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1 Time Series

1.1 Introduction
Definition 1

We say x1, . . . , xT is an (observed) time series of length T if xt denotes an observation
obtained at time t. In particular, the observations are ordered in time.

• If Xt ∈ R, we say x1, . . . , xT is a real-valued or scalar time series.

• If Xt ∈ Rp, we say x1, . . . , xT is a multivariate or vector valued time series.

With the time series data, comparing to classical statistics, we still care about prediction and
inference.
However, in contrast, the data oftern exhibit:

1. Heterogeneity→ Time trends → E[Xt] ∕= E[Xt+h]
Heteroskedasticity → V ar(Xt) ∕= V ar(Xt+h)

2. Serial Dependence (Serial Correlation)→ observations that are temporally close appear to
depend on each other.

Definition 2

Formally, we say {Xt}t∈Z is a time series if {Xt : t ∈ Z} is a Stocahstic Proces indexed
by Z. This means that there is a common probability space (Ω,F , P ) so that ∀t ∈ Z, Xt :
Ω → R is a random variable. In relation to the original definition, we say x1, . . . , xT is an
observed stretch or a realization or a sample path of length T from {Xt}t∈Z.
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1.2 Forecasting
Consider a time series x1, . . . , xT . Based on x1, . . . , xT , we should like to produce a ”best guess”
for XT+h:

X̂T+h = X̂T+h|T = fh(xT , . . . , x1)

Definition 3

For h ! 1, our ”best guess” X̂T+h = fh(xT , . . . , x1) is called a forecast of XT+h at horizon
h.

• X̂T+h = forecast

• h = horizon

There are two primary goals in forecasting:

1. Choose fh ”optimally”.
Normally, we or the practitioner have some measure, say L(∗, ∗), in mind for determining
how ”close” X̂T+h is to XT+h. We then wish to choose fh such that

L(XT+h, fh(XT , . . . , X1)) is minimized

Mose common measure L(∗, ∗) is Mean-Squared Error (MSE), where

L(x, y) = E[(x− y)2]

2. Quantify the uncertainty in the forecase
This entails providing some description of how close we expect X̂T+h to be to XT+h

Example

Suppose every minute, we flip a coin such that

H → 1

T → −1

Xt = outcome in minutet, t = 1, . . . , T . This produces a time series of length T , which is a
random sequence of 1’s and −1’s.
Note E[Xt] = 0, for h ! 1, consider X̂T+h = f(XT , . . . , X1)

L(XT+h, X̂T+h) = E[(XT+h − X̂T+h)
2]

= E[X2
T+h]! "# $

V ar(Xt)

+E[X̂2
T+h]− 2 E[XT+hX̂T+h]! "# $

E[XT+h]Ê[XT+h]=0

= E[X2
T+h] + E[X̂2

T+h]

which is minimzed by taking X̂T+h = 0
There is nothing ”wrong” with the forecast, but ideally would also be able to say that the
sequence appears to be random.

4



How can we quantify the uncertainty in forecasting?
The predictive distribution

XT+h|XT , . . . , X1

Excellent: Predictive intervals/sets
For some α ∈ (0, 1) find Iα such that

P (XT+h ∈ Iα|XT , . . . , X1) = α(α = 0.95, e.g.)

often such intervals take the form

Iα = (X̂T+h − σ̂h, X̂T+h + σ̂h)

Remark. 1. Estimiating predictive distributions leads one towards estimating the joint distribu-
tion of XT+h, XT , . . . , X1 (ARMA,ARIMA,etc).

