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1 Measure

1.1 Borel Set

Definition 1

X is aset. We call a C P(x) a o-algebra of subsets of X if:
l.0ea
2.Aca = X\A€a

3. A1, As, A3, ..., €0 — UAiea

i=1

Remark. a C P(X) is a o-algebra
l. Xea, X\D=X€a
2. ABea = AJBeabyAU=AUBUD...[J0...€a

countably many

3. Ay, Ay, ... €Ea = ﬁAiea,by ﬁAi:X\(E.j(X\Ai)) €a
=1 =1

=1

4. ABea = A(Be€a

Example 1: o-algebra

o {0, X}
e a="7P(x)

a ={A C R : Aisopen} is not a o-algebra. A = (0,1) € a, but R\ A =
(—00,0] U [1,00) ¢ a because it’s not open
e a ={A CR: Aisopenorclosed} is not a o-algebra, because Q = |J {¢q} ¢ a (Q

. q€Q
is countable)

Proposition 1

X isaset, C C P(z), then

a:= B : B g-algebra, C' C B! is a o-algebra
() gebra, g

It’s the smallest o-algebra containing C'.




Definition 2

C ={ACR: Aopen}, then
a=MN{B:CCB,Boc — algebra}

is a Borel o-algebra. The elements of a are called the Borel Sets.

Remark. 1. open = Borel

2. closed = Borel

3. {X1, Xo, ...} = U{Xi}, so countable = Borel. (Note Q is not open or closed but Borel)
i=1

4. [a,b) = [a,b] \ {b} = [a,b] N (R \ {b}), so a half open interval is also Borel



1.2 Outer Measure
Goal: Define a function
m : P(R) — [0,00) U {oo} (called a measure)
1. m((a, b)) = m(la, b]) = m((a,b]) = b—a
2. m(AU B) < m(A) +m(B)
3. ANB=0,m(AU B) =m(A) + m(B)

Definition 3

We define a (Lebesgue) outer measure by

m* : P(R) — [0,00) U {oo}

m*(A) = inf {Z I(L;): AC U I;, I; open, bounded interval}
i=1

i=1

Example 2

) = 0. Since Ve > 0, § C (0,e) = m*(0) < 1((0,¢)). Since m*(0) > 0,
0)=0

0 = m*(0
we know m*(

Example 3

A = {x1,x,,...} is countable, then

then

Since ¢ is arbitrary,

It’s also clear that finite set also have measure 0. That is, both countable and finite sets have
measure 0




1.3 Outer Measure 2

Proposition 2

If A C B, then m*(A) < m*(B)

Proof.

If a,b € R with a < b, then m*([a,b]) =b—a

Proof. Let ¢ > 0 be given. Since [a,b] C (a — £,b+ %). We see that m*([a,b]) < b—a+e.

Let /; be bounded, open intervals such that [a, b] C | J ;. Since [a, b] is compact, then there exists
i=1
n € N, such that

[a, b] Q LTJ Iz
=1

SO
n

b—a <Y IL)<> UTL)

i=1 i=1

and so m*([a,b]) = b—a = m*([a,b]) = b — a. Note m*([a, b]) > 0 because of the definition
of inf. O

Proposition 4

If 7 is an interval, then m*(I) = I(])

Proof.



1. If I is bounded with endpoints a < b, then

then m*(I) =b—a

2. If I is unbounded



1.4 Basic Properties of Outer Measure
Outer measure is

1. Translation Invariant

2. Countably Subadditive
Notation: z e RRACR,z+A:={zx+a:a€ A}

Proposition 5: Translation Invariant

m*(z + A) = m*(A)

Proof.

i=1 i=1

m*(x + A) = inf { (L;):x+AC U I;, bounded, open}

Zl([i) A C U I; — x, bounded, open}

— inf (I —z): AC| | I — z, bounded,
in {.1 ( x) _LJl x, bounded, open
1= Jz 1= J’L
:1nf{Zl(Ji):A§ UJ’}
i=1 i=1

Proof. We may assume each m*(A;) < oo(otherwise it’s trivial). Let & > 0 be given and let’s fix

i € N. There exists open and bounded interval /; ; such that A; C | I; ; and
i=1

S Ul) < (A +
=1

We see that

o0

U A; C U I; ;
%,J

i=1

9



and so

Corollary 7: finite subadditivity

If Ay,..., A, € P(R), then

m (AL U Ay, UA,) <m(Ar) +m*(As) + ... +m*(Ay)

Later we will see that there exists A, B C R,AN B = 0 but m*(AU B) < m*(A4) + m*(B),
we will solve this by restricting the domain of m™* to only include the sets which measure “nicely”.

10



1.5 Measurable Sets
Definition 4

We say A C R is measurable if VX C R,

m*(X)=m"(XNA) +m*(X\ A)

Remark. Always have
m*(X) <m* (X NA) +m*(X\A)

by X = (X \A)U(XNA)
Remark. If A C R is measurable and B C R with A N B = (), then
m* (AUB)=m"(XNA) +m"(X\A) =m"(A) +m"(B)

X

Proposition 8

If m*(A) = 0, then A is measurable

Proof. Let X C R, since X N A C A, we have
0<m (XNA) <m*"(A) =0
som*(X NA) =0, then

m* (X NA)+m*(X\A)
=m* (X \ A)
<m™(X)

the other direction is always true, so
m*(X)=m"(XNA)+m*(X\A)
O

Proposition 9

n
Ay, ..., A, measurable, then | J A; is measurable.
i=1

11



Proof. It suffices to prove the result when n = 2.
Let A, B C R be measurable. Let X C R, then

m*(X) = m*(X NA) +m*(X \ A)

NA)+m*(YNB)+m*(Y\ B)
NA)+m* (X\A)NB)+m"(X\ (AUB))
XNnAU((X\A)NB))+m (X \(AUB))
XN(AUB))+m*(X\ (AUB))

O

Proposition 10

Ay, Ay, ..., A, measurable, A;NA; =0,i# j.Let A=A, U...UA,. If X CR, then

(X NA) = Zm (X NA)

Proof. Forn = 2,let A, B C R measurable, AN B = (. Let X C R, then

m*(X N(AUB))
=m (X N(AUB))NA) +m* (X N(AUB))\ A4)
=m* (X NA)+m"(XNB)

Note: we only need n — 1 sets to be measurable, it’s ok if one set is not. OJ

Corollary 11: Finite Additive

Ay, ..., A, measurable, A, N A; =0, thenm*(A; U...UA,) =" m*(A)

=1

Proof. Take X = R, use the proposition above. 0

12



1.6 Countably Additivity

o0

A; C R measurable (i € N). If A, A; = 0 for i # j, then A := |J A, is measurable.

=1

Proof. Let B, = A;U... A, and X C R arbitrary.

m*(X)=m*(XNB,) +m*(X\ B,)
>m* (X NB,)+m"(X\A)
= Zm:m*(X NA)+m*(X\A)

Taking n — oo,

m*(X) > f:m*(x N A;) +m* (X \ A)
—m (D(X N A,-)) (X \ A)

=m"(XNA+m"(X\A)

Proposition 13

A C R measurbale, then R \ A is measurable.

Proof. X CR,

m" (X N (R A)) +m"(X\ (R A))
=m" (X \ 4) + m* (X N A)
=m*(X) by A measurable

Proposition 14

A; C R measurable (i € N), then A = Ufil A; is measurable.

13



Proof. Bn = An\(AlLJ . -UAn—l) = Anﬂ(R\ (A1U . -UA'n,—l))a (Bl = Al), n 2 2 , WE can
see that B, is an intersection of measurable sets, hence measurable. And, fori # j, B, N B; = 0.

Also,
Jr=Ua
i=1 i=1

so A is measurable by lemma above. U

Corollary 15

The collection L of (Lebesgue) measurable sets is a o-algebra of sets in R

Proposition 16: Countably Additivity

A; C R measurable (i € N), if A; N A; = 0 fori # j, then

m* (U A,) — Z m*(A;)

Proof.
m* (U Ai) >m’ (U Ai) = Z m*(A;)
i=1 i=1 =1
Take n — oo, then
i=1 i=1

The other direction follows by the subadditivity. O

14



1.7 Measurable Sets Continued

Proposition 17: 1

a € R, then (a, 00) is measurable

Proof. Let X C R. We want to show that
m* (X 0 (a,00)) +m* (X \ (a,00)) < m*(X)

l.a¢ X,
We show
m*(X N (a,00)) +m*(X N (—o0,a)) < m"(X)

—— ——
X1 X2

Let (I;) be a sequence of bounded, open intervals such that X C [ J [;. Define

I} = ;N (a,00) and I} = I; 1 (~c0, a)

Note that
xc|Jnxcyr
and so
x) <Y un)
X) <> U1

We then see that
m*(Xy) +m*(X)
<§yﬂ+2uﬂ
=X + )
=2_15)
By the definition of inf, we have

m*(Xy) + m*(Xz) < m*(X)

2. ae X,let X' = X\ {a}, then

m*(X N (a,00)) +m* (X \ (a,00)) = m"((X" U {a}) N (a,00)) + m* (X" U {a}) \ (a,0))
=m" (X' N (a,00)) +m"((X"\ (a,00)) U{a})
<m*(X'N(a,00)) +m*(X"\ (a,00)) + m*({a})
=m*(X')+0 < m*(X)



The other direction is trivial by subadditivity. U

Theorem 18

Borel set is measurable

Proof. (a,00) is measurable, so ()", (a — 1,00) = [a,00) is measurable. So R\ [a,00) =
(—o0, a) is measurable, then (a,b) = (a,00) N (—o0, b) is measurable. Hence, every open set in
R is measurable (open sets can be expressed as countable union of open intervals), so

