R measurable, χA : R → R, χA(x) =

+
1, x ∈ A

0, x /∈ A
, then χA is measurable.

Proof.

U ⊆ R, open
χ−1
A (U) = R, if 0, 1 ∈ U

χ−1
A (U) = A, if 1 ∈ U, 0 /∈ U

χ−1
A (U) = AC , if 0 ∈ U, 1 /∈ U

χ−1
A (U) = ∅, if 0, 1 /∈ U

In any case, χ−1
A (U) is measurable.

Proposition 28

A ⊆ R measurable, f : A → R, the following are equivalent,

1. f is measurable

2. ∀a ∈ R, f−1(a,∞) is measurable

3. ∀a < b, f−1(a, b) measurable

Proof.

• 1) =⇒ 2), trivial
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• 2) =⇒ 3), let b ∈ R such that f−1(b,∞) is measurable, then R \ f−1(b,∞) = f−1(R \
(b,∞) = f−1((−∞, b]) is measurable as well.
We see that (−∞, b) =

!∞
n=1(−∞, b− 1

n
] and so

f−1(−∞, b) =
∞"

n=1

f−1((−∞, b− 1

n
])

so it’s measurable.
Finally, for a < b,

(a, b) = (a,∞) ∩ (−∞, b)

so
f−1((a, b)) = f−1((a,∞) ∩ (−∞, b)) = f−1((a,∞)) ∩ f−1((−∞, b))

so it’s measurable.

• 3) =⇒ 1) Trivial. Any open set is a countable union of intervals.
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1.13 Properties of Measurable Function

Proposition 29

A ⊆ R measurable, f, g : A → R measurable.

1. ∀a, b ∈ R, af + bg is measurable

2. The function fg is measurable.

Proof.

1. Let a ∈ R. For α ∈ R, (af)−1(α,∞) = {x ∈ A : af(x) > α}

(a) if a > 0,

(af)−1(α,∞) = {x ∈ A : f(x) > α/a} = f−1(α/a,∞) =⇒ measurable

(b) a < 0,
(af)−1(α,∞) = f−1(−∞,α/a) =⇒ measurable

(c) a = 0,
af constant =⇒ continuous =⇒ measurable

We now show that f + g measurable. For α ∈ R,

(f + g)−1(α,∞) = {x ∈ A : f(x) + g(x) > α}
= {x ∈ A : f(x) > α− g(x)}
= {x ∈ A : ∃q ∈ Q, f(x) > q > α− g(x)}

=
"

q∈Q

({x ∈ A : f(X) > q} ∩ {x ∈ A : g(x) > α− q})

=
"

q∈Q

f−1(q,∞) ∩ g−1(α− q,∞) =⇒ measurable

so f + g is measurable.

2. By the quiz, |f | is measurable. For α ∈ R,

(f 2)−1(α,∞)

={x ∈ A : f(x)2 > α}

=

+
A, α < 0

{x ∈ A : |f(x)|>
√
α}, α " 0

=

+
A, α < 0

|f |−1(
√
α,∞), α " 0
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is measurable, so f 2 is measurable.
Since (f + g)2 is also measurable, and

2fg = (f + g)2 − f 2 − g2

so 2fg is measurable. By 1),

Example 5

ψ : [0, 1] → R, ψ(x) = x + ϕ(x). There exists A ⊆ [0, 1] such that A is measurable
but ψ(A) is not measurable. Extend ψ : R → R continuously to a strictly increasing
surjective function such that ψ−1 is continuous. Consider χA ◦ ψ−1 where both χA and ψ−1

are measurable. Then,

(χA ◦ ψ−1)−1

(
1

2
,
3

2

)

=ψ(χ−1
A (1/2, 3/2))

=ψ(A) NOT measurable

Proposition 30

A ⊆ R measurable. If g : A → R is measurable and f : R → R is continuous then f ◦ g is
measurable.

Proof. Let U ⊆ R open, then

(f ◦ g)−1(U) = g−1(f−1(U)# $% &
open

)

which is always measurable by g being measurable.
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1.14 More Properties for Measurable Functions

Definition 7

A ⊆ R, we say a property P (x) (x ∈ A) is true almost everywhere if

m({x ∈ A : P (x) false}) = 0

Proposition 31

f : A → R measurable. If g : A → R is a function and f = g a.e., then g is measurable.

Proof. B := {x ∈ A : f(x) ∕= g(x)}, and m(B) = 0. Let α ∈ R, then

g−1(α,∞) = {x ∈ A : g(x) > α}
={x ∈ A \B : g(x) > α} ∪ {x ∈ B : g(x) > α}
={x ∈ A \B : f(x) > α} ∪ {x ∈ B : g(x) > α}
=(f−1(α,∞)# $% &

measurable

∩ A \B# $% &
A,Bmeasurable, so it’s measurable

) ∪ {x ∈ B : g(x) > α}# $% &
⊆B,so measure zero, measurable

Hence, g−1(a,∞) is measurable, so g is measurable.

Proposition 32

A is measurable, and B ⊆ A is measurable. A function f : A → R is measurable if and
only if f |B and f |A\B are measurable.

Proof.

• =⇒ Suppose f : A → R is measurable. Let α ∈ R, then,

(f |B)−1(α,∞) = {x ∈ B : f(x) > α} = f−1(α,∞) ∩B =⇒ measurable

so f |B is measurable, the proof for f |A\B is identical.

• ⇐= Suppose f |B and f |A\B are measurable. For α ∈ R,

f−1(α,∞) = {x ∈ A : f(x) > α}
= {x ∈ B : f(x) > α} ∪ {x ∈ A \B : f(x) > α}
= (f |B)−1(α,∞) ∪ (f |A\B)

−1(α,∞)

is measurable, so f is measurable.
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Proposition 33

(fn) measurable, A → R. If fn → f pointwise a.e. then f is measurable.

Proof. Let B = {x ∈ A : fn(x) ∕→ f(x)} so that m(B) = 0.
For α ∈ R,

(f |B)−1(α,∞) = f−1(α,∞) ∩B# $% &
measure zero

is measurable

It suffices to show that f |A\B is measurable. By replacing f by f |A\B, we may assume fn → f
pointwise. Let α ∈ R, since fn → f pointwise, we set that for x ∈ A,

f(x) > α ⇐⇒ ∃n,N ∈ N, ∀i ∈ N, fi(x) > α +
1

n
( to avoid fn → α)

We then see that

f−1(α,∞)

=
"

n∈N

"

N∈N

f−1
i (α +

1

n
,∞)

# $% &
measurable

is measurable, which implies that f is measurable.

31



1.15 Simple Approximation

Definition 8

A function ϕ : A → R is called simple if

1. ϕ is measurable

2. ϕ(A) is finite

Remark. [Conical Representation]

ϕ : A → R is simple

and
ϕ(A) = {c1, c2, . . . , ck# $% &

distinct

}

then

Ai = ϕ−1({ci}) measurable

A =
"̇k

i=1
Ai

ϕ =
k,

i=1

ciχAi

Lemma 34

f : A → R measurable and bounded. ∀ε > 0, there exists simple function, ϕε,ψε : A → R
such that ∀x ∈ A,

1. ϕε ! f ! ψε and

2. 0 ! ψε − ϕε < ε

Proof.
f(A) ⊆ [a, b]
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Given ε > 0,

a = y0 < y1 < y2 . . . < yn = b

yi+1 − yi < ε

Ik#$%&
Borel

= [yk−1, yk), Ak = f−1(Ik) =⇒ measurable

ϕε : A → R,ψε : A → R

ϕε =
n,

k=1

yk−1χAk

ψε =
n,

k=1

ykχAk

Let x ∈ A. Since f(x) ∈ [a, b], ∃k ∈ {1, . . . , n} such that f(x) ∈ Ik i.e. yk−1 ! f(x) ! yk,
x ∈ Ak. Moreover,

ϕε(x) = yk−1 ! f(x) ! yk = ψε(x)

and so
ϕε ! f ! ψε

For the same x,
0 ! ψε(x)− ϕε(x) = yk − yk−1 < ε

Theorem 35: Simple Approximation

A ⊆ R is measurable. A function f : A → R is measurable if and only if there is a sequence
(ϕn) of simple functions on A such that

1. ϕn → f pointwise

2. ∀n, |ϕn|! |f |

Proof.

• ⇐= Simple functions are measurable and pointwise limit of measurable functions is also
measurable

• =⇒ Suppose f : A → R is measurable,

1. f " 0
For n ∈ N, define

An = {x ∈ A : f(x) ! n}
such that An is measurable and f |An is measurable and bounded.
By the lemma, there exists simple functions ϕn and ψn such that

0 ! ϕn ! f ! ψn on An and 0 ! ψn − ϕn <
1

n
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Fix n ∈ N, extend ϕn : A → R by setting ϕn(x) = n if x /∈ An, so 0 ! ϕn ! f
For each n ∈ N, ϕn : A → R is simple (it’s just a simple function with one more value
on a disjoint set).
Claim: ϕn → f pointwise
Let x ∈ A and let N ∈ N such that f(x) ! N (i.e. x ∈ AN ). For n " N, x ∈ An and
so

0 ! f(x)− ϕn(x) ! ψn(x)− ϕn(x) <
1

n

2. f : A → R is measurable. And B = {x ∈ A : f(x) " 0} and C = {x ∈ A : f(x) <
0} are both measurable.
Define g, h : A → R,

g = χBf, h = −χBf

so that g, h measurable and non-negative.
By Case 1, there exists a sequence (ϕn), (ψn) of simple functions such that ϕn → g
pointwise, ψn → h pointwsie, 0 ! ϕn ! g, 0 ! ψn ! h. Then

ϕn − ψn# $% &
simple

→ g − h = f pointwise

and
|ϕn − ψn|! |ψn|+|ϕn|= ϕn + ψn ! g + h = |f |
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1.16 Littlewood’s Principle
Up to certain finiteness conditions

1. Measurable sets are ”almost” finite, disjoint unions of bounded open intervals.

2. Measurable functions are ”almost” continuous.

3. Pointwise limits of measurable functions are ”almost” uniform limits

Theorem 36: [Littlewood 1]

A be measurable set, m(A) < ∞. ∀ε > 0, there exists finitely many open, bounded, disjoint
intervals I1, I2, . . . , In such that m(A △ U) < ε, where U = I1 ∪ I2 ∪ . . . ∪ In. Note:
m(A△ U) = m(A \ U) +m(U \ A).