2. It is important that we acknowledge that some things cannot be predicted!!!
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1.3 Definition of Stationary
Given a time series X1, . . . , XT , we are frequently interested in estimating the joinr distribution of

XT+h, XT , . . . , X1

The joint distribution is a feature of the process {Xt}t∈Z
X1, . . . , XT −→

infer
{Xt}t∈Z

• Worst Case: Xt ∼ Ft, where Ft is a changing function of t. If so, it’s hard to pool the data
X1, . . . , XT to estimate Ft

• Serial Dependence: If the distribution of (Xt, Xt+h) depends strongly on t, we have a similar
problem in estimating. (e.g. cov(Xt, Xt+h))

Definition 4

We say that a time series {XT}t∈Z is strongly stationary or strictly stationary if ∀k !
1, i1, . . . , ik, h ∈ Z

(Xi1 , . . . , Xik)
D
= (Xi1+h

, . . . , Xik+h
)

for all k = 1, 2, . . ., all time points i1, . . . , ik, and all h ∈ Z In other words, shifting the
window on which you view the data does NOT change its distribution.

This implies that if Ft = CDF of Xt, then

Ft = Ft+h = F

Definition 5

For a time series {Xt}t∈Z with E[X2
t ] < ∞, ∀t ∈ Z, we denote the mean function of the

series as
µt = E[Xt]

and the autovariance function of the series is

γ(t, s) = E[(Xt − µt)(Xs − µs)] = cov(Xt, Xs)

Definition 6

We say that {Xt}t∈Z is weakly stationary if E[Xt] = µ, does not depend on t, and if

γ(t, s) = f(|t− s|)

i.e., γ(t, s) is a function of |t− s|

In this case, we usually write
γ(h) = cov(Xt, Xt+h)

and we call the input h the ”lag” parameter.
Additional terminology:
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• The property when E[Xt] = µ does note depend on t is oftern called ”first order” stationary.

• The property when γ(t, s) = γ(|t − s|) only depends on the lag |t − s| is called ”second
order” stationary.

• For a second order stationary process

γ(h) = cov(Xt, Xt+h)

= cov(Xt−h, Xt)

= γ(−h)

Normally, we only record γ(h), h ! 0
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1.4 White Noise and Stationary Examples

Definition 7

We say {Xt}t∈Z is a strong white noise if E[Xt] = 0 and the {Xt} are independent and
identically distributed (iid).

Definition 8

We say {Xt}t∈Z is a weak white noise if E[Xt] = 0, and

γ(t, s) = cov(Xt, Xs) =

%
σ2, |s− t|= 0

0, |t− s|> 0

Definition 9

We say {Xt}t∈Z is a Gaussian white noise if

Xt ∼
iid

N(0, σ2)

Example

Suppose {Wt}t∈Z is a strong white noise. Then E[Wt] = 0 (doesn’t depend on t).

γ(t, s) = cov(Wt,WS) = E[WtWs] =

%
σ2
W , |t− s|= 0

0, |t− s|> 0

{Wt}t∈Z weakly stationary (γ only depends on |t− s|).
{Wt}t∈Z is also strictly stationary. Let k ! 1, i1 < i2 < . . . < ik, k ∈ Z.

P (Wi1!t1,...,Wik
!tk) =

k&

j=1

P (Wij " tj)

=
k&

j=1

P (Wij+h
" tj)

= P (Wi1+h,...,Wik+h
" tk)
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Example

Suppose {Wt}t∈Z is a strong white noise. Define

Xt = Wt + θWt−1, θ ∈ R

Then E[Xt] = E[Wt + θWt−1] = 0,

γ(t, s) = cov(Xt, Xs) =

'
()

(*

(1 + θ2)σ2
W , |t− s|= 0

θσ2
w, |t− s|= 1

0, |t− s|> 1

When |t− s|= 0,

E[(Wt + θWt−1)
2] = E[W 2

t ] + θ2E[W 2
t−1] + 2E[θWtWt−1] = (1 + θ2)σ2

w + 0

When t = s+ 1 (or s = t+ 1)

E[(Ws+1 + θWs)(Ws + θWs−1)] = θE[W 2
s ] = θσ2

W

When |t− s|> 1, Wt + θWt−1 is independent of Ws + θWs−1

Continued: {Xt}t∈Z is also strictly stationary. Suppose k ! 1, i1, . . . , ik, h ∈ Z, (i1 <
. . . , ik),

P (Xi1 " t1, . . . , Xik " tk) = P (Wi1 + θWi1−1 " t1, . . . ,Wik + θWik−1 " tk)

= P

+

,-

.