BCL

because B is the smallest o-algebra containing all open sets and L is a o-algebra containing all
open sets. Ul

We call m : L — [0,00) U {oo} given by m(A) = m*(A), the Lebesgue Measure

Remark. A C R measurable, then x + A is measurable Vz € R
Proof. VK CR, K —x CR,

m* (K —z)=m"(AN (K —z))+m*"(A\ (K —z))
=m" (A+z2)NK)+m"(A+=z)\ K)
— e (K)

16



1.8 Basic Properties of Lebesgue Measure

Proposition 19: Excision Properties

A C B, A measurable, m(A) < oo, then m*(B \ A) = m*(B) — m(A)

Proof.

m*(B) =m*(BNA)+m*(B\ A)
=m"(A)+m*(B\ A)
=m(A)+m*(B\ A)

==

U

Theorem 20: Continuity of Measure

1. A, C Ay C A5 ..., measurable, then
m (L__Jl Ai) = nhj& m(Ay)
2. By O By D Bs..., measurable, and m(B;) < oo, then

m (ﬁ B¢> = 7}1_{20 m(B,,)

i=1

Proof.
1. Since m(Ay) < m(UA;), Vk € N, we have

lim m(A4,) < m(UA;)

n—oo

if 3k € N such that m(Ay) = oo, then lim,,_,o, m(A4,) = oo and we are done, so assume
m(Ay) < oo, Yk € N.
Foreach k € N, let Dy = A \ Ar_1, Ag # 0. Note

e [,’s are measurable

e [D}’s are parwise disjoint

17



SO

m*(UA;) = m*(UD;)

I
=S
S

2. For k € N, define

Note:

e D;’s measurable
(] Dlngngg

By 1), we know m(UD;) = lim,,_,., m(D,,), we see that

uD; = [j(B1 \ B;) = By \ (ﬁ Bi>

=1

and so,
lim m(D,) =m(UD;) =m(B; \ (NB;)) = m(B;) — m(NB;)
n—0o0
because NB; is measurable and has finite measure.
However,
215, mDa) = Jizg, m{B1 \ Bn)
= lim m(B;) — m(B,)
n—oo
=m(B;) — lim m(B,)
n—oo
Hence,

lim m(B,) = m(NB;)

n—o0

Example 4

B; = (i,00), and m(NB;) = m(0) = 0, but lim,,_,o, m(B,,) = oo

18



1.9 Non-Measurable Sets

A C R bounded, measurable A C R bounded, countably infinite. If A + A, A € A are
pairwise disjoint, then m(A) = 0

Proof. | J (A + A) is a bounded set, which is measurable, then
AEA

m (U(A+A)> <00

A
m <U()\+A)> = Zm(A—i—A) = Zm(A) < 00
A A y
and m(A) > 0, so m(A) = 0 (A is countably infinite) O

Construction: Start with ) # A C R, considera ~ b <= a — b € R. Then ~ is an equivalence
relation.
Let C'4 denotes a single choice of equivalence class representatives for A relative to ~.

Remark. The sets A + C'4, A € Q are pairwise disjoint

Proof. say x € (A + Cx) N (AN Clhy)

T=MN+a=XM+b
—a,be Oy
—a—-b=M\—-XeQ
= a ~ b = a = b by each equiv. class has one repre.
= M =X\

Theorem 22: Vitali

Every set A C R with m*(A) > 0 contains a non-measurable subset.

Proof. By Quizl, we may assume A is bounded, say A C [— N, N], for some N € N.

Claim: C'4 is non-measurable.
Assume C'4 is measurable. Let A C (Q be bounded, infinite. By the lemma and remark,

m(CA) =0

19



Leta € A, then a ~ b for some b € C4. In particular, a — b = A € Q. Moreover,
A € [-2N,2N]
Taking Ay = Q N [-2N, 2N], have

AC | (+C)

AEAg

so m*(A) = 0, contradiction O

Corollary 23

JA, B C R, such that
1. ANB =1, and
2. m*(AUB) <m*(A) + m*(B)

Proof. Let C be a non-measurable set, 3X C R such that

m*(X)<m*(XNC)+m"(X\C)

20



1.10 Cantor-Lebesgue Function

Recall: Cantor Set

I=10,1]
Cy =10,1/3]U[2/3,1]
Cy =[0,1/9] U [2/9,3/9] U [6/9,7/9] U [8/9, 1]

C= ﬁ Cr
k=1

Note C is countable and closed.

Proposition 24

The Cantor Set is Borel and has measure zero.

Proof. Closed = Borel. And C' = ﬂ;ozl C, where C},’s measurable and
Ci20C, 203D ...

By continuity of measure,
m(C) = lim m(Cy)

k—00

2k
= Jim 5 =0

21



Construction: Cantor-Lebesgue Function (C-L fcn)

1.

For k € N, U= Union of open intervals deleted in the process of constructing Cy, Cs, . .., Cy
ie. U, =10,1]\ Cy.

U=U>,Upie. U=[0,1]\C

. Say Uy = Iy Ul o U... Ul 9x_y (Inorder: from left to right). Define

i
¢ : U — [0,1] by <P|Ik,i: ok

e.g. Uy =(1/3,2/3) = 5- = 3 and

21

Uy =(1/9,2/9) U(1/3,2/3) u(7/9,8/9)
3 2 >3
Define
¢ :[0,1] = [0,1]

by for 0 # x € C, p(z) = sup{p(t) : t € UN[0,z]} and ¢(0) =0

N

\J

22



Things to know about ¢

1. ¢ is increasing. Take two points in U, for large enough £, both points in Uy. If they are in
the Cantor Set, then it’s increasing by definition

2.  is continuous

e (¢ is continuous on U. (It’s constant on a small interval)

e v € C, x#0,1. Forlarge k, Jay, € Ij;, by € I; ;41 such that
a < < bk

but,gp(bk)—gp(ak):q—kl—#:%%()
o z € {0,1}

3. ¢ :u— [0,1] is differentiable and ¢’ = 0

4.  is onto,

by Intermediate Value Theorem.

23



1.11 A Non-Borel Set

Let ¢ be the Cantor-Lebesgue Function. Consider ¢ : [0, 1] — [0, 2] defined by ¥(z) = = + ¢(z).
1. 1 is strictly increasing
2. 1) is continuous
3. 1) is onto

By 1),3), we know 1 is bijective, hence invertible.

Properties:

1. 9(C') is measurable and has positive measure.

2. 1) maps a particular (measurable) subset of C' to a non-measurable set.
Proof.

1. By Al, ¢! is continuous, so ¢(C) = (¢»=1)7}(C) is closed, so 1(C) is Borel implies that
it’s measurable.

Note that
0,1] = CUU
= [0,2] = ¢(CUU) = y(C)Up(U) by bijectivity
— 2=m((C)) +m(y(U))

It suffices to show that

m(pU)) =1

Say U = Uzlli, where I; are disjoint open intervals. Then

o) =J_ o) = m@©) = Y m@ (1)

Note that Vi € N, Ir € R, such that p(z) = r,Vz € I,
In particular, ¢(x) = z + r,Va € I; and so

m(p(U)) =Y _m(y(L) =Y m(l;) = m(UL) = m(U)

Since [0, 1] = UUC, we have that 1 = m(U) +m(C) = m(U), so m(y(U)) = m(U) =
1>0 = mC)) =1

2. By Vitali, )(C') contains a subset A C (C) which is non-measurable. Let B = ¢p~1(A) C
C, B is measurable because 0 = m(C') > m(B) = 0. Then ¢)(B) = ¥(¢p"1(A)) = A

O

24



Cantor Set contains an element £ \ B

Proof. B C C — B measurable. 1)(B) is non-measurable. By Al, if B is Borel, then 1(B) is
Borel, so B cannot be Borel. OJ

25



1.12 Measurable Function

Definition 6

A C R measurable, we say f : A — R is measurable iff for all open U C R, f~1(U)
measurable.

Proposition 26

If A C Ris measurable and f : A — R is continuous then f is measurable.

Proof. f is continuous = f~}(U) open if U open = f~1(U) Borel, measurable O
Proposition 27
1, z€A )
A C R measurable, x4 : R — R, ya(z) = , then 4 is measurable.
0, z¢A
Proof.
U CR, open
XA (U)=R,if0,1€U
XA(U)=A iflelU,0¢U
XA (U)=AC if0cU1¢U
Xa'(U)=0,if0,1¢ U
In any case, x ;' (U) is measurable. O

Proposition 28

A C R measurable, f : A — R, the following are equivalent,
1. f is measurable
2. Va € R, f~'(a,o0) is measurable

3. Va < b, f~'(a,b) measurable

Proof.

o 1) = 2), trivial

26



e 2) = 3),letb € R such that f~!(b, 00) is measurable, then R\ f~!(b,00) = f~H(R\
(b,00) = f~1((—o00, b]) is measurable as well.
We see that (—oc0,b) = (J,—;(—00,b — 1] and so

n=1

7 (=00,) = | £ ((~00,b— =)

n

so it’s measurable.
Finally, for a < b,
(CL? b) = <a7 OO) n (_007 b)

F7((a,b)) = f7H((a,00) N (=00,b)) = f((a,00)) N f~H((—00,b))

so it’s measurable.

e 3) = 1) Trivial. Any open set is a countable union of intervals.