Proof. Let ε > 0 be given. We may find an open set U and A ⊆ U and

m(U \ A) < ε

2

By PMATH351, there exists open, bounded, disjoint intervals Ii(i ∈ N) such that

U =
"̇∞

i=1
Ii

Note that,
∞,

i=1

l(Ii) = m(U) = m(U \ A) +m(A) < ∞

In particular, there exists N ∈ N such that

∞,

i=N+1

l(Ii) =
ε

2

Take V = I1 ∪ . . . ∪ IN , we see that

m(A \ V ) ! m(U \ V )

= m

: ∞"

N+1

Ii

;

=
∞,

N+1

l(Ii) <
ε

2

and
m(V \ A) ! m(U \ A) < ε

2
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Lemma 37

Let A be measurable and m(A) < ∞, (fn) be measurable, A → R. Assume f : A → R
such that fn → f pointwise. ∀α, β > 0, there exists a measurable subset B ⊆ A and N ∈ N
such that

1. |fn(x)− f(x)|< α, ∀ x ∈ B, n " N

2. m(A \B) < β

Proof. Let α, β > 0 be given. For n ∈ N, define

An = {x ∈ A : |fk(x)− f(x)|< α, ∀k " n}

=
∞*

k=n

|fk − f |−1(−∞,α)# $% &
measurable

So every An is measurable. Since fn → f pointwise,

A =
∞"

n=1

An

Since (An) is ascending, by continuity of measure,

m(A) = lim
n→∞

m(An) < ∞

we may find N ∈ N such that ∀n " N ,

m(A)−m(An) < β

Pick B = AN we get what’s required.

Theorem 38: Littlewood 3, Egoroff’s Theorem

A is measurable, m(A) < ∞, (fn) is measurable, A → R, fn → f pointwise. ∀ε > 0, there
exists a closed set C ⊆ A such that

1. fn → f uniformly on C

2. m(A \ C) < ε

Proof. Let ε > 0 be given. By the lemma, for every n ∈ N, there exists a measurable set An ⊆ A
and N(n) ∈ N such that

1. ∀x ∈ An and k " N(n),

|fk(x)− f(x)|< 1

n
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2. m(A \ An) <
ε

2n+1

Take B =
'∞

n=1 An (measurable). For n ∈ N such that 1
n
< ε, k " N(n), and x ∈ B,

|fk(x)− f(x)|< 1

n
< ε

so fn → f uniformly on B. Moreover,

m(A \B) = m(A \ ∩An) = m(∪(A \ An)) !
,

m(A \ An) <
, ε

2n+1
=

ε

2

By A1, there exists a closed set C such that C ⊆ B and m(B \ C) < ε
2
, so

1. Since C ⊆ B, fk → f uniformly on C

2. m(A \ C) = m(A \B) +m(B \ C) < ε
2
+ ε

2
= ε

Warning:
fn : R → R, fn(x) = x

n
and fn → 0 pointwise. But fn ∕→ 0 uniformly on any measurable set

B ⊆ R such that m(R \B) < 1

Proof. Suppose such B exists. Since B measurable, B ⊆ R, we know

m(R \B) = m(R)−m(B) < 1 =⇒ m(B) = ∞

That is, B has to be unbounded.
Since fn → 0 uniformly on B, ∀ε > 0, ∃N ∈ N, s/t ∀k " N, ∀x ∈ B,

|0− fk(x)|< ε =⇒
===
x

k

=== < ε

However, since B is unbounede, we can always find x ∈ B such that |x|= (ε + 1)|k|, so |x/k|=
ε+ 1 > ε.
That is, no matter how big the N is, I can always find points where the uniformly convergence
condition fails. Contradiction! So no such B exists.

Lemma 39

f : A → R simple. ∀ε > 0, there exists a continuous function g : R → R and a closed
C ⊆ A such that

1. f = g on C

2. m(A \ C) < ε

Proof. f =
<n

i=1 aiχAi
, conical representation. Ai = {x ∈ A : f(x) = ai} is measurable. By A1,

Ci ⊆ Ai closed,
m(Ai \ Ci) <

ε

n
AND

A =
"̇n

i=1
Ai, C :=

"̇n

i=1
Ci closed
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1. ∀x ∈ Ci, f(x) = ai. By A1, f is continuous on C =⇒ we then extend f |C to a continuous
function g : R → R

2. m(A \ C) = m(∪n
i=1Ai \ Ci) =

<n
i=1 m(Ai \ Ci) < ε

Theorem 40: Littlewood 2, Lusin Theorem

f : A → R is measurable. ∀ε > 0, there exists a continuous g : R → R and a closed set
C ⊆ A such that

1. f = g on C and

2. m(A \ C) < ε

Proof. Let ε > 0 given.

1. m(A) < ∞
Let f : A → R be measurable. By the Simple Approximation Theorem, there exists (fn)
simple such that fn → f pointwise. By the lemma, there exists continuous gn : R → R and
closed Cn ⊆ A such that

(a) fn = gn on Cn

(b) m(A \ Cn) <
ε

2n+1

By Egoroff, there exists a closed set C0 ⊆ A such that fn → f uniformly on C0 and
m(A \ C0) <

ε
2
.

Let C =
'∞

i=0 Ci

(a) gn = fn → f uniformly on C ⊆ C0, so f is continuous on C. By A1, extend f |C to a
continuouse function g : R → R.

(b)
m(A \ C) = m(A \ ∩∞

i=0Ci) = m(∪∞
i=0(A \ Ci))

!
∞,

i=0

m(A \ Ci) = m(A \ C0) +
∞,

i=1

m(A \ Ci)

<
ε

2
+

ε

2
= ε

2. m(A) = ∞
For n ∈ N,

An = {a ∈ A : |a|∈ [n− 1, n)}
such that

A =
"̇∞

n=1
An

By case 1, there exists continuous functions gn : R → R and closed Cn ⊆ An such that
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(a) f = gn on Cn

(b) m(An \ Cn) <
ε
2n

Consider C =
!̇∞

n=1Cn, and C is closed.

(a) m(A \ C) = m(∪̇(An \ Cn)) =
<

m(An \ Cn) < ε

(b) g : C → R. Let x ∈ C such that x ∈ Cn for one n ∈ N. Define g(x) = gn(x) = f(x).
By A1, extend g on R.

39



2 Integration

2.1 Integration
1. Simple functions

ϕ : A → R, m(A) < ∞

2. f : A → R, bounded measure, m(A) < ∞,

ϕε ! f ! ψε

3. f : A → R measurable, f " 0,

sup

>?

A

h : h ∈ (2), 0 ! h ! f

@

4. f : A → R measurable,
f+ = max{f, 0}
f− = max{−f, 0}

Step 1: ϕ : A → R simple, m(A) < ∞

Definition 9

m(A) < ∞, ϕ : A → R simple. Conical Rep.:ϕ =
<n

i=1 aiχAi
. The

(Lebesgue) Integral of ϕ over A is

?

A

ϕ =
n,

i=1

aim(Ai)

Lemma 41

m(A) < ∞ (A measurable). If B1, B2, . . . , Bn ⊆ A are measurable and disjoint and ϕ :
A → R defined by

ϕ =
n,

i=1

biχBi

then ?

A

ϕ =
n,

i=1

bim(Bi)

Proof. For n = 2,
If b1 ∕= b2, then ϕ = b1χB1 + b2χB2 is the conical representation.
If b1 = b2, then

b1χB1 + b1χB2 = b1(χB1 + χB2) = b1χB1∪B2# $% &
conical rep.
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so
?

A

ϕ = b1m(B1∪̇B2)

= b1(m(B1) +m(B2))

= b1m(B1) + b2m(B2)

Then simple dicuss other cases.

Proposition 42

ϕ,ψ : A → R simple, m(A) < ∞. For all α, β ∈ R,
?

A

(αϕ+ βψ) = α

?

A

ϕ+ β

?

A

ψ

Proof.
ϕ(A) = {a1, a2, . . . , an}

ψ(A) = {b1, b2, . . . , bm}

where the elements are distinct for each set.

Define
Cij = {x ∈ A : ϕ(x) = ai,ψ(x) = bj} = ϕ−1({ai}) ∩ ψ−1({bj})

which is measurable.
αϕ+ βψ =

,

i,j

(αai + βbj)χCij

By the lemma,
?

A

αϕ+ βψ =
,

i,j

(αai + βbj)m(Cij)

=
,

i,j

αaim(Cij) +
,

i,j

βbjm(Cij)

=
,

i

αai
,

j

m(Cij) +
,

j

βbj
,

i

m(Cij)

=
,

i

αaim({x ∈ A : ϕ(x) = ai}) +
,

j

βbjm({x ∈ A : ϕ(x) = ai})

= α

?

A

ϕ+ β

?