/0
Wi1

...
Wik

1

23 ∈ B

4

56

= P

+

,-

.

/0
Wi1+h

...
Wik+h

1

23 ∈ B

4

56

= P (Xi1+h " t1, . . . , Xik+h " tk)

where B is a subset of Rik−i1+1

Definition 10

Suppose {εt}t∈Z is a strong white noise. Then if Xt = g(εt, εt−1, . . . , ) for some function:

g : R∞ → R

, we say that {Xt}t∈Z is a Bernoulli shift
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Theorem 1

If {Xt}t∈Z is a Bernoulli shift, then {Xt}t∈Z is strictly stationary.

Remark. Nobert Wiener conjectured that every stationary sequence is a Bernoulli shift (The TRUTH
is almost every one is).

Example

Suppose Wt is strong white noise. Let

Xt =
t7

i=0

Wi +
−17

i=t

Wi

This is called a two-sided Random Walk. You can show that Xt is firt-order stationary, but
not second-order stationary. (Consider the case when s, t have different signs and the same
signs.)
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1.5 Weak VS Strong Stationary
Sadly,

Xt strictly stationary ! Xt weakly stationary

Ex: Suppose Xt ∼
iid

Cauchy Random Variables. i.e.

P (Xt " S) =

8 S

−∞

1

π(1 + x2)
dx

Then E[Xt] doesn’t exist, and hence not weakly stationary. But it’s strongly stationary because it’s
a strong white noise.
If Xt strictly stationary and E[X2

0 ] < ∞ =⇒ Xt is weakly stationary. Note that if Xt is strictly
stationary, then

(Xt)
D

X0 =⇒ E[Xt] = E[X0](Not depend on t)

also,
V ar(Xt) = V ar(X0)

By Cauchy-Schwarz inequality,

γ(t, s) = cov(Xt, Xs) " V ar(Xt) < ∞

and suppose t < s,

cov(Xt, Xs) = cov(X0, Xs−t) = f(|t− s|)

(Xt, Xs)
D
= (Xt−t, Xs−t)

=
D
= (X0, Xs−t)

Definition 11

{Xt}t∈Z is said to be a Gaussian Process (or Gaussian times series) if for each k ! 1, i1 <
i2 < ik,

(Xi1 , . . . , Xik) ∼ MultiNormal(µ
k
(i1, . . . , ik),Σk×k(i1, . . . , ik)) = Nk(µk

,Σk×k)

where

µ
k
=

+

,-
E[Xi1 ]

...
E[Xik ]

4

56 , Σk×k = (cov(Xij , Xir)1!j,r!k)

Proposition

If Xt is weakly stationary and Gaussian, then Xt is strictly stationary.
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Proof. If Xt weakly stationary, E[Xt] = µ, ∀t, and

(Xi1 , . . . , Xik) →

+

,-
E[Xi1 ]

...
E[Xik ]

4

56 =

+

,-
µ
...
µ

4

56 = µ =

+

,-
E[Xi1+h]

...
E[Xik+h]

4

56

V ar(Xi1 , . . . , Xik) = [cov(Xij , Xir)1!j,r!k]

= [cov(X0, Xir−ij)]

= [cov(X0, Xir+h−(ij+h))]

= [cov(Xij+h, Xir+h)]

= V ar(Xi1+h, . . . , Xik+h)

Using Gaussian assumption, we know

(Xi1 , . . . , Xik)
D
= Nk(µ,Σk×k)

D
= (Xi1+h,...,Xik+h

)

Hence, {Xt}t∈Z is stricly stationary.