27



1.13 Properties of Measurable Function

Proposition 29

A C R measurable, f,g: A — R measurable.
1. Va,b € R, af + bg is measurable

2. The function fg is measurable.

Proof.
1. Leta € R. Fora € R, (af) }a,00) ={z € A:af(z) > a}
(a) ifa > 0,

(af) Ha,00) ={r € A: f(x) > aja} = f*(a/a,00) => measurable

(b) a <0,
(af) a,00) = f}(—00,a/a) => measurable

(©) a=0,
af constant = continuous =—> measurable

We now show that f + g measurable. For a € R,
(f+g9) Ha,00)={zc A: f(x) +g(x) > a}

={reA: f(z)>a—g(x)}
={reA:3qeQ, f(zx)>qg>a—g(x)}

=J{zed: f(X)>qtn{z €A g(x) >a—q})

qeQ

= U f g, 00)Ng ' (a — q,00) => measurable
q€Q

so f 4+ g is measurable.

2. By the quiz, |f| is measurable. For o € R,
(/%) (a,00)
={z e A: f(z)* > a}

A, a<0
{red:f@)>val, a>0

A, a<0
A (Ve o), a=0

28



is measurable, so f? is measurable.
Since (f + g)? is also measurable, and

2fg=(f+9* -/ -9

so 2 fg is measurable. By 1),

O
Example 5§

¥ [0,1] = R, ¢¥(z) = = + p(z). There exists A C [0,1] such that A is measurable
but 1)(A) is not measurable. Extend ¢» : R — R continuously to a strictly increasing
surjective function such that 1)~ is continuous. Consider y 4 o 1! where both x4 and ¢!

are measurable. Then,
13
—1\—1 - <
(XA o ¢ ) (27 2)

=1(xa'(1/2,3/2))
=1)(A) NOT measurable

Proposition 30

A C R measurable. If g : A — R is measurable and f : R — R is continuous then f o g is
measurable.

Proof. Let U C R open, then

(fog) (U)=g7'(f(U))
——

open

O

which is always measurable by g being measurable.

29



1.14 More Properties for Measurable Functions

A C R, we say a property P(x) (x € A) is true almost everywhere if

m({z € A: P(x) false}) = 0

Proposition 31

f: A — Rmeasurable. If g : A — R is a function and f = g a.e., then g is measurable.

Proof. B:={z € A: f(x)# g(x)},and m(B) = 0. Let o € R, then

g Ha,00) ={x € A:g(x)>a}
={r e A\ B:g(z) >a}U{r € B:g(z) > a}
={r € A\ B: f(z) >a}U{r € B:g(z) > a}

=(fHa,00)N A\ B JU {z € B:g(x) >a}
N——— —— ~ ~ "
measurable A, Bmeasurable, so it’s measurable C B,so measure zero, measurable

O

Hence, g~ !(a, 0o0) is measurable, so g is measurable.

Proposition 32

A is measurable, and B C A is measurable. A function f : A — R is measurable if and
only if f|p and f|4\ g are measurable.

Proof.
e — Suppose f : A — R is measurable. Let € R, then,
(flg) Y(a,00) ={z € B: f(xr) >a} = f'(o,00)N B = measurable
so f|p is measurable, the proof for f|4\ p is identical.
e < Suppose f|p and f|\ p are measurable. For a € R,

fHa,00)={z € A: f(z)>a}
={zxeB: f(x)>atU{ze A\ B: f(z) > a}
= (flp) " (a, 00) U (flavs) ™ (a, 00)

is measurable, so f is measurable.
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Proposition 33

(f) measurable, A — R. If f,, — f pointwise a.e. then f is measurable.

Proof. Let B={x € A: f,(x) 4 f(x)} sothat m(B) = 0.
For a € R,

(flg) Ha, 00) = f‘l(a, o00) N B is measurable
mCaS;I; Zero

It suffices to show that f| 4\ p is measurable. By replacing f by f|\, we may assume f, — f
pointwise. Let o € R, since f,, — f pointwise, we set that for x € A,

1
fl)>a <= In,.Ne NVie N, fi(z) > a+ ﬁ( to avoid f, — «)
We then see that
fHa, 00)
1
- —1 Z
UU e+t

neEN NENN

J/

measurable

is measurable, which implies that f is measurable. Ul
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1.15 Simple Approximation

A function ¢ : A — R is called simple if
1. ¢ is measurable

2. ¢(A) is finite

Remark. [Conical Representation]

¢ : A — Rissimple

and
QO(A) = {Cla Coy ... ,Ck}
——
distinct
then

A; = ¢ ' ({¢;}) measurable

-k
A=\ 4

i=1

k
Y= Z CiXA;
=1

f + A — R measurable and bounded. Ve > 0, there exists simple function, ., 9. : A — R
such that Vz € A,

L. ¢ < f <% and

2. 0< Y. —p. <€

Proof.
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Given ¢ > 0,

a=yo<y1<Y2...<y,=0b
Yiv1r — Y <€

I = [Yr—1,9k), Ax = f'(I;) = measurable
~~

Borel

ve : A=>Ryp.: A—>R

Pe = Zyk71XAk
k=1

Ve = Z Yk X A
k=1

Let z € A. Since f(z) € [a,b], Ik € {1,...,n} such that f(x) € I ie. yp_1 < f(z) < Y,
x € A;. Moreover,
Pe() = Y1 < f(2) < yp = Ye()

and so
For the same z,

0

Theorem 35: Simple Approximation

A C Ris measurable. A function f : A — R is measurable if and only if there is a sequence
(¢n) of simple functions on A such that

1. ¢, — [ pointwise

2. 9n, |enl< | £

Proof.

e < Simple functions are measurable and pointwise limit of measurable functions is also
measurable

e — Suppose [ : A — R is measurable,

1. f>20
For n € N, define
A, ={z e A: f(z) <n}

such that A,, is measurable and f|,, is measurable and bounded.
By the lemma, there exists simple functions ¢,, and 1,, such that

1
O<¢n<f<¢nonAnand0<¢n_(pn<_
n
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Fix n € N, extend ¢,, : A — R by setting p,,(z) =nifx ¢ A,,500 < ¢, < f
Foreachn € N, ¢, : A — R is simple (it’s just a simple function with one more value
on a disjoint set).

Claim: ¢,, — f pointwise

Letz € Aandlet N € Nsuch that f(z) < N (i.e. z € Ay). Forn > N, z € A, and
SO

0< F(a) ~ ula) < Uulx) — pu(x) < -

. f:A— Rismeasurable. And B={x € A: f(x) 2 0}andC ={zx € A: f(x) <
0} are both measurable.
Define g, h : A — R,

g=xsf, h=—xsf
so that g, h measurable and non-negative.
By Case 1, there exists a sequence (¢,,), (¢,,) of simple functions such that ¢, — g
pointwise, v,, — h pointwsie, 0 < ¢, < g, 0 < ¢, < h. Then
©n — Yn — g — h = f pointwise
——

simple

and
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1.16 Littlewood’s Principle

Up to certain finiteness conditions
1. Measurable sets are “almost” finite, disjoint unions of bounded open intervals.
2. Measurable functions are ”almost” continuous.

3. Pointwise limits of measurable functions are ”almost” uniform limits

Theorem 36: [Littlewood 1]

A be measurable set, m(A) < co. Ve > 0, there exists finitely many open, bounded, disjoint
intervals Iy, I, ..., I, such that m(A A U) < ¢, where U = Iy U I, U ... U I,. Note:
m(AAU)=m(A\U)+m(U\ A).

Proof. Let e > 0 be given. We may find an open set U and A C U and

m(U\A)<%

By PMATH351, there exists open, bounded, disjoint intervals /;(i € N) such that

© 00

Note that, .
Zzui) =m(U) =m(U \ A) + m(A) < oo

In particular, there exists N € N such that

> un) = 5

i=N+1
Take V = I; U ... U Iy, we see that

m(A\ V) <m(U\ V)

and
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Let A be measurable and m(A) < oo, (f,) be measurable, A — R. Assume f : A — R
such that f,, — f pointwise. Vo, 8 > 0, there exists a measurable subset B C Aand N € N
such that

L |fu(z) = f(2)[<a,VzeBnzN
2. m(A\B) < p

Proof. Let a,, 3 > 0 be given. For n € N, define
A, ={z € A:|fe(x) — f(z)|< a,Vk = n}

= () fe = fI7}(=00,q)
k=n

TV
measurable

So every A, is measurable. Since f,, — f pointwise,

A= G A,
n=1
Since (A,,) is ascending, by continuity of measure,
m(A) = nhj& m(A,) < oo
we may find N € N such that Vn > N,
m(A) —m(A,) < f

Pick B = Ay we get what’s required. O

Theorem 38: Littlewood 3, Egoroff’s Theorem

A is measurable, m(A) < oo, (f,) is measurable, A — R, f,, — f pointwise. Ve > 0, there
exists a closed set C' C A such that

1. f, — f uniformly on C'
2. m(A\C) <e¢

Proof. Let ¢ > 0 be given. By the lemma, for every n € N, there exists a measurable set A, C A
and N(n) € N such that

l. Ve € A,and k > N(n),
) — f@)l<
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2. m(A\ A4,) < ForT
Take B = (2, A, (measurable). For n € N such that % <e, k> N(n),andx € B,

o) — fla)l< ~ <e
so f, — f uniformly on B. Moreover,
m(A\ B) =m(A\NA,) =m(U(A\ A,)) ZmA\A <22n+1:_

By Al, there exists a closed set C such that C' C B and m(B \ C) < §, so
1. Since C' C B, fr — f uniformly on C'

2. m(A\C)=m(A\B)+m(B\C)<5+5=

0

Warning:
Jn: R =R, fo(r) = £ and f, — 0 pointwise. But f,, / 0 uniformly on any measurable set
B CRsuchthatm(R\ B) < 1

Proof. Suppose such B exists. Since B measurable, B C R, we know
m(R\ B) =m(R) —m(B) <1 = m(B) =
That is, B has to be unbounded.
Since f,, — 0 uniformly on B, Ve > 0,dN € N, s/t Vk > N,Vz € B,
10— fulz)|< e = ]%‘ <e

However, since B is unbounede, we can always find © € B such that |z|= (¢ + 1)|k|, so |z/k|=
e+1l>e.