A

ψ
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Proposition 43

ϕ,ψ : A → R simple, m(A) < ∞. If ϕ ! ψ, then
?

A

ϕ !
?

A

ψ

Proof. ?

A

ψ −
?

A

ϕ =

?

A

(ψ − ϕ)# $% &
!0

" 0
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Step2: f : A → R bounded, measurable m(A) < ∞

Definition 10

f : A → R be bounded, measurable and m(A) < ∞. Then

• Lower Lebesgue Integral:

?

A

f = sup

>?

A

ϕ : ϕ ! f simple
@

• Lower Lebesgue Integral:

?

A

f = inf

>?

A

ψ : f ! ψ simple
@

Proposition 44

m(A) < ∞, f : A → R bounded, measurable. Then

?

A

f =

?

A

f

Proof. ∀n ∈ N, there exists simple functions, ϕn,ψn : A → R such that

1. ϕn ! f ! ψn

2. ψn − ϕn ! 1
n

We see that

0 !
?

A

f −
?

A

f

!
?

A

ψn −
?

A

ϕn

=

?

A

(ψn − ϕn)

!
?

A

1

n

=
1

n
m(A) < ∞

→ 0
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Definition 11

m(A) < ∞, f : A → R bounded, measurable, we define the (Lebesgue)
integral of f over A by

?

A

f :=

?

A

f =

?

A

f

Proposition 45

f, g : A → R bounded, measurable, m(A) < ∞. For α, β ∈ R,
?

A

(αf + βg) = α

?

A

f + β

?

A

g

Proof. Scalar multiplication is easy.
Now, have ϕ1,ϕ2,ψ1,ψ2 all simple,

ϕ1 ! f ! ψ1, ϕ2 ! g ! ψ2

1.
?

A

f + g =

?

A

f + g

!
?

A

ψ1 + ψ2

=

?

A

ψ1 +

?

A

ψ2

so
?

A

f + g ! inf

>?

A

ψ1 +

?

A

ψ2 : f ! ψ1, g ! ψ2,ψ1,ψ2 simple
@

= inf

>?

A

ψ1 : f ! ψ1 simple
@
+ inf

>?

A

ψ2 : g ! ψ2 simple
@

=

?

A

f +

?

A

g

2. ?

A

f + g =

?

A

f + g "
?

A

ϕ1 +

?

A

ϕ2

so
?

A

f + g " sup

>?

A

ϕ1 +

?

A

ϕ2 : f " ϕ1, g " ϕ2,ϕ1,ϕ2 simple
@

= sup

>?

A

ϕ1 : f " ϕ1,ϕ1 simple
@
+ sup

>?

A

ϕ2 : f " ϕ2,ϕ2 simple
@

=

?

A

f +

?

A

g
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so ?

A

f + g =

?

A

f +

?

A

g

Proposition 46

f, g : A → R bounded, measurable and m(A) ! ∞. If f ! g, then
A
A
f !

A
A
g.

Proof. Since g − f " 0, where 0 is also a simple function, we have
?

A

(g − f) =

?

A

(g − f) "
?

A

0 = 0 =⇒
?

A

g "
?

A

f
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2.2 Bounded Convergence Theorem

Proposition 47

f : A → R bounded, measurable, B ⊆ A measurable, m(A) < ∞, then
?

B

f =

?

A

fχB

Proof.

1. f = χC , C ⊆ A measurable.
?

A

χCχB =

?

A

χB∩C

= 1 ∗m(B ∩ C)

=

?

B

χC|B

2. f is simple, f =
<n

i=1 aiχAi
,

?

A

fχB =
,

ai

?

A

χAi
χB =

,
ai

?

B

χAi
=

?

B

(
,

aiχAi|B) =

?

B

f

3. f : A → R be bounded and measurable.
First we take f ! ψ, simple, then

?

A

fχB !
?

A

ψχB =

?

B

ψ

By taking the inf over all such ψ, we have that
?

A

fχB !
?

A

f =

?

B

f

Similarly, taking ϕ ! f , ϕ simple, we obtain,
?

B

f =

?

B

f !
?

A

fχB

so we have ?

A

fχB =

?

B

f
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Proposition 48

f : A → R be bounded, measurable, m(A) < ∞. If B,C ⊆ A are measurable and disjoint,
then ?

B∪C
f =

?

B

f +

?

C

f

Proof.
?

B∪C
f =

?

A

fχB∪C

=

?

A

f(χB + χC)

=

?

A

fχB +

?

A

fχC

=

?

B

f +

?

C

f

Proposition 49

f : A → R be bounded, measurable, m(A) < ∞, then
==A

A
f
== !

A
A
|f |.

Proof.

−|f |! f ! |f |
−
A
A
|f |!

A
A
|f |!

A
A
|f |

Proposition 50

(fn) is bounded, measurable, A :→ R, m(A) < ∞. If fn → f uniformly, then

lim
n→∞

?

A

fn =

?

A

f

Proof. Let ε > 0 be given, let N ∈ N such that

|fn − f |! ε

m(A) + 1
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then, for n " N
====
?

A

fn −
?

A

f

====

=

====
?

A

(fn − f)

====

!
?

A

|fn − f |

!m(A) ∗ ε

m(A) + 1

<ε

Example 6

fn : [0, 1] → R,

fn(x) =

4
B5

B6

0, 0 ! x < 1
n

n, 1
n
! x < 2

n

0, 2
n
! x

then fn → 0 pointwisely, but
?

[0,1]

fn = 1,

?

[0,1]

0 = 0

Theorem 51: [BCT]

(fn) : A → R measurable, m(A) < ∞. If there exists M > 0 such that |fn|! M for all n
and fn → f pointwise then

lim
n→∞

?

A

fn =

?

A

f

Proof. Let ε > 0 be given. By Egoroff’s theorem, there exists measurable B ⊆ A and N ∈ N
such that for n " N ,

1. |fn − f |< ε
2(m(B)+1)

on B

2. m(A \B) < ε
4M
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∀n " N ,
====
?

A

fn −
?

A

f

==== !
?

A

|fn − f |

=

?

B

|fn − f |+
?

A\B
|fn − f |

!
?

B

|fn − f |+
?

A\B
(|fn|+|f |)

!
?

B

|fn − f |+2M ∗m(A \B)

=! m(B)
ε

2(M(B) + 1)
+ 2M

ε

4M

! ε

2
+

ε

2
= ε
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Definition 12

f : A → R measurable

1. We say f has finite support if

A0 := {x ∈ A : f(x) ∕= 0}

has finite measure.

2. We say f is a BF function. If f is bounded and has finite support.

3. If f : A → R is BF, then ?

A

f :=

?

A0

f

Definition 13

f : A → R measurable, f " 0,
?

A

f = sup

>?

A

h : 0 ! h ! f, BF
@

Proposition 52

f, g : A → R measurable, f, g " 0

1. ∀α, β ∈ R, ?

A

(αf + βg) = α

?

A

f + β

?

A

g

2. If f ! g, then
A
A
f !

A
A
g

3. If B,C ⊆ A are measurable and B ∩ C = ∅ then
?

B∪C
f =

?

B

f +

?

C

f

Theorem 53: [Chebychev’s Inequality]

f : A → R measurable, non-negative; ∀ε > 0,

m ({x ∈ A : f(x) " ε}) ! 1

ε

?

A

f

Proof. Let ε > 0 given and let
Aε = {x ∈ A : f(x) " ε}
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1. m(Aε) < ∞
ϕ#$%&
BF

= εχAε ! f

so
εm(Aε) =

?

A

ϕ !
?

A

f

2. m(Aε) = ∞ For n ∈ N, Aε,n := Aε ∩ [−n, n]. By the continuity of measure,

∞ = m(Aε) = lim
n→∞

m(Aε,n)

For n ∈ N, ϕn := εχε,n(BF), we see that ϕn ! f .
Therefore,

∞ =m(Aε)

= lim
n→∞

m(Aε,n)

= lim
n→∞

1

ε

?

A

ϕn

!1

ε

?

A

f

Proposition 54

f : A → R measurable, f " 0

?

A

f = 0 ⇐⇒ f = 0 a.e.

Proof.

• ( =⇒ ) Suppose
A
A
(f) = 0,

m ({x ∈ A : f(x) ∕= 0})

!
,

m

(>
x ∈ A : f(x) " 1

n

@)

!#$%&
Chebychev

,
n

?

A

f = 0

• ⇐= Suppose B = {x ∈ A : f(x) ∕= 0} has measure 0.
?

A

f =

?

B

f +

?

A\B
f#$%&
=0

=

?

B

f + 0

=0
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A
B
f = 0 because for any h BF and 0 ! h ! f , there is a Mh " 0 such that h ! Mh, then

?

B

0 !
?

B

h !
?

B

Mh =

?

B

MhχB = Mhm(B) = Mh ∗ 0 = 0

so
A
B
h is always zero, hence

?

B

f = sup

>?

B

h : 0 ! h ! f, h BF
@

= 0

2.3 Fatou’s Lemma and MCT
Theorem 55: Fatou’s Lemma

(fn) measurable, non-negative, A → R. If fn → f pointwise then
?

A

f ! lim inf

?

A

fn

Proof. Let 0 ! h ! f be a BF function. Say A0 = {x ∈ A : h(x) ∕= 0}. It suffices to show
?

A

h ! lim inf

?

A

fn

Since h is BF, m(A0) < ∞. For each n ∈ N, let

hn = min{h, fn} (meas.)

Note:

1. 0 ! hn ! h ! M , for some M > 0, ∀n ∈ N

2. For x ∈ A0 and n ∈ N,

(a) hn(x) = h(x) or

(b) hn(x) = fn(x) ! h(x) and

0 ! h(x)− hn(x) = h(x)− fn(x) ! f(x)− fn(x) → 0

so hn(x) → h on A0

By BCT,

lim
n→∞

?