Exercise. Prove that if Xt is not weak;y stationary in this sense then Xt is not strictly stationary.
(Hint:either E[Xt] depends on t or γ(Xt, Xs) is not a function of |t− s|)
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1.6 Theoretiacl (L2) framework for time series (optional)
• Xt = limh→∞ Xh,t In what sense does this limit exist?

• How ”close” are two random variables x, y

• Is there a random variable that achieves infy∈S d(y, z)

Definition 12

Consider a probability space (Ω,F , P ). The space L2 is the set of random variables X :
Ω → R (measurable) such that E[X2] < ∞

Definition 13

We say that {Xt}t∈Z is an L2-time series if Xt ∈ L2, ∀t ∈ Z

Remark. L2 is a Hilbert space when equipped with inner-product, x, y ∈ L2

〈X, Y 〉 = E[XY ]

where 〈∗, ∗〉 is an inner product.

1. Linear: 〈ax+ by, z〉 = a 〈x, z〉+ b 〈y, z〉

2. 〈X,X〉 = E[X2] = 0 ⇔ x = 0 a.s.(i.e. P (X = 0) = 1)

3. Symmetric: 〈X, Y 〉 = 〈Y,X〉

L2 is also complete with this inner product i.e., whenever Xn ∈ L2 so that E[(Xn −Xm)
2] = 0 as

n,m =⇒ ∞, then ∃X ∈ L2 such that Xn → X i.e. E[(Xn −X)2] → ∞
This follows from the ”famous” Riesz-Fisher Theorem.
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1.7 Useful tools for time series
1. Existence

Xt,n =
n7

j=0

ψjεt−j, {εt} is a strong WN

Since n > m,

E[(Xt,n −Xt,m)
2] = E[(

n7

j=m+1

ψjεt−j)
2]

=
n7

j=m+1

ψ2
jσ

2
ε → 0

as n,m → 0 if e.g.
9∞

j=0 ψ
2
j < ∞, then there must exist a Random Variable Xt such that

Xt = limn→∞ Xt,m =
9∞

j=0 ψjεt−j and Xt ∈ L2.

2. Projection Theorem and Forecasting
Forecasting can often be cast as finding a random variable y among a collection of possible
forecast M (e.g. M = span{XT , . . . , X1}), such that

y = arg infz∈ME[(XT+h−z)2]

when M is a closed linear subspace of L2, the projection theorem gaurantees that such a y
exists, and it must satisfy

〈XT+h − y, z〉 = 0, ∀z ∈ M
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1.8 Signal+Noise Models
”Ideally”, a time series that we are considering was generated from a stationary process. If so, we
can pool data to estimate the process underlying structure (e.g. its marginal distribution, and serial
dependence structure).
Most time series are evidently not stationary

Signal+Noise Model:Xt = St + εt

• St is the deterministic ”signal” or ”trends of the series.

• εt is the ”noise” added to the signal satisfying E[εt] = 0.
There exists a (strong) white noise Wt such that

εt = g(Wt,Wt−1, . . .) [Stationary Noise]
εt = gt(Wt,Wt−1, . . .) [non-Stationary Noise]

The terms {Wt} are often called the ”innovation” or ”shock” driving the random behaviour
of Xt

Example 1

εt = gt(Wt,Wt−1, . . .) might be εt =
9t

j=0 Wj (Random Walk), εt = σ(t)Wt (changing
variance models)
Goal: Estimate St, and infer the structure of εt = g(Wt,Wt−1, . . .)

Goal: Estimate St, and infer the structure of εt = g(Wt,Wt−1, . . .)
For the temperature data example, we may posit that

St = β0 + βt[Linear Trend]

The trend may be estimated by ordinary least success (OLS). We choose to β0, β1 minimize
T7

i=1

(Xt − [β0 + β1t])
2

15



, note β1 =
!