That is, no matter how big the NN is, I can always find points where the uniformly convergence
condition fails. Contradiction! So no such B exists. Ll

f A — Rsimple. Ve > 0, there exists a continuous function g : R — R and a closed
C C A such that

I. f=gonC
2. m(A\C) <e¢

Proof. [ =" a;xa, conical representation. A; = {x € A: f(x) = a;} is measurable. By Al,
C; C A, closed,

AND . .
A= Ui:1Ai’ C = Ui=1Ci closed
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1. Vx € C}, f(z) = a;. By Al, f is continuous on C = we then extend f|¢ to a continuous
functiong: R — R

2. m(A\ C) = m(UL A\ C) = Y0 m(A\ C) <
L]

Theorem 40: Littlewood 2, Lusin Theorem

f A — R is measurable. Ve > 0, there exists a continuous g : R — R and a closed set
C' C A such that

1. f=gon(C and
2. m(A\C) <e

Proof. Lete > 0 given.

1. m(A) < o0
Let f : A — R be measurable. By the Simple Approximation Theorem, there exists (f,)
simple such that f,, — f pointwise. By the lemma, there exists continuous g, : R — R and
closed C,, C A such that

(@) f,=g,onC,
(b) m(A\ C,) < 5

By Egoroff, there exists a closed set Cy; C A such that f, — f uniformly on C; and
m(A\ Cp) < 5.

LetC' = mzo Cl

(@) gn = fn — funiformly on C' C Cy, so f is continuous on C. By Al, extend f|c to a
continuouse function g : R — R.

(b)
m(A\ C) = m(A\NZ,C) = m(UZ(AN\ Ch))
< S m(A\C) = m(A\ Co) + 3 m(A\ )
272 °
2. m(A) = o0
Forn € N,
A, ={a€A:lalen—1,n)}
such that D=
A= :1An

By case 1, there exists continuous functions g,, : R — R and closed C,, C A,, such that
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@) f=gnonCy
() m(A,\ Cp) < 5=

Consider C' = U:;On» and C is closed.

@ m(A\C) =m(U(An\ Cp)) = 2m(An \ Cy) <e

(b) g: C — R. Letx € C such that z € C,, for one n € N. Define g(z) = g,(2)
By Al, extend g on R.
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2 Integration

2.1 Integration

1. Simple functions
p:A—=R, m(A) < oo

2. f: A — R, bounded measure, m(A) < oo,
pe < f < e

3. f: A— R measurable, f > 0,
sup{/h:hE(Q),Oéhéf}
A

4. f: A — R measurable,
[T =max{f,0}

fﬁ = max{—f, 0}

Step 1: v : A — R simple, m(A) < oo

Definition 9

m(A) < oo, ¢ : A — R simple. Conical Rep..p = > " a;xa,- The
(Lebesgue) Integral of ¢ over A is

/ASD = Zz:; a;m(A;)

Lemma 41

m(A) < oo (A measurable). If By, By, ..., B, C A are measurable and disjoint and ¢ :

A — R defined by
Y= Z bixn,
=1

then

/A<P = ;:; bim(B;)

Proof. Forn = 2,
If by # by, then ¢ = by x, + b2X B, is the conical representation.
If b1 = bg, then
bixs, +bixB, = bi(XB, + XB.) = biXBUB,
——

conical rep.
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SO

/ o = bym(B1UBy)
A

= by(m(B1) + m(Ba))
= blm(Bl) + me(BQ)

Then simple dicuss other cases. 0

Proposition 42

v, : A — R simple, m(A) < co. Forall o, 5 € R,

J(apsov=afors[v

o(A) ={ai,as,...,a,}
P(A) = {by,ba,...,bn}

where the elements are distinct for each set.

Proof.

Define
Cij ={z € Arp(x) = a;,¥(x) = b} = o~ ({a:}) N~ ({b;})

which is measurable.

ap+ B = (aai + Bb)x,
By the lemma, ”
(Aa¢+5¢:§:m%+ﬁ@ww@ﬂ
_ ZJ aa;m(Cij) + Z Bbym(Cy;)
_ ZJ aa; Y m(cij)i Z Bb; Z m(Cij)

= Zaaim({x €A:p(x)=a;})+ Zﬁbjm({x €A:p(x)=a;})

=a/Aso+B/Aw
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Proposition 43

v, A — R simple, m(A) < oo. If p < 1), then

/AsoS/AQP

Proof.

fofe= [z
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Step2: f : A — R bounded, measurable m(A) < co

Definition 10

f : A — R be bounded, measurable and m(A) < co. Then

e Lower Lebesgue Integral:

Af:S“p{Aw:w<fsimple}

e Lower Lebesgue Integral:

Zfzinf{[‘w:fgwsimple}

m(A) < oo, f: A — R bounded, measurable. Then

Aszf

Proposition 44

Proof. Vn € N, there exists simple functions, ¢,,, ¥, : A — R such that
Loon < f<tn

We see that

o<7Af—Af
<A%—A%
- [wn=e
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Definition 11

m(A) < oo, f : A — R bounded, measurable, we define the (Lebesgue)

integral of f over A by -
Jr=]s=]1

Proposition 45

fy9: A — R bounded, measurable, m(A) < co. For a, € R,

[t =af 469

Proof. Scalar multiplication is easy.
Now, have @1, 2, 11, 19 all simple,

o1 < f <Y, pa < g <y

/Af+g=7Af+g
<Aw+w
=/A¢1+/A¢2

/f+9<inf{/¢1+/¢23f<1/11,9<¢2,¢17¢251mple}

A A A
:inf{/Az/Jl:fgwl simple}+inf{[4¢2:g<¢2 simple}
AR

/Af+g=Af+g>/Asol+/A¢2

(0]
/f+g>sur>{/901+/902:f>¢1,g>soz,901,sozsimple}
A A A
=su p{/ o1 f =101 simple}+sup{/ w2 f = 2,09 simple}
A
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SO

/Af+g=/Af+/Ag

Proposition 46

f.9 : A — R bounded, measurable and m(A) < oo. If f < g, then [, f < [, g.

Proof. Since g — f > 0, where 0 is also a simple function, we have

A(g—f)zfq(g—f)>[40=0:>/49>/4f
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2.2 Bounded Convergence Theorem

Proposition 47

f : A — Rbounded, measurable, B C A measurable, m(A) < oo, then

/Bf=/AfXB

Proof.

1. f=xc, C C A measurable.

/XcXBZ/XBmc
A A

=1x*m(BNC)

= / XC|s
B

2. fissimple, f =>""  a;xa,,
/AfXB:Zai/AXAiXB:Zai/BXAi:/B(ZaiXAilg):/Bf

3. f: A — R be bounded and measurable.
First we take f < 1, simple, then

/AfxB</A¢xB=/B¢

By taking the inf over all such 1/, we have that

/AfxB<7Af=/Bf

Similarly, taking ¢ < f, ¢ simple, we obtain,

sz/Bfé/AfxB
/AfXB=/Bf

so we have
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Proposition 48

f :+ A — R be bounded, measurable, m(A) < co. If B, C' C A are measurable and disjoint,

then
Jued = L7

Proof.

jgwjf::/QfXBuc

= /Af(XB +Xxc)

Z/AfXB-F/AfXC
~ [+ [
U

Proposition 49

f: A — R be bounded, measurable, m(A) < oo, then |fA f‘ < [ulfl-

Proof.

—IfI< fF<|f]
— AL SIS Al S]

Proposition 50

(f.) is bounded, measurable, A :— R, m(A) < oo. If f,, — f uniformly, then

i [ 5= [

Proof. Lete > 0 be given, let N € N such that

9
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then, forn > N

O
Example 6

fu:[0,1] = R,

0, O<x<%
fal@)=Sn, L<ao<?2
2
O7 Eg.’lﬂ'

then f,, — 0 pointwisely, but

/ fo=1, / 0=0
[0,1] [0,1]

Theorem 51: [BCT]

(fn) : A — R measurable, m(A) < oo. If there exists M > 0 such that |f,|< M for all n
and f,, — f pointwise then

i [ f= [ 1

n—o0

Proof. Let € > 0 be given. By Egoroft’s theorem, there exists measurable B C A and N € N
such that forn > N,

L. |fn f|< sy On B

2. m(A\B)<—
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Vn>= N,

Jo= ]

<Am—ﬂ
:LMﬁﬂ+AQh—ﬂ

<Lm—ﬂﬁA;mHm>
< [ 1fa= 21 s m(a\ B)

foM -

<m0 AM

€
2
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Definition 12

f A — R measurable

1. We say f has finite support if
Ag:={x € A: f(z) #0}

has finite measure.

2. We say f is a BF function. If f is bounded and has finite support.

[r=1.