A0

hn =

?

A0

h =⇒ lim
n→∞

?

A

hn =

?

A

h

Since hn ! fn on A,
?

A

= lim
n→∞

?

A

hn = lim inf
n→∞

?

A

hn ! lim inf
n→∞

?

A

fn
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Example 7

A = (0, 1]

fn = nχ(0, 1/n)

fn → 0 pointwise
?

A

0 = 0
?

A

fn = n ·m(0, 1/n) = 1

lim inf

?

A

fn = 1

Theorem 56: [MCT]

(fn) non-negative, measurable, A → R. If (fn) is increasing and fn → f pointwise, then

lim
n→∞

?

A

fn =

?

A

f

Proof.
?

A

f ! lim inf

?

A

fn by Fatou’s Lemma

! lim sup

?

A

fn

!
?

A

f by fn ↗ and converge to f

so limn→∞
A
A
fn = lim inf

A
A
fn = lim sup

A
A
fn

Remark.

1. If ϕ : A → R is simple and m(A) < ∞, then
?

A

ϕ < ∞

2. If f : A → R is bounded, measurable and m(A) < ∞, then
?

A

f < ∞
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Definition 14

If f : A → R is measurable and f " 0, then we say f is integrable if and only if
?

A

f < ∞

2.4 The General Integral

Definition 15

f : A → R measurable,

f+(x) = max{f(x), 0}
f−(x) = max{−f(x), 0}

Notes:

1. f+ + f− = |f |

2. f+ − f− = f

3. f+, f− measurable

Proposition 57

f : A → R measurable. Then f+, f− are integrable if and only if |f | is integrable.

Proof.

• |f |= f+ + f−
?

A

|f |=
?

A

f+

# $% &
<∞

+

?

A

f−

# $% &
<∞

< ∞

• ?

A

f+ !
?

A

|f |< ∞;

?

A

f− !
?

A

|f |< ∞

Definition 16

f : A → R measurable. We say f is integrable if and only if |f | is integrable if and only if
f+, f− are integrable, and define

?

A

f =

?

A

f+ −
?

A

f−
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Proposition 58: [Comparison Test]

f : A → R measurable, g : A → R non-negative integrable. If |f |! g then f is integrable
and

==A
A
f
== !

A
A
|f |

Proof.

1.
?

A

|f |
# $% &
<∞

!
A
A
g < ∞

2. |
A
A
f |=

==A
A
f+ −

A
A
f−

== ! |
A
A
f+|+|

A
A
f−|=

A
A
f+ +

A
A
f− =

A
A
(f+ + f−) =

A
A
(f)

Proposition 59

f, g : A → R integrable.

1. ∀α, β ∈ R, αf + βg is integrable, and
?

A

αf + βg = α

?

A

f + β

?

A

g

2. If f ! g, then
A
A
f !

A
A
g

3. If B,C ⊆ A are measurable with B ∩ C = ∅, then
?

B∪C
f =

?

B

f +

?

C

f

Proof.

• Comparison Test

• Results hold for f+, f−, g+, g−

Theorem 60: [Lebesgue Dominated Convergence Theorem]

fn : A → R measurable. fn → f pointwise. If there exists a g : A → R integrable such
that |fn|! g, ∀n ∈ N, then f is integrable and limn→∞

A
A
fn =

A
A
f

Proof. Since |fn|→ |f |, and so |f |! g.
By comparison test, f is integrable. Next, observe g − f " 0. By Fatou,
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1.
?

A

g −
?

A

f =

?

A

g − f

! lim inf

?

A

g − fn

=

?

A

g − lim sup

?

A

fn

=⇒ lim sup

?

A

fn !
?

A

f

2.
?

A

g +

?

A

f =

?

A

g + f ! lim inf

?

A

g + fn =

?

A

g + lim inf

?

A

fn

=⇒
?

A

f = lim inf

?

A

fn = lim sup

?

A

fn = lim

?

A

fn

2.5 Riemann Integration

Definition 17

f : [a, b] → R bounded

1. A partition of [a, b] is a finite set such that

P = {x0, x1, . . . , xn} ⊆ R and a = x0 < x1 < x2 < . . . < xn = b

2. Relative to P , we define the lower Darboux sum:

L(f, P ) =
n,

i=1

mi(xi − xi−1)

mi = inf{f(x) : x ∈ [xi−1, xi]}

3. Similarly, we define the upper Darboux sum:

U(f, P ) =
n,

i=1

Mi(xi − xi−1)

Mi = sup{f(x) : x ∈ [xi−1, xi]}
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Definition 18

f : [a, b] → R, bounded,

1. Lower Riemann Integral

R

? b

a

f = sup {L(f, P ) : P partition}

2. Upper Riemann Integral

R

? b

a

f = inf {U(f, P ) : P partition}

3. We say f is Riemann Integrable if and only if

R

? b

a

f = R

? b

a

f

# $% &
R
! b
a f

Definition 19

Let I1, . . . , In be pairwise disjoint intervals such that

[a, b] = ∪̇n
i=1Ii

A step function is a functions of the form

f =
n,

i=1

aiχIi

for some ai ∈ R

Remark. f : [a, b] → R bounded. a = x0 < x1 < . . . < xn = b. Ii = [xi−1, xi], i = 1, . . . , n.
Then

L(f, P ) =
n,

i=1

mi · l(Ii) = R

? b

a

ϕ

where ϕ(x) = mi on Ii (ϕ ! f ).

U(f, P ) =
n,

i=1

Mi · l(Ii) = R

? b

a

ψ

where ψ(x) = Mi on Ii (f ! ψ).
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Remark. f : [a, b] → R bounded,

R

? b

a

f = sup{L(f, P ) : P} = sup

>
R

? b

a

ϕ : ϕ ! f step
@

R

? b

a

f = inf{U(f, P ) : P} = inf

>
R

? b

a

ψ : f ! ψ step
@

2.5.1 Riemann Integral VS Lebesgue Integral

Definition 20

Let f : [a, b] → R bounded. Let x ∈ [a, b] and δ > 0

1. mδ(x) = inf{f(x) : x ∈ (x− δ, x+ δ) ∩ [a, b]}

2. Mδ(x) = sup{f(x) : x ∈ (x− δ, x+ δ) ∩ [a, b]}

3. Lower Boundary of f ,
m(x) = lim

δ→0
mδ(x)

4. Upper Boundary of f ,
M(x) = lim

δ→0
Mδ(x)

5. Oscillation of f ,
ω(x) = M(x)−m(x)

Remark. f : [a, b] → R bounded, TFAE

1. f is continuous at x ∈ [a, b]

2. M(x) = m(x)

3. ω(x) = 0

Lemma 61

f : [a, b] → R bounded,

1. m is measure

2. If ϕ : [a, b] → R is a step function with ϕ ! f , then ϕ(x) ! m(x) at all points of
continuity of ϕ

3. R
A b

a
f =

A
[a,b]

m
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Lemma 62

f : [a, b] → R bounded,

1. M is measure

2. If ψ : [a, b] → R is a step function with ψ " f , then ψ(x) " M(x) at all points of
continuity of ψ

3. R
A b

a
f =

A
[a,b]

M

Theorem 63: [Lebesgue]

Let f : [a, b] → R be bounded. Then f Riemann integrable if and only if f is continuous
a.e., in that case,

R

? b

a

f =

?

[a,b]

f

Proof.

R

? b

a

f =

?

[a,b]

m !
?

[a,b]

M = R

? b

a

f

f Riemann Integrable

⇐⇒
?

[a,b]

m =

?

[a,b]

M

⇐⇒
?

[a,b]

(M −m# $% &
!0

) = 0

⇐⇒ M = m a.e.
⇐⇒ ω = 0 a.e.
⇐⇒ f is continuous a.e.

If f is continuous a.e. =⇒ f is measurable and

R

? b

a

f =

?

[a,b]

m !
?

[a,b]

f !
?

[a,b]

M = R

? b

a

f =⇒ R

? b

a

f =

?

[a,b]

f

because M = m a.e.
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Example 8

f : [0, 1] → R

f(x) =

+
1, x ∈ Q
0, x /∈ Q

f is discontinuous on [0, 1] =⇒ f is NOT Riemann Integrable. But f = 0 a.e. ans so
?

[0,1]

f =

?

[0,1]

0 = 0

Example 9

Q ∩ [0, 1] = {q1, q2, . . .}, fn = χ{q1,...,qn}. fn → f pointwise (f in the previous example).
fn is increasing, continuous a.e. on [0, 1], and it’s bounded by 1, so it’s Riemann Integrable.

0 = R

?

[0,1]

fn ∕→ R

?

[0,1]

f
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3 Lp Spaces

3.1 LP Spaces
Recall

1. For 1 ! p < ∞, (C([a, b]), ‖·‖p) is a normed-vector space, where ‖f‖pp=
A b

a
|f |p

2. For p = ∞, (C([a, b]), ‖·‖∞), ‖f‖∞= sup{|f(x)|: x ∈ [a, b]} is a Banach Space.

Problem: A ⊆ R measurable, 1 ! p < ∞, ‖f‖p=
0A

A
|f |p

1 1
p is NOT a norm on the vector space

of integrable functions f : A → R. WHY?
A
A
|f |p= 0 ⇐⇒ f = 0 a.e.

Definition 21

A ⊆ R measurable,

1. M(A) = {f : A → R measurable} → vector space,

f ∼ g ⇐⇒ f = g a.e.

let [f ] represent the equivalence class.