(xi−x)(yi−y)!
(xi−x)2

, β0 = y − β1x

Definition 14

Detrending a time series constitutes computing residuals based on an estimate for the sig-
nal/trend. A detrended time series is a time series of such residuals.

1. Estimate St → Ŝt

2. Detrend series: Xt − Ŝt = yt. yt is the ”detrended” series.

If the trend is now 0 (only noise left), there appears to be substantial serial dependence remain-
ing in the series.
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1.9 Time Series Differencing
Signal+Noise Models: Xt = St + εt
Hopefully, upon estimating St with Ŝt, we find Xt − Ŝt = ε̂t (Detrended Series) looks reasonably
stationary.
If so, we might proceed in estimating the structure of {ε̂t}t=1,...,T as if it were stationary.

Posit a random walk with drift model:

Xt = σ +Xt−1 + εt, ε ∼ Strong White Noise

Note here the σ is a drift term, constant

Xt = σ +Xt−1 + εt

= σ + σ +Xt−2 + εt−1 + εt
...

= t ∗ σ +X0! "# $
linear

+
t7

j=1

εj

! "# $
Random Walk noise

Notice that under the Random Walk Model

Xt −Xt−1 = ∇Xt = σ + εt

17



so if Xt follows a random walk model, then the series Yt = ∇Xt should have behave like a white
noise shifted by σ.

Definition 15

Differencing a time series constitutes computing the difference between successive terms.
A diffrenced time series is a time series of such differences.
The first differenced series is denoted

∇Xt = Xt −Xt−1

and is the series X2 −X1, X3 −X2, . . . , XT −XT−1 (length T − 1).
Higher order differences are calculated recursively, so

∇dXt! "# $
dth order difference

= ∇d−1∇Xt(∇0Xt = Xt)

Detrending and Differencing are both ways of reducing a (potentially non-staionary) time series to
an approximately stationary series.
Differencing VS Detrending:

• Pros

– Differencing does not require parameter estimation (Don’t estimate St)

– Higher order differencing can reduce even very ”trendy” series to look more like noise.

• Cons

– Differencing can ”wash away” features of time series, and introduce more complicated
structures.

– The trend is often of interest, and good estimates of the trend lead to improved long-
range forecasts.

Example 2: Differencing Complicate Series

Xt = Wt, where Wt ∼ Strong White Noise :

∇Xt = Wt −Wt−1 = Yt

γx(h) = cov(Xt, Xt+h) =

%
σ2
w, h = 0

0, h ! 1

γY (h) = cov(Yt, Yt+h) =

'
()

(*

2σ2
w, h = 0

−σ2
w, h = 1

0, h ! 2
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1.10 Autocorrelation and Empirical Autocorrelation:
Usually through either detrending or differencing, we arrive at a series Xt that we may consider as
stationary.
Given such a series, we wish to estimate g, so that

Xt = g(Wt,Wt−1, . . .)

where {Wt} is an ”innovation” sequence (strong white noise)

Definition 16

A time series {Xt}t∈Z is said to be a linear process, if there exists a strong white noise
{Wt}t∈Z, and coefficients {ψl}l∈Z,ψl ∈ R, such that

9∞
l=−∞|ψl|< ∞, and Xt =9∞

−∞ ψlWt−l[It’s a well-defined as a limit in L2, and it might depend on the future.]

Definition 17

{Xt}t∈Z is a causal linear process, if

Xt =
∞7

l=0

ψlWt−l

It only depends on W ’s in the ”past”.

Remark. Linear processes are strictly stationary (Bernoulli Shift)

Example 3

Xt = Wt + θWt−1, Wt ∼ Strong White Noise. Xt is a linear process.