3. If f: A — Ris BF, then

Definition 13
f A — R measurable, f > 0,

/Af—sup{/Ah:Oghgf,BF}

Proposition 52

f,9: A — R measurable, f,g > 0

[t =afs+6 [0

2. If f<g,then [, f< [, g
3. If B,C C A are measurable and B N C = () then

Jue? = 1,7 1.7

Theorem 53: [Chebychev’s Inequality]

1. Vo, B € R,

f : A — R measurable, non-negative; Ve > 0,

med: f@) =< [ f

A

Proof. Lete > 0 given and let
AE:{I’GAIf(JJ)>5}



1. m(A.) < o0
o =exa. <f

//f

2. m(A.) = oo Forn € N, A, := A. N [—n,n|. By the continuity of measure,
oo =m(A.) = lim m(A.,)
n—oo

SO

Forn € N, ¢, := ex.,(BF), we see that ,, < f.
Therefore,

Proposition 54

f A — R measurable, f > 0

/Afzo < f=0ae.

e (=) Suppose [,(f) =0,
m({z € A: f(x) #0})

<Zm<{xeA:f(a:)>%}>
= oo f=

Chebychev

e < Suppose B = {x € A: f(z) # 0} has measure 0.

=1L
~ [ £+0
=0
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fB f = 0 because for any h BF and 0 < h < f, there is a M}, > 0 such that h < M, then

B B B B

so [, h is always zero, hence
B

/Bf:SUP{/BhZO<h<f,hBF}:0

2.3 Fatou’s Lemma and MCT

Theorem 55: Fatou’s Lemma

(f) measurable, non-negative, A — R. If f,, — f pointwise then

/Afghmmf/Afn

Proof. Let 0 < h < f be a BF function. Say Ay = {x € A : h(z) # 0}. It suffices to show

/héliminf/fn
A A

Since h is BF, m(Aj) < oco. Foreach n € N, let
h, = min{h, f,} (meas.)

Note:
1. 0<h, <h< M, forsome M >0,Vne N

2. Forx € Ajandn € N,

(@) hp(z) = h(x)or
(b) hp(z) = fu(z) < h(z) and
0 < (@) = hn(x) = h(x) = fulz) < fz) = falz) =0
s0 h,(x) — hon A

lim/hnz/hﬁlim/hn:/h
n—o0 J 4, Ao n=oo J 4 A
/ = lim h,, = lim inf / < lim inf / fa
A n—oo [, n—oo n—oo

52
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Example 7

A=(0,1]

fn=mnx(0,1/n)
fn — 0 pointwise

/0:0

A
fao=n-m(0,1/n) =1
A

liminf/ fn=1
A

Theorem 56: [MCT]

(f) non-negative, measurable, A — R. If (f,,) is increasing and f,, — f pointwise, then

Proof.

/ f <liminf / fn by Fatou’s Lemma
A A
<limsup / fn
A

< / f by f. /" and converge to f
A

O

s0 limy, o0 [, frn = liminf [, f, = limsup [, fn

Remark.

1. If o : A — Ris simple and m(A) < oo, then

oo
A

2. If f: A — Ris bounded, measurable and m(A) < oo, then

/Af<oo
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Definition 14

If f: A— Rismeasurable and f > 0, then we say f is integrable if and only if

/Af<oo

2.4 The General Integral

Definition 15

f A — R measurable,

fT(x) = max{f(x),0}
[~ (x) = max{—f(x),0}

Notes:
L fr+f=|fl
2 fr—f =1

3. fT,f measurable

Proposition 57

f : A — R measurable. Then T, f~ are integrable if and only if | f| is integrable.

Proof.
o fl=f"+f
aﬁmzlﬁi+éﬁi<”

/Af+</A|f|<oo;/Af‘</A|f|<oo
L]

Definition 16

f + A — R measurable. We say f is integrable if and only if | f| is integrable if and only if

A
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Proposition 58: [Comparison Test]

f A — R measurable, g : A — R non-negative integrable. If | f|< g then f is integrable

and |fA f‘ < Julf]

Proof.
1. /|f|<ng<oo
=
2. ’fAflz U‘A]H__fAf_}<|fAf+|+’fA.f_’:fAf++fAf_:fA(f++f_):fA(f)

0

Proposition 59

f,9: A — Rintegrable.

1. Vo, B € R, aof + (g is integrable, and

/Aaf+5g=a/Af+B/Ag

2. If f<g,then [, f < [, 9
3. If B,C C A are measurable with BN C = (), then

Jue? =7 10

Proof.
e Comparison Test

e Results hold for f*, f~, g7, g~

Theorem 60: [Lebesgue Dominated Convergence Theorem]

fn + A — R measurable. f, — f pointwise. If there exists a g : A — R integrable such
that | f,|< g, Vn € N, then f is integrable and lim, o [, fo = [, f

Proof. Since |f,|— |f|, and so |f|< g.
By comparison test, f is integrable. Next, observe g — f > 0. By Fatou,
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Jomfg= Lot

gliminf/g—fn

A

:/g—limsup/fn
A A

— limsup/fng/f
A A

/AgﬂL/Af:/Angf<liminf/Ag+fn=/Ag+liminf/Afn
— /Af:liminf/Afn:limsup/Afn:hm/Afn

2.5 Riemann Integration

Definition 17

f : |a,b] — R bounded

1. A partition of [a, b] is a finite set such that

P=A{zg,z1,...;2,} CRanda =g <1 <9< ... <2, =0

2. Relative to P, we define the lower Darboux sum:

L(f,P) = Zmz(xz — 1)
m; = inf{f(z) : z € [x;_1, 2]}

3. Similarly, we define the upper Darboux sum:

U(f7P> = ZMZ(% —$i—1)

M; = sup{f(z) : v € 7,1, 73]}
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Definition 18

f ¢ a,b] = R, bounded,

1. Lower Riemann Integral
b
R/ f=sup{L(f, P) : P partition}
2. Upper Riemann Integral
T b
R/ f=inf{U(f, P) : P partition}
3. We say f is Riemann Integrable if and only if

@[szZZ

-~

R[S

Definition 19

Let [y, ..., I, be pairwise disjoint intervals such that

[a, b] = U;nzljz

A step function is a functions of the form

f= Z @i X1;
i=1

for some a; € R

Remark. f :[a,b] = Rbounded. a = 2o < 21 < ... <z, =b. I[; = [x; 1,7;], i = 1,... n.
Then

LGP =Y metn) =R [

where ¢(x) = mi on I; (¢ < f).
n b
U =S M) = R [
i=1 a

where ¢(z) = Mion I; (f < ).
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Remark. f : [a,b] — R bounded,
b b
R/ f=sup{L(f,P): P}zsup{R/ go:cpéfstep}
b b
R/ f:inf{U(f,P):P}:inf{R/ zb:féwstep}

2.5.1 Riemann Integral VS Lebesgue Integral

Definition 20

Let f : [a,b] — R bounded. Let x € [a,b] and 6 > 0
. ms(z) =inf{f(x):x € (x — 0,2+ )N a,b]}
. Ms(z) =sup{f(z):z € (x—3d,z+0)N[a,b]}

N =

3. Lower Boundary of f,
m(z) = lim ms(x)
0—0
4. Upper Boundary of f,

9

. Oscillation of f,

Remark. f : [a,b] — R bounded, TFAE
1. f is continuous at z € [a, ]
2. M(z) =m(x)
3. w(z)=0

f : |a,b] — R bounded,
1. m is measure

2. If ¢ : [a,b] — R is a step function with ¢ < f, then p(z) < m(x) at all points of
continuity of ¢

b
3. Rf_af:f[ayb]m
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Lemma 62
f ¢ [a,b] — R bounded,
1. M is measure

2. If ¢ : [a,b] — R is a step function with ¢ > f, then ¢(x) > M (z) at all points of
continuity of ¢

b
3. R[,f=JuyM

Theorem 63: [Lebesgue]

Let f : [a,b] — R be bounded. Then f Riemann integrable if and only if f is continuous

a.e., in that case, ,
R[i=][ 1
a [a,b]

Proof. L
b b

R / f= / m < M=R / f
Ja_ [a,b] [a,b] a

f Riemann Integrable

<= / m = M
[a,b] [a,b]

“— (M —m) =

< w =0a.e.
<= f is continuous a.e.

If f is continuous a.e. =—> f is measurable and

b i b
R/f—/ m</ f< M—R/f:>R/f_ f
Ja [a,b] [a,b] [a,b] a a [a,b]

because M = m a.e.

O
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Example 8

f:00,1] =R
_JLzeQ
o= {yr e

f is discontinuous on [0, 1] = f is NOT Riemann Integrable. But f = 0 a.e. ans so

/ f= / 0=0
[0,1] [0,1]
Example 9

fn is increasing, continuous a.e. on [0, 1], and it’s bounded by 1, so it’s Riemann Integrable.

O=R [ forR[| f

[0,1] [0,1]
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3 LP Spaces

3.1 L7” Spaces
Recall

1. For 1 < p < oo, (C([a,b]), ||-||,) is a normed-vector space, where || f||7= ff|f|p

2. For p = o0, (C([a,b]), [|*[ls)s | fllco= sup{|f(z)|: € [a,b]} is a Banach Space.

Problem: A C R measurable, 1 < p < oo, ||f|,= ([,]f?)? is NOT a norm on the vector space
of integrable functions f : A — R. WHY? [,|f[’=0 <= f=0ae.

Definition 21

A C R measurable,
1. M(A)={f: A — R measurable} — vector space,
f~g <= f=gae.
let [ f] represent the equivalence class.

2. M(A)/~=A{[f] : f € M(A)}. af] + Blg] = [af + Bg| shows that it’s a vector
space.

Remark. If f ~ g and f is integrable, then g is integrable and [, f = [, g

Definition 22

A C R measurable, 1 < p < o0,

v ={ife My~ [ 17p< oo

Remark. Suppose [f], [g] € LP(A). Then [,|f[?, [,|g|P< o0

LoAf+glP< (If+lgh? < @max{[f], [g[H)" < 2°([fP+]gl") = |f + gI" integrable by
comparison.