2. M(A)/∼= {[f ] : f ∈ M(A)}. α[f ] + β[g] = [αf + βg] shows that it’s a vector
space.

Remark. If f ∼ g and f is integrable, then g is integrable and
A
A
f =

A
A
g

Definition 22

A ⊆ R measurable, 1 ! p < ∞,

Lp(A) =

>
[f ] ∈ M(A)/∼:

?

A

|f |p< ∞
@

Remark. Suppose [f ], [g] ∈ Lp(A). Then
A
A
|f |p,

A
A
|g|p< ∞

1. |f + g|p! (|f |+|g|)p ! (2max{|f |, |g|})p ! 2p(|f |p+|g|p) =⇒ |f + g|p integrable by
comparison.

2. so Lp(A) is a subspace of M(A)/∼

Definition 23

A ⊆ R measurable,

L∞(A) = {[f ] ∈ M(A)/∼: f bounded a.e.}

Remark.
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1. [f ], [g] ∈ L∞(A)

|f |! M off B ⊆ A, m(B) = 0

|g|! N off C ⊆ A, m(C) = 0

off B ⊆ A means on A \B.
For x /∈ B ∪ C,

|f(x) + g(x)|! |f(x)|+|g(x)|! M +N

2. L∞(A) is a subspace of M(A)/∼

Proposition 64

A ⊆ R measurable, then

‖[f ]‖∞= inf{M " 0 : |f |! M a.e.}

is a norm on L∞(A)

Remark.

1. |f |! ‖[f ]‖∞+ 1
n

off m(AN) = 0, and B = ∪∞
n=1An has measure 0

2. |f |! ‖f‖∞ off B.

Proof.

1. ‖[f ]‖∞= 0 =⇒ |f |! ‖[f ]‖∞ a.e. =⇒ |f |= 0 a.e. =⇒ f = 0 a.e., then

[f ] = [0]

in L∞(A).

2. |f |! ‖[f ]‖∞ off B, |g|! ‖[g]‖∞ off C. Off B ∪ C =⇒ measure 0:

|f + g|! |f |+|g|! ‖[f ]‖∞+‖[g]‖∞

By the definition of inf, we have

‖[f + g]‖∞= ‖[f ] + [g]‖∞! ‖[f ]‖∞+‖[g]‖∞
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3.2 Lp Norm
Example 10

p = 1, A ⊆ R measurable, [f ], [g] ∈ L1(A),

|f + g|! |f |+|g|

=⇒
?

A

|f + g|!
?

A

|f |+
?

A

|g|

=⇒ ‖f + g‖1! ‖[f ]‖1+‖[g]‖1

Abusive Notation:
f ≡ [f ] ∈ Lp(A)

Remember !
f = g in Lp(A) means f = g a.e.

Definition 24

For p ∈ (1,∞) we define q = p
p−1

to be the Holder Conjugate of p.

Note:

1. q = p
p−1

⇐⇒ p = q
q−1

2. 1
p
+ 1

q
= 1

Definition 25

We define 1 and ∞ to be a pair of Holder conjugate.

Proposition 65: [Young’s Inequality

p, q ∈ (1,∞) Holder conjugate. ∀a, b > 0,

ab ! ap

p
+

bq

q
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Proof.

f(x) =
1

p
xp +

1

q
− x on (0,∞)

f ′(x) = xp−1 − 1

f(1) =
1

p
+

1

q
− 1 = 0

=⇒ f " 0 on (0,∞)

=⇒ x ! 1

p
xp +

1

q
, ∀x > 0

Taking:

x =
q

bq−1

=⇒ a

bq−1
! 1

p

ap

b(q−1)p

=⇒ a

bq−1
! 1

p

ap

bp
+

1

q

=⇒ ab ! 1

p
ap +

1

q
bq

Proposition 66: [Holder’s Inequality]

A ⊆ R measurable, 1 ! p < ∞, q is the Holder Conjugate. If f ∈ Lp(A) and g ∈ Lq(A)
then fg ∈ L1(A) and

A
A
|fg|! ‖f‖p‖g‖q

Proof.

1. p = 1, q = ∞
|fg|= |f ||g|! |f |‖g‖∞ a.e.

then fg ∈ L1(A) and ?

A

|fg|!
?

A

|f |‖g‖∞= ‖g‖∞‖f‖1

2. 1 < p < ∞, q HC,

|fg|= |f ||g|! |f |p
p

+
|g|q
q

=⇒ fg ∈ L1(A)

Also, ?

A

|fg|! 1

p

?

A

|f |p+1

q

?

A

|g|q= 1

p
‖f‖pp+

1

q
‖g‖qq
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(a) ‖f‖p= ‖g‖q= 1, ?

A

|fg|! 1

p
+

1

q
= 1 = ‖f‖p‖g‖q

(b) f
‖f‖p ,

g
‖g‖q . By case a),

1

‖f‖p‖g‖q

?

A

|fg|! 1 =⇒
?

A

|fg|! ‖f‖p‖g‖q

Lemma 67

p, q HC, f ∈ Lp(A). If f ∕= 0,

f ∗ = ‖f‖1−p
p sgn(f)|f|p−1

is in Lq(A) and ?

A

ff ∗ = ‖f‖p, and ‖f ∗‖q= 1

Proof.

1. p = 1, q = ∞

f ∗ = sgn(f) ∈ L∞(A)
?

A

ff ∗ =

?

A

|f |= ‖f‖1, ‖f ∗‖∞= 1

2. 1 < p < ∞, q HC
?

A

ff ∗ = ‖f‖1−p
p

?

A

|f |p= ‖f‖1−p
p ‖f‖pp= ‖f‖p

‖f ∗‖qq = ‖f‖(1−p)q
p

?

A

|f |(p−1)q

= ‖f‖−p
p

?

A

|f |p

= ‖f‖−p
p ‖f‖pp= 1

Theorem 68: [Minkowski’s Inequality]

A ⊆ R measurable and 1 ! p < ∞. If f, g ∈ Lp(A) then

‖f + g‖p! ‖f‖p+‖g‖p
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Proof. 1. p = 1 Done

2. 1 < p < ∞

‖f + g‖p =
?

A

(f + g)(f + g)∗

=

?

a

f(f + g)∗ +

?

A

g(f + g)∗

!#$%&
Holder

‖f‖p‖(f + g)∗‖q+‖g‖p‖(f + g)∗‖q

= ‖f‖p+‖g‖p
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3.3 Completeness

Theorem 69: [Riesz-Fisher]

For all measurable A ⊆ R and 1 ! p ! ∞, LP (A) is a Banach space.

Proof.

1. p = ∞, piazza

2. 1 ! p < ∞, Let (fn) ⊆ LP (A) be strongly Cauchy Sequence. Therefore, there exists
(εn) ⊆ R suCh that

(a) ‖fn+1 − fn‖p! ε2n

(b)
<

εn < ∞

Idea: Since R is complete, if (fn(x)) is strongly-Cauchy then it converges. For each n ∈ N,

An = {x ∈ A : |fn+1(x)− fn(x)|" εn}
= {x ∈ A : |fn+1(x)− fn(x)|p" εpn}

By Chebyshev’s Inequality:

m(An) !
1

εpn

?

A

|fn+1 − fn|p!
1

εpn
ε2Pn = εpn

,
m(An) !

,
εpn !

.,
εn

/p

< ∞

which implies that m(lim sup(An)) = 0
Fix x /∈ lim sup(An). Let N = max{n : x ∈ An}. For n > N ,

|fn+1(x)− fn(x)|< ε2n,
,

εn < ∞
=⇒ (fn(x)) Cauchy
=⇒ fn(x) → f(x) ∈ R

so fn → f pointwise a.e.
For k ∈ N,

‖fn+k − fn‖p! ‖fn+k − fn+k−1‖p+ . . .+ ‖fn+1 − fn‖p! ε2n+k−1 + . . .+ ε2n !
∞,

i=n

ε2i

so |fn+k − fn|p→ |fn − f |p pointwise a.e. as k → ∞.
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By Fatou’s Lemma,
?

A

|fn − f |p

! lim inf
k→∞

?

A

|fn+k − fn|p

= lim inf
k→∞

‖fn+k − fn‖pp

!
C ∞,

i=n

ε2i

Dp

→ 0

so fn converges w.r.t p-norm.
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3.3.1 Separability:

Recall: A metric space X is separable if it has a countable, dense subset.

Example 11

p = ∞?
Suppose {fn : n ∈ N} is dense in L∞[0, 1]. For every x ∈ [0, 1], we may find

‖χ[0,x] − fθ(x)‖∞<
1

2

For x ∕= y in [0, 1],
‖x[0,x] − χ[0,y]‖∞= 1

so θ(x) ∕= θ(y) and θ[0, 1] → N is injective, contradiction ([0, 1] not countable).

Notation:

• Simp(A) = Simple functions on measureA

• Step[a, b] = Step functions on[a, b]

• StepQ[a, b] =Step functions on [a, b] with rational partition (not including a, b) and functions
values.

Proposition 70

A ⊆ R measurable, 1 ! p < ∞, Simp(A) is dense in LP (A)

Proof.
fr ∈ LP (A) → f measurable

then there exists ϕn simple

1. ϕn → f pointwise

2. |ϕn|! |f | =⇒ |ϕn|p! |f |p

By comparison, (ϕn) ⊆ LP (A).
Note,

‖ϕn − f‖pp =
?

A

|ϕn − f |p

|ϕn − f |p ! 2p(|ϕn|p+|f |p)
! 2p+1|f |p

so by the Lebesgue Dominate Convergence Theorem

lim
n→∞

‖ϕn − f‖pp= lim
n→∞

?