γX(h) =

'
()

(*

(1 + θ2)σ2
w, h = 0

θσ2
w, h = 1

0, h ! 2

Note: When h = 0, γX(h) is always non-zero. When h = 1, γX(h) is non-zero if θ
(”lagged” term coefficients) in the linear process are non-zero.
Suggests a way of slewthing out what g(Wt,Wt−1, . . .) =

9∞
l=0 ψlWt−l must look like.
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Definition 18

Suppose Xt is weakly stationary. The autocorrelation function of XT (Abbrev: ACF) is

ρX(h) =
γ(h)

γ(0)
, h ! 0

Note since γ(0) = V ar(Xt) = V ar(X0)m

|γ(h)|= |cov(Xt, Xt+h)|"
:

V ar(Xt)V ar(Xt+h) = V ar(X0)

by stationary, V ar(Xt) = V ar(Xt+h) = V ar(X0). Also,

|ρ(h)|" 1 =⇒ −1 " ρ(h) " 1

Esitimating γ(h) and ρ(h):

γ(h) = cov(Xt, Xt+h) = E[(Xt − µ)(Xt+h − µ)], µ = E[Xt]

Hence a sensible estimator is

µ̂ =
1

T

T7

t=1

Xt = X (Sample mean/Time series avg.)

γ̂(h) =
1

T

T−h7

t=1

(Xt − x)(Xt+h −X) ≈ 1

T − h

T−h7

t=1

(Xt −X)(Xt+h −X)

ρ̂(h) =
γ̂(h)

γ̂(0)

Example 4

Xt = Wt, Wt ∼ Strong White Noise V ar(Wt) = σ2
W < ∞

γX(h) =

%
σ2
W , h = 0

0, h ! 1

=⇒ ρX(h) =

%
1, h = 1 ←− ρ(0) = γ(0)/γ(0) = 0

0, h ! 1
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1.11 Modes of Convergence of Random Variables
γ̂(h) is an estimator of γ(h), and we want to discuss the asymptotic properties of this estimator.
Introduce(Review):

1. Stochastic Boundedness(Op and op notation)

2. Convergence in Probability

3. Convergence in Distribution

Definition 19

Suppose {Xn}n"1 is a sequence of random variable, we say that Xn is
bounded in probability by Yn if ∀ε > 0, ∃M,N ∈ R such that ∀n ! N,

P (|Xn/Yn|> M) " ε

Shorthand:Xn = Op(Yn) =⇒ ”Xn is on the order of Yn”/

Definition 20

We say Xn converges in probability to X if ∀ε > 0,

lim
n→∞

P (|Xn −X|> ε) = 0

If an is a sequence of scalars, we abbriviate Xn/an converges in probability to zero as

Xn = op(an) ⇐⇒ P (|Xn/an|> ε) → 0, as n → 0, ∀ε > 0

Hence, Xn converges to zero in probability denoted as

Xn = op(1)

We also write Xn
P→ X to denote Xn converges to X in probability.

Definition 21

We say that sequence of scalar random variable Xn with respective CDF’s Fn(x) converges
in distribution to X with CDF F (x) if for all continuity y of F ,

lim
n→∞

|Fn(y)− F (y)|= 0

Remark. When F (x) is the CDF of a continuous random variable (e.g. a normal CDF), then

lim
n→∞

|Fn(y)− F (y)|= 0, ∀y ∈ R
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Useful Tool: Chebyshev’s Inequality: If E[Y 2] < ∞, then

E[Y 2] = E[Y 2
|Y |"M + Y 2

|Y |<M ]

= E[Y 2
|Y |"M ] + E[Y 2

|Y |<M ]

! E[Y 2
|Y |"M ]

! M2E[ |Y |"M ]

= M2P (|Y |! M)

which give us the Chebyshev’s Inequality:

P (|Y |! M) " E[Y 2]

M2

Generally when E[|Y |k] < ∞, P (|Y |! M) " E[|Y |k]
Mk
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Example 5

Suppose Xn is a strong white noise in L2(E[X2
0 ] < ∞), and let XT = 1

T

9T
t=1 Xt, then

1. |XT |= op(1)
For ε > 0,

V ar(XT ) = E[X
2

T ]

=
1

T 2
E

+

-
;