2. so LP(A) is a subspace of M (A)/~

Definition 23

A C R measurable,

L*(A) ={[f] € M(A)/~: f bounded a.e.}

Remark.
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L [f],lg] € L>=(A)

1< M oft BC A, m(B) =0
lg|ISK Noff C C A, m(C)=0

off B C Ameanson A\ B.
Forxz ¢ BUC,
|f(@) + g(@)|< | f(2)[+|g(x)|< M + N

2. L*°(A) is a subspace of M (A)/~
Proposition 64
A C R measurable, then
1fllloo= inE{M > 0 : | f|< M ae}

is a norm on L*>°(A)

Remark.
L|fI< ||[f]||oo+% off m(Ay) =0, and B = U2 | A,, has measure 0

2. [fI< [ f]loc off B.

Proof.

L [fMlee=0 = |fI< I[f]llcc 6. = |f|=0ae. = f =0a.e., then

in L>(A).
2. 1FI< if]loo off B, |g|< ||[g]]|oo off C. Off BUC = measure 0:

[+ gl< [f1+lgl< TN+ Nl gl oo

By the definition of inf, we have

IS+ gllloo= [ILST+ [9]lloo < STl Nl 9] lloo
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3.2 [P Norm

Example 10

p =1, A C R measurable, [f],[g] € L'(A),
|[f +gl< [fI+]g]

— [ir+al< 111+ [ 1o

= [lf + gl < I+ gl

Abusive Notation:

f=111eLr(4)
Remember !
f=gin LP(A) means f = g a.e.

Definition 24

For p € (1, 00) we define ¢ = z% to be the Holder Conjugate of p.

Note
lLg=5 <= p=>%
1.1 _
2. o+, =1

Definition 25

We define 1 and oo to be a pair of Holder conjugate.

Proposition 65: [Young’s Inequality

p,q € (1,00) Holder conjugate. Va,b > 0,

al b
ab < —+ —
p q
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Proof.

f(z) = %xp-l— é —z on (0, 00)

Taking:

Proposition 66: [Holder’s Inequality]

A C R measurable, 1 < p < 00, ¢ is the Holder Conjugate. If f € LP(A) and g € L(A)
then fg € L'(A) and [,[fgl< | fl,llglly

Proof.

I.p=1,g=00
|fal=171lg]< | f]llg]loo a-e.

then fg € L'(A) and
/Ifg|< /|f|||9||oo= glloll flx
A A

2. 1< p<oo,qHC,

Fal= 1fllgl< % T % — JgeL'(4)

1 1 1 1
/Ifg|< —/Ifl”+—/|g|q= = fp+=1gllg
A P Ja q.Ja p q
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@ [Ifl,=llglls= L
fol<=+==1=|flllgll
A7 T p g i

(b) ‘ | . By case a),

o Lt = [1ra<isilal,

0

p,qHC, f € LP(A). If f # 0,
=[£Il Psgn(f)[f[P~

isin L9(A) and
/A FF = 1 flls and [[£*]l= 1

Proof.
l.p=1,g=
[ =sgn(f) € L=(A)

J 15 = [ 1= 171 18 m

2. 1<p<oo,qHC
/ ffr= IIfI\i_p/lf\pZ LA 2L 1E= 111l
A A
*|1q — (1-p)a (p—1)q
11 = 151877 f 11

e / P

= IAILPIAIR=1

Theorem 68: [Minkowski’s Inequality]

A C R measurable and 1 < p < oo. If f,g € LP(A) then

1f =+ gllp< 171l +gll
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Proof. 1. p =1 Done

2. 1<p< @

||f+g||p=/A(f+g)(f+g)*

z/af(f+g)*+/Ag(f+g)*

< +9)*[lo+ +9)*
< IS+ ) N+ lglloll(F 4 9)7 ]l

= [l £llp+llgll
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3.3 Completeness

Theorem 69: [Riesz-Fisher]

For all measurable A C R and 1 < p < oo, L (A) is a Banach space.

1. p = oo, piazza

2.1 < p < oo, Let (f,) € LP(A) be strongly Cauchy Sequence. Therefore, there exists
(€,) C R suCh that

(a) “fn+1 - fn“p< 82
(b) > e <

Idea: Since R is complete, if (f,,(x)) is strongly-Cauchy then it converges. For each n € N,

An = {x €A: |fn+1(x) - fn(x)|> gn}
={z e A:|fari(x) - fulx)["Z e}

By Chebyshev’s Inequality:

1 1
m<An) < ") / ‘fn-ﬁ-l - fn|p< pggzp - E‘Z

Zm(An) < Zsﬁ < <Z€n>p < 00

which implies that m(lim sup(A,,)) =0
Fix ¢ limsup(A4,). Let N = max{n:z € A,}. Forn > N,

|fn+1($) - fn(x)‘< 83” 2571 < 0
—> (fn(x)) Cauchy
— fulz) = f(x) €R

so f, — f pointwise a.e.
Fork € N,

e}

Wtk = Fallo< It = Fusicllob oo ot = Fully< gy oo+ 2 < S 2
i=n

SO | fruik — fulP— | fn — f|P pointwise a.e. as k — oo.
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By Fatou’s Lemma,

AR

<liminf/|fn+k — ful?
k—oo A

= liminf[| oy — full?
—00

so f, converges w.r.t p-norm.
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3.3.1 Separability:

Recall: A metric space X is separable if it has a countable, dense subset.

Example 11

p=o00?
Suppose {f,, : n € N} is dense in L>°|0, 1]. For every x € [0, 1], we may find

1

X102 — fo(a)lloo< 3

For z # y in [0, 1],
10.0] = Xpoilloo= 1
so 0(z) # 6(y) and [0, 1] — N is injective, contradiction ([0, 1] not countable).

Notation:
e Simp(A) = Simple functions on measure A
e Stepla,b] = Step functions on|a, b]

e Stepgla, b] =Step functions on [a, b] with rational partition (not including a, b) and functions
values.

Proposition 70

A C R measurable, 1 < p < oo, Simp(A) is dense in LT (A)

Proof.
fr € L¥(A) — f measurable

then there exists (,, simple

1. ¢, — f pointwise

2. Jenl< [fI == lnl< [fI7

By comparison, (¢,,) € L(A).
Note,

low — 2 = / p—

lon = FIP < 2°(lonl"+|17)
< 2 PP

so by the Lebesgue Dominate Convergence Theorem

lim [l — fI2= lim / o — fIP= / 0=0
n—oo n—oo A
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Fact: the above proposition is true for p = oo (but it’s not seperable).

Proposition 71

1 < p < oo. Stepla, b] is dense in L[a, b]

Proof. A C [a, b] measurable, y 4[a,b] — R.
Littlewood 1:3U_,I; = U, where ;s are bounded open intervals. And m(UAA < ¢ and Yy :
la,b] — R is a step function.

Ixv — XA||£

- / o = xal?
A

:/ 1
UANA

=m(UAA)
= lIxv — xallp<e

so for all characteristic function, we can approach as close as we want by a step function. Simple
function is just made of finitely many characteristic functions. Ul

Corollary 72

1 < p < o0. Stepgla, b] is dense in LP|a, b] (step functions are dense, so for each step func-
tion, you can modify the function a little bit by rationals). Therefore, L”[a, b] is separable.

Proposition 73

1 < p < oo, LP(R) is separable.

Proof. 1 < p < oo, LP(R) is separable.

Fn = {f € LP(R)|f|[—n,n]E Step@[_n7n]7 fl]R\[—n,n]: O}
F = Up2 | F, countable. Take f € LP(R). Fix n € N, we have f|_, ,j€ LP([—n, n]) We show

fX[_n,n] — f in LP(R)
Note:

1 Xt — 111
_ / Xt — 17
R
- / P
R\[—n,n]

:/|f|pXR\[—n,n]
R
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2. || fIPXR\[=n,n)| < | f|P Which is integrable

3. By the Lebesgue Dominated Convergence Theorem

i || (g — I
n—oo [p R
50 || fX(-nm = fllp— 0

For each n € N, Jp,, € F such that || fx[_nn) — @nlp< +, 50

lon = fllp— 0

Theorem 74

1 < p < oo, A C R measurable, LP(A) is separable.

Proof. F asbefore, {f|4: f € F'} is a countable dense subset of LP(A) O
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4 Fourier Analysis

4.1 Hilbert Space

=]
I
7
@]
=
Q

Definition 26

V' is a vector space over F. An inner product on V is amap (-,-) : V' x V' — F such that
1. Yo e V, (v,) € F, (v,v) > 0 with (v,v) = 0 if and only v = 0
2. Yo,w eV,

(v,w,) = (w,v)

3. VaeF,u,v,weV,
(au 4+ v, w) = a(u,w) + (v, w)

We call (V, (-, -) an inner product space.

Proposition 75

Let V' be an inner product space. Then

[o]l= v/ (v, v)

is anorm on V. We call ||-|| the norm induced by (-, -)

Example 12

A C R measurable. V = L?(A), (f,g) = [, fg is an inner product space.