A

|ϕn − f |p=
?

0 = 0
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Fact: the above proposition is true for p = ∞ (but it’s not seperable).

Proposition 71

1 ! p < ∞. Step[a, b] is dense in LP [a, b]

Proof. A ⊆ [a, b] measurable, χA[a, b] → R.
Littlewood 1:∃∪̇n

i=1Ii = U , where Iis are bounded open intervals. And m(U△A < ε and χU :
[a, b] → R is a step function.

‖χU − χA‖pp

=

?

A

‖χU − χA|p

=

?

U△A

1p

=m(U△A)

=⇒ ‖χU − χA‖p< ε

so for all characteristic function, we can approach as close as we want by a step function. Simple
function is just made of finitely many characteristic functions.

Corollary 72

1 ! p < ∞. StepQ[a, b] is dense in Lp[a, b] (step functions are dense, so for each step func-
tion, you can modify the function a little bit by rationals). Therefore, Lp[a, b] is separable.

Proposition 73

1 ! p < ∞, Lp(R) is separable.

Proof. 1 ! p < ∞, Lp(R) is separable.

Fn =
E
f ∈ Lp(R)|f |[−n,n]∈ StepQ[−n, n], f |R\[−n,n]= 0

F

F = ∪∞
n=1Fn countable. Take f ∈ Lp(R). Fix n ∈ N, we have f |[−n,n]∈ Lp([−n, n]) We show

fχ[−n,n] → f in Lp(R)

Note:

1.

‖fχ[−n,n] − f‖pp

=

?

R
|fχ[−n,n] − f |p

=

?

R\[−n,n]

|f |p

=

?

R
|f |pχR\[−n,n]
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2. ||f |pχR\[−n,n]|! |f |p which is integrable

3. By the Lebesgue Dominated Convergence Theorem

lim
n→∞

‖fχ[−n,n] − f‖pp

= lim
n→∞

?

R
|fχ[−n,n] − f |p=

?

R
0 = 0

so ‖fχ[−n,n] − f‖p→ 0
For each n ∈ N, ∃ϕn ∈ F such that ‖fχ[−n,n] − ϕn‖p< 1

n
, so

‖ϕn − f‖p→ 0

Theorem 74

1 ! p < ∞, A ⊆ R measurable, Lp(A) is separable.

Proof. F as before, {f |A: f ∈ F} is a countable dense subset of Lp(A)
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4 Fourier Analysis

4.1 Hilbert Space
F = R or C

Definition 26

V is a vector space over F. An inner product on V is a map 〈·, ·〉 : V × V → F such that

1. ∀v ∈ V , 〈v, 〉 ∈ F, 〈v, v〉 " 0 with 〈v, v〉 = 0 if and only v = 0

2. ∀v, w ∈ V ,
〈v, w, 〉 = 〈w, v〉

3. ∀α ∈ F, u, v, w ∈ V ,
〈αu+ v, w〉 = α 〈u, w〉+ 〈v, w〉

We call (V, 〈·, ·〉 an inner product space.

Proposition 75

Let V be an inner product space. Then

‖v‖=
G

〈v, v〉

is a norm on V . We call ‖·‖ the norm induced by 〈·, ·〉

Example 12

A ⊆ R measurable. V = L2(A), 〈f, g〉 =
A
A
fg is an inner product space.

Note:
G

〈f, f〉 =
0A

A
|f |2

1 1
2 = ‖f‖2

Example 13

A ⊆ R measurable. V = L2(A,C), 〈f, g〉 =
A
A
fg and

G
〈f, f〉 = ‖f ||2

Proposition 76: [Parallelogram Law]

Let V be an inner product space. ∀u, v ∈ V ,

‖u+ v‖2+‖u− v‖2= 2
0
‖u‖2+‖v‖2

1
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Proof.

‖u+ v‖2+‖u− v‖2

= 〈u+ v, u+ v〉+ 〈u− v, u− v〉
= 〈u, u〉+ 2 〈u, v〉+ 〈v, v〉+ 〈u, u〉 − 2 〈u, v〉+ 〈v, v〉
=2‖u‖2+2‖v‖2

=2
0
‖u‖2+‖v‖2

1

Example 14

1 ! p < ∞, V = Lp[0, 2] and f = χ[0,1], g = χ[1,2]

‖f‖2p =
(?

[0,2]

|f |p
) 2

p

= 1
2
p = 1

‖g‖2p = 1
2
p = 1

‖f + g‖2p= 2
2
p

‖f − g‖2p= 2
2
p

so by Parallelogram Law

2
2
p + 2

2
p = 2(1 + 1) ⇐⇒ 2

2
2 = 2 ⇐⇒ p = 2

so ‖·‖p is induced by an inner product if and only if p = 2. You can also show that ‖·‖∞ is
not induced by an inner product.

Definition 27

A Hilbert Space is a complete inner product space (i.e. A Banach Space whose norm is
induced by an inner product).

Example 15

L2(A), L2(A,C) are Hilbert Spaces.
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4.2 Orthogonality

Definition 28

Let V be an inner product space. We say v, w ∈ V are orthogonal if 〈v, w〉 = 0.

Example 16

f, g ∈ L2 ([−π, π],C) , m ∕= n, f(x) = einx, g(x) = eimx, then

〈f, g〉 =
?

[−π,π]

fg

=

?

[−π,π]

einxe−imxdx

=

?

[−π,π]

eix(n−m)dx

=

?

[−π,π]

cos((n−m)x) + i

?

[−π,π]

sin((n−m)x)

= R

? π

−π

cos((n−m)x) + iR

? π

−π

sin((n−m)x)dx

= 0

Theorem 77: [Pythagorean Theorem]

Let V be an inner product space. If v1, . . . , vn ∈ V are pairwise orthogonal, then,
HHH
,

Vi

HHH
2

=
,

‖Vi‖2

Definition 29

Let V be an inner product space. We say A ⊆ V is orthonormal if the elements of A are
pairwise orthogonal and ‖v‖= 1, ∀v ∈ A.

Corollary 78

Let V be an inner product space, {v1, . . . , vn} orthonormal,
HHH
,

αivi

HHH
2

=
,

|αi|2
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Example 17

L2([−π, π],C), A =
I

1√
2π
einx : n ∈ Z

J
=⇒ pairwise orthogonal.

1

2π

HHeinx
HH2

2

=
1

2π

?

[−π,π]

einxe−inxdx

=
1

2π

?

[−π,π]

1 = 1

so A is orthonormal

Definition 30

Let V be an inner product space. An orthonormal basis is a maximal (w.r.t ⊆) orthonormal
subset of V . (Note it might not ba basis).

Fact: An inner product space always has an orthonormal basis.

Fact: Let H be a Hilbert space. If W ⊆ H is closed subspace then there exists a subspace W⊥ ⊆ H
such that

H = W ⊕W⊥

and 〈w, z〉 = 0 for all w ∈ W and z ∈ W⊥.

Theorem 79

Let H be a Hilbert space, then H has a countable ONB (orthonormal basis) if and only if H
is separable.

Proof.

• =⇒ Let be B be a countable orthonormal basis for H .
Claim: w = Span(B), w = H
Suppose w ∕= H . Since H = w ⊕ w⊥. We may find 0 ∕= x ∈ w⊥. We may assume ‖x‖= 1.
so B ∪ {x} is orthonormal. Contradiction! So w = H .
We can also show that SpanQ(B) = H where SpanQ(B) is the span of B only using rational
numbers as the coefficients. Hence, H is separable.

• ⇐= Suppose H doesn’t have an orthonormal basis which is countable. Let B be ONB for
H , so B is uncountable.
For u ∕= v in B,

‖u− v‖2= ‖u‖2+‖v‖2= 2 =⇒ ‖u− v‖=
√
2
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Suppose X ⊆ H such that X = H . ∀u ∈ B, there exists xn ∈ X such that

‖xn − u‖<
√
2

2

but for u ∕= v in B, we have that
xu ∕= xv

so
ϕ : B )→ X, ϕ(u) = xu

is an injection. So X is uncountable because B is uncountable, so H is not separable,
contradiction.

Example 18
I

1√
2π
einx : n ∈ Z

J
is a countable orthonormal set in L2([−π, π],C). We can clearly see

that it is countable, orthonormal, but what about maximal?
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4.3 Big Theorems
Remark. Let H be an inner product space, {v1, . . . , vn} orthonormal.
If v =

<
λivi then λi = 〈v, vi〉. We call 〈v, vi〉 the Fourier Coefficients of v w.r.t. {v1, . . . , vn}

Definition 31

Let H be a Hilbert space, {v1, v2, . . .} orthonormal. For v ∈ H , we call

∞,

i=1

〈v, vi〉 vi

the Fourier Series of v relative to {v1, v2, . . .} and write

v ∼
∞,

i=1

〈v, vi〉 vi

• Does this series converge?

• Does it converge to v?

Theorem 80: [Best Approximation]

Let H be a Hilbert Space, {v1, . . . , vn} orthonormal. For v ∈ H, ‖v−
<

λivi‖ is minimized
when λi = 〈v, vi〉
Moreover, HHHv −

,
〈v, vi〉 vi

HHH
2

= ‖v‖2−
,

|〈v, vi〉 |2

Proof.

1. W = Span{v1, . . . , vn} closed, v = W ⊕W⊥

2. x ∈ W, v = w + z, w ∈ W, z ∈ W⊥,

‖v − x‖2= ‖w + z − x‖2= ‖w − x+ z‖2= ‖w − x‖2+‖z‖2" ‖z‖2= ‖v − x‖2

so ‖v − x‖" ‖v − w‖, the closet point in W to v is w, the orthonormal projection.

3. v =
<

λivi + z, z ∈ W⊥,
〈v, vi〉 = λi + 〈z, vi〉# $% &

0

= λi

4. v =
<

〈v, vi〉 vi + z, z ∈ W⊥, then

‖v‖2 =
HHH
,

〈v, vi〉 vi
HHH
2

+ ‖z‖2

=
,

|〈v, vi〉 |2+‖z‖2
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so, HHHv −
,

〈v, vi〉 vi
HHH
2

= ‖z‖2= ‖v‖2−
,

|〈v, vi〉 |2

Theorem 81: [Bessel’s Inequality]

Let H be a Hilber Space, {v1, . . . , vn} be orthonormal. If v ∈ H ,

n,

i=1

|〈v, vi〉 |2! ‖v‖2

Proof.

‖v‖2−
,

|〈v, vi〉 |2=
HHHv −

,
〈v, vi〉 vi

HHH
2

" 0

Theorem 82: [Parseral’s Identity]

Let H be a Hilbert space, {v1, v2, . . .} orthonormal.
For v ∈ H ,

∞,

i=1

|〈v, vi〉 |2= ‖v‖2 ⇐⇒ lim
n→∞

HHHHHv −
n,

i=1

〈v, vi〉 vi

HHHHH

2

= 0

Theorem 83: [Orthonormal Basis Test]

Let H be a separable Hilbert Space {v1, v2, . . .} orthonormal. TFAE:

1. {v1, v2, . . .} is an orthonormal basis.

2. Span{v1, v2, . . .} = H

3. limn→∞ ‖v −
<n

i=1 〈v, vi〉 vi‖ = 0, ∀v ∈ H

Proof.

• (1) =⇒ (2) Done

• (2) =⇒ (3)
If {v1, v2, . . .} is not maximal then we may find u ∈ H , ‖u‖= 1 such that 〈u, vi〉 = 0, ∀i ∈
N. Since C = {x ∈ H : 〈x, u〉 = 0} is closed, u /∈ Span{v1, v2, . . .} (u /∈ C, 〈u, u〉 = 1,
Span{v1, v2, . . .} ⊆ C).
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• (2) =⇒ (3)
Let v ∈ H and let ε > 0 be given. Let

<N
i=1 αivi ∈ Span{v1, . . .} such that

HHHHHv −
N,

i=1

αivi

HHHHH < ε

so
HHHv −

<N
i=1 〈v, vi〉 vi

HHH < ε.
For n " N,

HHHHHv −
n,

i=1

〈v, vi〉 vi

HHHHH

!
HHHHHv −

N,

i=1

〈v, vi〉 vi

HHHHH+

HHHHH

n,

i=N+1

〈v, vi〉 vi

HHHHH

<ε+

KLLM
∞,

N+1

|〈v, vi〉 |2 −→ 0 as N → ∞

because by Bessel’s Inequality,
<N

i=1|〈v, vo〉 |2 is a bounded increasing sequence, so
<∞

N+1|〈v, vi〉 |2
will go to 0.

• (3) =⇒ (2), similar.
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4.4 Fourier Series
1. Is

I
1√
2π
einx : n ∈ Z

J
an ONB for L2([−π, π],C)?

2. Is Span
E
einx : n ∈ Z

F
dense in Ł2([−π, π],C)?

3. Is Span
E
einx : n ∈ Z

F
dense in L1([−π, π],C)

Definition 32

Let T = [−π, π). We call T the Torus or the circle. We define.

Lp(T ) = Lp([−π, π],C)

for 1 ! p < ∞.
Using the norm,

‖f‖p=
(

1

2π

?

T

|f |p
) 1

p

Lp(T ) is a separale Banach Space.

Remark.

1. As a group under addition module 2π,

T ∼= R/Z ∼= {z ∈ C : |z|= 1}

2. In this way, T is a locally compact abelion group.

3. There is a one-to-one correspondence between

f : T )→ C

and 2π-periodic function
f : R )→ C
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Definition 33

f ∈ L1(T )

1. We define the nth (n ∈ Z) Fourier Coefficients of f by

N
f, einx

O
:=

1

2π

?

T

f(x)e−inxdx

2. We define the Fourier Series of f by

f ∼
,

n∈Z

ane
inx

where an = 〈f, einx〉.

3. We let

SN(f, x) =
N,

−N

ane
inx

denote the N th partial sum of the above Fourier series.

Proposition 84

Consider the trignometric polynomial f ∈ L1(T ) given by

f(x) =
N,

n=−N

ane
inx

for some ai ∈ C.
For each −N ! n ! N , N

f, einx
O
= an

Why?
1

2π

?

T

eimxe−inxdx = δm,n =

+
1,m = n

0,m ∕= n

Remark. Suppose f ∈ L1(T ) is real-valued, f ∼
<

n∈Z ane
inx.
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For N ∈ N,

SN(f, x) =
N,

n=−N

ane
inx

= a0 +
N,

n=1

(ane
inx + a−ne

−inx)

= a0 +
N,

n=1

(an + a−n) cos(nx) + i(an − a−n) sin(nx)

= a0 +
N,

n=1

bn cos(nx) + cn sin(nx)

Now,

a0 =
1

2π

?

T

f(x)e−i0xdx =
1

2π

?

T

f(x)dx

bn = an + a−n

=
1

2π

?

T

f(x)(e−inx + einx)dx

=
1

π

?

T

f(x) cos(nx)dx

cn = i(an − a−n)

=
i

2π

?

T

f(x)(e−inx − einx)dx

=
1

π

?

T

f(x) sin(nx)dx

are all real-valued.

4.5 Fourier Coefficients
Proposition 85

f, g ∈ L1(T )

1. 〈f + g, einx〉 = 〈f, einx〉+ 〈g, einx〉

2. For α ∈ C, 〈αf, einx〉 = α 〈f, einx〉

3. If f : T )→ C is defined by f(x) = f(x), then f ∈ L1(T ) and
N
f, einx

O
= 〈f, einx〉
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Proof.

1. Trivial

2. Trivial

3. |f |= |f | =⇒ f ∈ L1(T ),
N
f, einx

O

=
1

2π

?

T

f(x)e−inxdx

=
1

2π

?

T

f(x)einxdx

=
1

2π

?

T

Re(f(x)einx)dx+
i

2π

?

T

Im(f(x)einx)dx

=
1

2π

?

T

Re(f(x)einx)dx− i

2π

?

T

Im(f(x)einx)dx

=
1

2π

?

T

f(x)einxdx

=〈f, e−inx〉

Proposition 86

f ∈ L1(T ), α ∈ R. By a previous remark, we may view f : R )→ C as a 2π-periodic
function which is integrable over T . For α ∈ R, fα : R )→ C given by fα(x) = f(x− α) is
integrable over T and 〈fα, einx〉 = 〈f, einx〉 e−inα

Proposition 87

f ∈ L1(T ). ∀n ∈ Z, |〈f, einx〉 |! ‖f‖1

Proof.

|
N
f, einx

O
| =

====
1

2π

?

T

f(x)e−inxdx

====

! 1

2π

?

T

==f(x)e−inx
== dx

=
1

2π

?

T

|f(x)|dx
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Corollary 88

fk )→ f in L1(t),
∀n ∈ Z,

N
fk, e

inx
O
)→

N
f, einx

O

Proof.
==Nfk, einx

O
−

N
f, einx

O==

=
==Nfk − f, einx

O==
!‖fk − f‖1−→ 0

Remark. Let Trig(T) denote the set of Trigonometric polynomials on T . By A3, Trig(T) = L1(T )

Theorem 89: [Riemann-Lebesgue Lemma]

If f ∈ L1(T ), then
lim

|n|→∞

N
f, einx

O
= 0

Proof. Let ε > 0 be given and let P ∈ Trig(T) such that ‖f−P‖1! ε. Say P (x) =
<N

k=−N ake
ikx.

For |n|> N , we have that 〈P, einx〉 = 0, so
==Nf, einx

O== =
==Nf − P, einx

O== ! ‖f − P‖1< ε
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4.6 Vector-Valued Integration

Definition 34

Let B be a Banch space and let f : [a, b] → B be a function. Consider a partition P : a =
t0 < t1 < . . . < tn = b of [a, b]. We define a Riemann sum of f over P by

S(f, P ) =
n,

i=1

f(t∗i )(ti − ti−1) ∈ B

where each t∗i ∈ [ti−1, ti].

Definition 35

Let B and f Be as above. We say f is Riemann Integrable if there exists z ∈ B such that
∀ε > 0, there is a partition Pε of [a, b] such that whenever P is a refinement of Pε and S(f, p)
is a Riemann sum then

‖S(f, P )− z‖< ε

We call z the integral of f over [a, b] and write z = R
A b

a
f(x)dx.

A natural question to ask would be: Why are we doing this only for Banach Space?

Theorem 90: [Cauchy Criterion]

Let B be a Banach space and let f : [a, b] → B be a function. Then f is Riemann Integrable
if and only if ∀ε > 0, there exists a partition Pε of [a, b] such that whenever P and Q are
refinements of Pε we have,

‖S(f, p)− S(f,Q)‖< ε

for any Riemann sums S(f, P ) and S(f,Q).