Note:y/(f 1) = ([, F7)? = Iz

Example 13
A C R measurable. V = L*(A,C), (f,g) = [, fgand \/(f, f) = || f]|2

Proposition 76: [Parallelogram Law]

Let V' be an inner product space. Yu,v € V,

[+ vl*+Hlu = vl*= 2 (Jlul*+]v]]*)
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lu 4 0]+ ju — v]]?
=(u+v,u+v)+ (u—v,u—0v)
= (u,u) + 2 (u,v) + (v,v) + (u,u) — 2 (u,v) + (v, v)
=2||ul*+2[v]*
=2 (lull®+[lvl1?)

O]
Example 14

1<p<oo,V=LP0,2land f = X[01],9 = X[1,2]

1412 = ( \f\p)
— 15 =1
lgll? =17 =1
If +gl2=
If — gl>= 2

so by Parallelogram Law
2 425 =2(141) < 28 =2 < p=2

so ||-||, is induced by an inner product if and only if p = 2. You can also show that ||-|| is
not induced by an inner product.

Definition 27

A Hilbert Space is a complete inner product space (i.e. A Banach Space whose norm is
induced by an inner product).

Example 15

L?*(A), L*(A, C) are Hilbert Spaces.
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4.2 Orthogonality

Definition 28

Let V' be an inner product space. We say v, w € V' are orthogonal if (v, w) = 0.

Example 16

f,g€ L*([-m,7|,C), m#n, f(x)=¢e"" g(z)=e™, then

sa=[ g

_ / einxe—imxdm
[—mn]

=0
Theorem 77: [Pythagorean Theorem]
Let V' be an inner product space. If vy, ..., v, € V are pairwise orthogonal, then,

| = >l

Definition 29

Let V' be an inner product space. We say A C V is orthonormal if the elements of A are
pairwise orthogonal and [|v||= 1,Vv € A.

Let V be an inner product space, {v1, ..., v, } orthonormal,

[ = Yo




Example 17

L*([-m,7],C), A= {\%ei”x ‘n € Z} = pairwise orthogonal.

2

1 .

L jeme
1 . .

- eiNE o= INT 1.
27 [—m,m]
1

= — 1=1
27 [

—7,7]

so A is orthonormal

Definition 30

Let V' be an inner product space. An orthonormal basis is a maximal (w.r.t C) orthonormal
subset of V. (Note it might not ba basis).

Fact: An inner product space always has an orthonormal basis.

Fact: Let H be a Hilbert space. If W C H is closed subspace then there exists a subspace W+ C H
such that
H=WaWwt

and (w,z) = 0 forallw € W and z € W+,

Theorem 79

Let H be a Hilbert space, then H has a countable ONB (orthonormal basis) if and only if H
is separable.

Proof.

e —> Let be B be a countable orthonormal basis for .
Claim: w = Span(B), w = H
Suppose w # H. Since H = w @ w—. We may find 0 # z € w'. We may assume ||z||= 1.
so B U {z} is orthonormal. Contradiction! Sow = H.
We can also show that Spang(B) = H where Spang(B) is the span of B only using rational
numbers as the coefficients. Hence, H is separable.

e <= Suppose H doesn’t have an orthonormal basis which is countable. Let 5 be ONB for
H, so B is uncountable.
For u # v in B,
lu = vlP?= [lul+[[v]*= 2 = fu—v]= V2
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Suppose X C H such that X = H. Vu € B, there exists z,, € X such that
V2

|2n — ul|< 5

but for u # v in B, we have that
Ty F Ty

SO
¢:B= X, p(u) =,

is an injection. So X is uncountable because B is uncountable, so [ is not separable,
contradiction.

0

Example 18

{\/%ei””” :n € Z ¢ is a countable orthonormal set in L*([—m, 7], C). We can clearly see

that it is countable, orthonormal, but what about maximal?
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4.3 Big Theorems

Remark. Let H be an inner product space, {v1, ..., v, } orthonormal.
If v =) A\w; then \; = (v, v;). We call (v, v;) the Fourier Coefficients of v w.r.t. {vy,...,v,}

Definition 31

Let H be a Hilbert space, {v1, v, . ..} orthonormal. For v € H, we call
Z <Uv Ui) U;
=1

the Fourier Series of v relative to {vy, vg, ...} and write

o0
v~ Z (v, v;) v;
i=1

e Does this series converge?

e Does it converge to v?

Theorem 80: [Best Approximation]

Let H be a Hilbert Space, {v1, ..., v,} orthonormal. Forv € H, ||v—>_ A\;v;|| is minimized
when \; = (v, v;)
Moreover,

o= Y I, P

v — Z (v, v;) v;

Proof.
1. W = Span{vy,...,v,} closed,v = W & W+
.xeW,v=w+z weW,z€ W,
lv —2l*=llw+ 2z — 2|*= lw — = + 2||*= [lw — 2|*+]|2]*> [|l2]*= [Jv — 2|
s0 ||[v — z||> ||Jv — w]|, the closet point in TV to v is w, the orthonormal projection.

3= v +2z, z€ W,

<U,Ui> = )\Z + <Zav’i> = )\z
0

4. v=> (v,v;)v; + 2z, 2 € W+, then

2
ol = || w vy ||+ 11212
= I, [P+
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2
= l2P= llollP= ) lw, vi) I

v — Z (v, v;) v;

‘D

Theorem 81: [Bessel’s Inequality]

Let H be a Hilber Space, {vy, ...,v,} be orthonormal. If v € H,

n
D v, P< lol?
i=1

2
>0

o= 3w v = o = v, v) v,

Theorem 82: [Parseral’s Identity]

‘D

Let H be a Hilbert space, {v;, vs, . ..} orthonormal.
Forv € H,

n

v — Z (v, v;) v;

=1

S I, v) = of? <= lim =0

=1

Theorem 83: [Orthonormal Basis Test]

Let H be a separable Hilbert Space {vy, v, . ..} orthonormal. TFAE:

1. {vy,v9,...} is an orthonormal basis.

2. Span{vy,ve,...} = H

3. limy oo o = D00, (v, ) v =0, Vo e H

Proof.
e (1) = (2) Done

° (2) = (3
If {vq, vy, ...} is not maximal then we may find u € H, ||ul|= 1 such that (u,v;) =0, Vi €
N. Since C = {z € H : (z,u) = 0} is closed, u ¢ Span{vy,vs,...} (u & C,(u,u) = 1,
Span{vy, vy,...} CO).




° (2) = (3)
Let v € H and let € > 0 be given. Let Zf\il a;v; € Span{vy, ...} such that

N
v — E o, U;
=1

<e€

SO Hv — Zf\il (v,v;) v;

Forn > N,

< e

n

v— Z (v, v;) v;
i=1
N

U—Z<U,Ui>vi +

=1

n

Z (v,v;) v;

i=N+1

/N

<e+ Z|<U,vi> 2— 0as N — o0
N+1

because by Bessel’s Inequality, ZZ]\L 1

will go to 0.

(v,v,) |* is a bounded increasing sequence, so >\ |(v, v;) |2

e (3) = (2), similar.
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4.4 Fourier Series
1. Is {\/%ei’w ‘n € Z} an ONB for L*([—, 7], C)?
2. Is Span {e™ : n € Z} dense in £*([—, 7], C)?
3. Is Span {e™ : n € Z} dense in L' ([, 71|, C)
Let T = [—m, 7). We call T the Torus or the circle. We define.
LNT) = LP([-m,7],C)

for1 < p < oo.
Using the norm,

PR
1= (52 [ 1rv)

LP(T) is a separale Banach Space.

Remark.

1. As a group under addition module 27,

T=R/Z={z€C:|z|=1}

2. In this way, 7' is a locally compact abelion group.

3. There is a one-to-one correspondence between
f:T—C

and 27-periodic function
fR—=C
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Definition 33

feLT)
1. We define the n'" (n € Z) Fourier Coefficients of f by

) 1 )
(o) i o [ fape s
2. We define the Fourier Series of f by

f ~ Zaneinx

where a,, = (f, e"®).
3. We let v
Sn(f,z) = Zanemx
-N

denote the N*" partial sum of the above Fourier series.

Proposition 84

Consider the trignometric polynomial f € L'(T) given by

n=—N
for some a; € C.
Foreach —-N <n <N, ‘
<f> ezn:r> =a,
Why?
1 . . 1.m =
. M o —inT 1. 6mn — , TN n
2r Jr ’ 0,m #n

Remark. Suppose f € L*(T) is real-valued, f ~ Y - a,e™.
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For N € N,

N
=ag + Z(ane’m + a_,e”"")

n=1
N

=ap + Z(an +a_y,) cos(nz) +i(a, — a_,)sin(nx)
n=1
N

=ap + Z by, cos(nx) + ¢, sin(nx)

n=1

=57 [ s an = o [ jayas

b, =a, +a_,

= —/f _lnm lnx)dx
-1 /T F(2) cos(nz)da

a —a_
__/f —mm_ m:r)dx

-1 /T f(x) sin(nz)dz

Now,

are all real-valued.

4.5 Fourier Coefficients

Proposition 85

f.9€ LYT)
L (f +g,em) = (f, ") + (g,e™")
2. Fora € C, (af, ™) = a (f, ")
3. If f : T~ Cis defined by f(z) = f(z), then f € LY(T) and (f,e™*) = (f, einr)
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Proof.
1. Trivial

2. Trivial
3. |fl=1fl= feLXT),
<? 6inw>

[T
= / F(x)enrdy
7

Re(f( Jein®)dx + 7 TIm(f(x)eim)dx

| Re(f(a)e)de — 2 Im(f(@)em)da

2m Jr
/ f emxdx

6 ’LTLZE

27‘(’
1

O]
Proposition 86

f € LYT), a € R. By a previous remark, we may view f : R — C as a 27-periodic
function which is integrable over 7. For « € R, f, : R — C given by f.(z) = f(z — a) is
integrable over T and (f,, ¢"®) = (f,ei"®) e7in

Proposition 87

fe LN(T). Vn e Z,|(f,em) I< I f]h

Proof.
(f,em) | = ‘i [ e

< [l
=§Ammm

[
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fk —> f in Ll(t),
Vn € Z, <fk,em””> — <f, e’m>

Proof.

(i) = ()
= [{fe= f£e)

<fe = flh—0
Ul
Remark. Let Trig(T) denote the set of Trigonometric polynomials on 7. By A3, Trig(T) = LY(T)

Theorem 89: [Riemann-Lebesgue Lemma]

If f € L'(T), then ‘
lim <f, e”w> =0

[n|—o0

Proof. Lete > Obe given and let P € Trig(T) such that || f—P||;< e. Say P(z) = Sp__ are’™™.
For |n|> N, we have that (P, e™*) = 0, so

(f. e = [{f = Pe™)| < |If = Pli<e
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4.6 Vector-Valued Integration

Definition 34

Let B be a Banch space and let f : [a,b] — B be a function. Consider a partition P : a =
to <ty <...<t,=0bof [a,b]. We define a Riemann sum of f over P by

S(f, P) = Zf(ﬁ)(ti —ti-1) €B

where each tf € [t;_1,1;].

Definition 35

Let B and f Be as above. We say f is Riemann Integrable if there exists z € B such that
Ve > 0, there is a partition P. of [a, b] such that whenever P is a refinement of P. and S(f, p)
is a Riemann sum then

1S(f, P) = zll< e
We call z the integral of f over [a, b] and write z = R fab f(z)dx.

A natural question to ask would be: Why are we doing this only for Banach Space?

Theorem 90: [Cauchy Criterion]

Let B be a Banach space and let f : [a,b] — B be a function. Then f is Riemann Integrable
if and only if Ve > 0, there exists a partition P. of [a, b] such that whenever P and () are
refinements of P. we have,

for any Riemann sums S(f, P) and S(f, Q).

Proof. Suppose f is Riemann integrable with z = R ff f(z)dz. Lete > 0 be given. We may find
a partition P, /5 such that whenever P is a refinement partition of P, ; then

IS(f, P) = S(f, QI IS(f, P) = zll+[l= = S(f, Q)< e

Conversely, assume the Cauchy Criterion holds. In particular, for each n € N, we may find
a partition P, of [a,b] which corresponds to ¢ = %, as per Cauchy Criterion. Without loss of
generality, we may assume that each P, is a refinement of P,. Foreachn € N, let S(f, P,) be a

Riemann sum. Let € > 0 be given. Choosing N € N such that % < 5, we see that for m,n > N,

I1S(f, P) = S(f, P < % “e

Since B is a Banach Space, S(f, P,) = z € B
We claim that f is Riemann Integrable with R ff dr = z. Let N and Py be as above. Moreover,



we know 3N > N such that ||S(f, Py) — z||< 5||. Now if P is any refinement partition of Py,
then
1S(f, P) = 2I< [IS(f, P) = S(f, Pa)I+IS(f, Par) — 2l < &

Theorem 91

If B is a Banach Space and f : [a,b] — B is continuous, then f is Riemann integrable.

86



4.7 Summability Kernels

Definition 36

f,g € LY(T). The convolution of f and g is the functions
fxg:Tw—C
given by

(F=9)le) = 3= [ f0ate =t =5 [ roaaar

Facts:
1. Given f,g € LY(T), f x g € LY(T) as well.

2.1 = glli< [ f11llgllx

3. This means L!(T") a Banach Algebra (Banach Space with continuous multiplication, we can
think convolution as a “multiplication”).

Let C'(T') denote the set of continuous functions 7" — C

Definition 37

A summability kernel is a sequence (K,,) C C(T') such that

1 o+ [ K,=1
2. AM,Vn, |K, |1 < M
3.V0< 6 <,

-4 T
mn(/ mu+/ﬁKu>=o

This means summability kernels are concentrated at 0.

Proposition 92

Let (B,||:||z) be a Banach Space (with scaler C. Let ¢ : T+ B be continuous. Let
(K,) € C(t) be a summability kernel. Then

lim LKNW@& — 4(0)

Vv
Riemann vector-valued integral

in the B-norm.

[

Proof. Appendix using (2), (3)
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Remark. ¢ : T — L'(T), given by

1S continuous.

Theorem 93

f € LY(T), K,, is a summability kernel. In L'(T),

f=lim K, * f
n—oo

Proof. Let p(t) = f(xz —1t)

lim —— / Ko 2(0)

n—oo 27T

:>hm—/K flz —t)dt = p(0) = f(x —0) = f(x)

n—oo 27T

= lim (K, * f)(z) = f(x)

n—oo
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4.8 Dirichlet Kernel
We want to find (K,,) such that K, * f = S,,(f), which is the n'" partial sum of Fourier Series of
f.
Remark. Let f € L*(T). For n € Z consider
on(z) =™ € LYT)
Then

(on * f)(2)

L [ ) fe)de

2m Jp

1 int
=— [ " f(x —t)dt
el R

:_einx / 6—in(:c—t)f(x . t)dt
T

:_einm / e*ln(ft)f(_t>dt
T
e [
—etne <f7 ezn:c>
Remark. f € LNT),if P(z) =Y _  aye™, then

(P f)(x)

:% P f(x — t)dt

I N

_kX_:nQW/Te flz—t)dt

= 3" anlpn s (@)
k=—n

— i aneikx <f> 6ikx>
k=—n
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Definition 38

D, (x) = >"}__ €™ is the Dirichlet Kernel of order n. And
(Dn * f)()
_ Z ek <f7 eikm>

k=—n

:Sn(f7 .’E)

which is the nt" partial sum we want.However, it’s NOT a summability kernel.
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4.9 Fejér Kernel

Idea: (x,,) C C, consider
1 +29+ ...+ 1,

Yn

Exer: If z,, — x, then y,, — v.
Definition 39

The Fejér Kernel of order n is

_ Do(x) + Di(z) + ...+ Dy(x)

Remark.

FQ(ZL') = Do(l’) =1
e + 261'0:5 + ez':v
2
672:1: + e T +36iOx + 262'9! + eiQm

Remark. (F,) is a summability kernel.

Definition 40

1 n
F = — D

1 n

= Hlkzzosk(f)

_ So(f) +5i(f) +- -+ SalS)

n+1
= Un(f)
which is the n" Cesaro mean.
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Theorem 94

f e LYT), (F,) Fejér.

lim F), * f

n—oo

= li_>m on(f)

in L!(T).

Remark. If (S,(f)) converges in L'(T) then S,,(f) — fin L*(T).
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4.10 Fejér’s Theorem

Idea: L' convergence is great theoretically, but pointwise convergence is practical.
Theorem 95: [Fejér’s Theorem]

For f € LY(T) and t € T consider

wilt) = = Tim (f(t +2) + f(t — )

z—0t

provided the limit exists, then
on(f,t) = wy(t)

In particular, if f is continuous at ¢ then

on(f;t) = f(t)

In practice:
l. Fixex eT
2. Prove (S, (f,z)) converged

3. Then
Sn(f,x) = wy(z)

4. If f is continuous at = then S,,(f,z) — f(x),i.e. S(f,z) = f(z).
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Example 19

feLNT), f(z) =,

Su(f,x) =ag+ Z(bk cos(kx) + ¢ sin(kx))

k=1
[ T
a = o _F|x]da: =35
1 ™
bp = — | |x|cos(kz)dx
™ —T
A1)k -2

k2w
1 ™
cr = —/ |z|sin(kx)dx =
™ ™

SO

T 2~/ (-DF -1
:5 + ; £ (T COS(k?I))

N
=5+ p Z (m cos((2k — 1):8))

k=1

Note: (S, (f,x)) converges by comparison with » m

Since f is continuous,
T 4= cos((2k — 1)x)
T2 7 kz:; (2k — 1)2

1. Taking x = O:

T4 >
_i_EZ 2k—1 — ; 2k—1 §

=1
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4.11 Homogeneous Banach Space

Definition 41

A homogeneous Banach Space is a Banach Space (B, ||-||5) such that
1. B is a subspace of L'(T')
2. 1l - lle
3. Vf e B,Va e T, | falls= |If||5 (assuming f, € B).

4. Vf e B,Vty €T,
lim||f: — fi,|l5=10
t—to

Example 20
(LP(T), |I]lp) @ < o0).

Theorem 96

Let B be a homogeneous Banach Space (/) summability kernel. Vf € B,

lim | K, * f — f]lp=0
n—00

Proof.
1
2 Jr ——
N ~  Ll—valued

B—\;Tued
2. limy, o0 5= [ Ko ()(t)dt = ¢(0), for all continuous ¢ : T — B
3. o: T — B, ¢(t) = f; is continuous Vf € B
4 | Ky f = fllp— 0

O

Remark. 1. B norm Banach Space. Taking K,, = F,, we have

lon(f) = fllz— 0
forall f € B.
2. Taking B = L?(T)
@ [lon(f) = fll— 0

(b) Trig(T) = L(T)



Remark. In L*(T)
1. Trig(T) = L*(T)

2. Span{e™ :n € Z} = L*(T)
3. {e™* :n € Z} ONB
4. Let the above ONB be written as {vy, vo, ...}, forall f € L*(T)

n

JL@OZUWQWZJU

=1

(271- / f kadﬂ?) kx _ <f; 6ikm> eik:p

150 (f) = flla= 0

5. Ifv = eth=

6. Vf e L*T),
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