Proof. Suppose f is Riemann integrable with z = R
A b

a
f(x)dx. Let ε > 0 be given. We may find

a partition Pε/2 such that whenever P is a refinement partition of Pε/2 then

‖S(f, P )− S(f,Q)‖! ‖S(f, P )− z‖+‖z − S(f,Q)‖< ε

Conversely, assume the Cauchy Criterion holds. In particular, for each n ∈ N, we may find
a partition Pn of [a, b] which corresponds to ε = 1

n
, as per Cauchy Criterion. Without loss of

generality, we may assume that each Pn+1 is a refinement of Pn. For each n ∈ N, let S(f, Pn) be a
Riemann sum. Let ε > 0 be given. Choosing N ∈ N such that 1

N
< ε

2
, we see that for m,n " N,

‖S(f, Pm)− S(f, Pn)‖<
1

N
< ε

Since B is a Banach Space, S(f, Pn) → z ∈ B

We claim that f is Riemann Integrable with R
A b

a
dx = z. Let N and PN be as above. Moreover,
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we know ∃M > N such that ‖S(f, PM) − z‖< ε
2
‖. Now if P is any refinement partition of PN ,

then
‖S(f, P )− z‖! ‖S(f, P )− S(f, PM)‖+‖S(f, PM)− z‖< ε

Theorem 91

If B is a Banach Space and f : [a, b] → B is continuous, then f is Riemann integrable.
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4.7 Summability Kernels

Definition 36

f, g ∈ L1(T ). The convolution of f and g is the functions

f ∗ g : T )→ C

given by

(f ∗ g)(x) = 1

2π

?

T

f(t)g(x− t)dt =
1

2π

?

T

f(t)gt(x)dt

Facts:

1. Given f, g ∈ L1(T ), f ∗ g ∈ L1(T ) as well.

2. ‖f ∗ g‖1! ‖f‖1‖g‖1

3. This means L1(T ) a Banach Algebra (Banach Space with continuous multiplication, we can
think convolution as a ”multiplication”).

Let C(T ) denote the set of continuous functions T → C
Definition 37

A summability kernel is a sequence (Kn) ⊆ C(T ) such that

1. 1
2π

A
T
Kn = 1

2. ∃M , ∀n, ‖Kn‖1! M

3. ∀0 < δ < π,

lim
n→∞

(? −δ

−π

|Kn|+
? π

δ

|Kn|
)

= 0

This means summability kernels are concentrated at 0.

Proposition 92

Let (B, ‖·‖B) be a Banach Space (with scaler C. Let ϕ : T )→ B be continuous. Let
(Kn) ⊆ C(t) be a summability kernel. Then

lim
n→∞

1

2π

?

T

Kn(t)ϕ(t)dt

# $% &
Riemann vector-valued integral

= ϕ(0)

in the B-norm.

Proof. Appendix using (2), (3)
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Remark. ϕ : T → L1(T ), given by

ϕ(t) = ft = f(x− t)

is continuous.

Theorem 93

f ∈ L1(T ), Kn is a summability kernel. In L1(T ),

f = lim
n→∞

Kn ∗ f

Proof. Let ϕ(t) = f(x− t)

lim
n→∞

1

2π

?

T

Kn(t)ϕ(t)dt = ϕ(0)

=⇒ lim
n→∞

1

2π

?

T

Kn(t)f(x− t)dt = ϕ(0) = f(x− 0) = f(x)

=⇒ lim
n→∞

(Kn ∗ f)(x) = f(x)
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4.8 Dirichlet Kernel
We want to find (Kn) such that Kn ∗ f = Sn(f), which is the nth partial sum of Fourier Series of
f .

Remark. Let f ∈ L1(T ). For n ∈ Z consider

ϕn(x) = einx ∈ L1(T )

Then

(ϕn ∗ f)(x)

=
1

2π

?

T

ϕn(t)ft(x)dt

=
1

2π

?

T

eintf(x− t)dt

=
1

2π
einx

?

T

e−in(x−t)f(x− t)dt

=
1

2π
einx

?

T

e−in(−t)f(−t)dt

=
1

2π
einx

?

T

e−intf(t)dt

=einx
N
f, einx

O

Remark. f ∈ L1(T ), if P (x) =
<n

k=−n ake
ikx, then

(P ∗ f)(x)

=
1

2π

?

T

P (t)f(x− t)dt

=
n,

k=−n

an
2π

?

T

eiktf(x− t)dt

=
n,

k=−n

an(ϕn ∗ f)(x)

=
n,

k=−n

ane
ikx

N
f, eikx

O
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Definition 38

Dn(x) =
<n

k=−n e
ikx is the Dirichlet Kernel of order n. And

(Dn ∗ f)(x)

=
n,

k=−n

eikx
N
f, eikx

O

=Sn(f, x)

which is the nth partial sum we want.However, it’s NOT a summability kernel.
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4.9 Fejér Kernel
Idea: (xn) ⊆ C, consider

yn =
x1 + x2 + . . .+ xn

n

Exer: If xn → x, then yn → y.

Definition 39

The Fejér Kernel of order n is

Fn(x) =
D0(x) +D1(x) + . . .+Dn(x)

n+ 1

Remark.

F0(x) = D0(x) = 1

F1(x) =
e−x + 2ei0x + eix

2

F2(x) =
e−2x + 2e−x + 3ei0x + 2eix + ei2x

3
...

Fn(x) =
n,

k=−n

(
1− |k|

n+ 1

)
eikx

Remark. (Fn) is a summability kernel.

Definition 40

Fn ∗ f =
1

n+ 1

n,

k=0

Dk ∗ f

=
1

n+ 1

n,

k=0

Sk(f)

=
S0(f) + S1(f) + . . .+ Sn(f)

n+ 1

=: σn(f)

which is the nth Cesaro mean.
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Theorem 94

f ∈ L1(T ), (Fn) Fejér.

lim
n→∞

Fn ∗ f

= lim
n→∞

σn(f)

=f

in L1(T ).

Remark. If (Sn(f)) converges in L1(T ) then Sn(f) → f in L1(T ).
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4.10 Fejér’s Theorem
Idea: L1 convergence is great theoretically, but pointwise convergence is practical.

Theorem 95: [Fejér’s Theorem]

For f ∈ L1(T ) and t ∈ T consider

ωf (t) =
1

2
lim
x→0+

(f(t+ x) + f(t− x))

provided the limit exists, then
σn(f, t) → ωf (t)

In particular, if f is continuous at t then

σn(f, t) → f(t)

In practice:

1. Fix x ∈ T

2. Prove (Sn(f, x)) converged

3. Then
Sn(f, x) → ωf (x)

4. If f is continuous at x then Sn(f, x) → f(x), i.e. S(f, x) = f(x).
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Example 19

f ∈ L1(T ), f(x) = |x|,

Sn(f, x) = a0 +
n,

k=1

(bk cos(kx) + ck sin(kx))

a0 =
1

2π

? π

−π

|x|dx =
π

2

bk =
1

π

? π

−π

|x|cos(kx)dx

=
2(−1)k − 2

k2π

ck =
1

π

? π

π

|x|sin(kx)dx = 0

so

Sn(f, x)

=
π

2
+

2

π

n,

k=1

(
(−1)k − 1

k2
cos(kx)

)

=
π

2
+

2

π

(n+1)/2,

k=1

(
−2

(2k − 1)2
cos((2k − 1)x)

)

Note: (Sn(f, x)) converges by comparison with
<

1
(2x−1)2

.
Since f is continuous,

f(x) =
π

2
− 4

π

∞,

k=1

cos((2k − 1)x)

(2k − 1)2

1. Taking x = 0:

0 =
π

2
− 4

π

∞,

k=1

1

(2k − 1)2
=⇒

∞,

k=1

1

(2k − 1)2
=

π2

8
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2.
∞,

k=1

1

k2
=

∞,

k=1

1

(2k)2
+

∞,

k=1

1

(2k − 1)2

=
1

4

∞,

k=1

1

k2
+

π2

8

=⇒
∞,

k=1

1

k2
=

π2

6
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4.11 Homogeneous Banach Space

Definition 41

A homogeneous Banach Space is a Banach Space (B, ‖·‖b) such that

1. B is a subspace of L1(T )

2. ‖·‖1! ‖·‖b

3. ∀f ∈ B, ∀α ∈ T , ‖fα‖B= ‖f‖B (assuming fα ∈ B).

4. ∀f ∈ B, ∀t0 ∈ T ,
lim
t→t0

‖ft − ft0‖B= 0

Example 20

(Lp(T ), ‖·‖p) (p < ∞).

Theorem 96

Let B be a homogeneous Banach Space (Kn) summability kernel. ∀f ∈ B,

lim
n→∞

‖Kn ∗ f − f‖B= 0

Proof.

1.
1

2π

?

T

Kn(t)ftdt

# $% &
B-valued

= Kn ∗ f# $% &
L1−valued

2. limn→∞
1
2π

A
T
Kn(t)ϕ(t)dt = ϕ(0), for all continuous ϕ : T → B

3. ϕ : T → B, ϕ(t) = ft is continuous ∀f ∈ B

4. ‖Kn ∗ f − f‖B→ 0

Remark. 1. B norm Banach Space. Taking Kn = Fn we have

‖σn(f)− f‖B→ 0

for all f ∈ B.

2. Taking B = Lp(T )

(a) ‖σn(f)− f‖p→ 0

(b) Trig(T ) = Lp(T )
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Remark. In L2(T )

1. Trig(T ) = L2(T )

2. Span{einx : n ∈ Z} = L2(T )

3. {einx : n ∈ Z} ONB

4. Let the above ONB be written as {v1, v2, . . .}, for all f ∈ L2(T )

lim
n→∞

n,

i=1

〈f, vi〉 vi = f

5. If v = eikx,

〈f, v〉 v =

(
1

2π

?

T

f(x)e−ikxdx

)
eikx =

N
f, eikx

O
eikx

6. ∀f ∈ L2(T ),
‖Sn(f)− f‖2→ 0
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