T7

t=1

Xt

<2
4

6

=
1

T 2

;
T7

t=1

T7

t=1

E[XtXs]

<
the expectation is non-zero only then t = s

=
1

T 2

T7

t=1

E[X2
t ]

=
1

T 2

T7

t=1

E[X2
0 ] =

σ2

T
(σ2 = E[X2

0 ])

Hence we will have,

P (|XT |> ε) " E[X
2

T ]

ε2
=

σ2/T

ε2
→ 0

as T → ∞.
Hence, XT = op(1)

2. XT = Op( 1√
T
),

V ar

=
XT

1/
√
T

>
= V ar(

√
TXT ) = T ∗ V ar(XT ) = σ2

so by Chebyshev’s, for M > 0,

P (|
√
TXT |> M) " V ar(

√
TXT )

M2
=

σ2

M2
→ 0, as M → ∞

Note: if we look at the definition, we should know the equation above shall work for
any T large enough, so if we keep T in the equation, it cannot work.
Hence,

√
TXT = Op(1) ⇒ XT = Op( 1√

T
).

Alternatively, we can show this using the Central Limit Theorem by the CLT
√
TXT

D→
N(0, σ2). Therefore, if FT ∼CDF of

√
TXT , Φ ∼CDF of N(0, 1) random variable.

|FT (x)− Φ(x/σ)|→ 0, as T → ∞, ∀x ∈ R
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For ε > 0, choose M such that Φ(−M
σ
) = 1−Φ(M/σ) " ε

4
. For this M , choose T0, so T ! T0 ⇒

|FT (−M)− Φ(−M/σ)|" ε/4 and |FT (M)− Φ(M/σ)|" ε/4. Then,

P (|
√
TXT ! M) = FT (−M) + (1− FT (M))

= Φ(−M/σ) + (1− Φ(M/σ)) + FT (−M) +−Φ(−M/σ) + Φ(M/σ)− FT (M)

" ε/4 + ε/4 + ε/4 + ε/4

= ε

Remark. In general,
Xn

an

D→ Non-degenerate R.V. ⇒ Xn = Op(an)

Remark. Algebra of Op and op notation.

1. Xn = Op(an), Yn = Op(bn) ⇒ Xn + Yn = Op(max{an, bn})

2. Xn = op(1), Yn = op(1), Xn + Yn = op(1)

3. Xn = op(1), Yn = op(1), Xn ∗ Yn = op(1)

Example 6

Suppose Wt is a strong white noise in L2 with E[W 4
t ] < ∞. Let Xt = Wt + θWt−1, θ ∈ R.

Show that γ̂(1) P→ θσ2
W

Proof.

XT = X =
1

T

T7

t=1

Xt =
1

T

t7

t=1

(Wt + θWt−1) =
1

T

T7

t=1

Wt +
θ

T

T7

t=1

Wt−1 = op(1)

γ̂(1) =
1

T

T−17

t=1

(Xt −X)(Xt+1 −X)

=
1

T

T−17

t=1

XtXt+1 +
T − 1

T
X

2 −X
1

T

T−17

t=1

Xt −X
1

T

T−17

t=1

Xt+1

=
1

T

T−17

t=1

XtXt+1 +R1,T +R2,T +R3,T

Notice that, Ri,T = op(1), i = 1, 2, 3

1

T

T−17

t=1

XtXt+1 =
1

T

T7

t=1

(Wt + θWt−1)(Wt+1 + θWt)

=
1

T

T7

t=1

θW 2
t +G1,T +G2,T +G3,T
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Now, 1
T

9T
t=1 θW

2
t

SLLN−→ θE[W 2
t ] = θσ2

W We take a look at G1,T ,

G1,T =
1

T

T7

t=1

WtWt+1, E[G1,T ] =
1

T

T7

t=1

E[WtWt+1]! "# $
=0

V ar(G1,T ) = E[G2
1,T ] =

1

T 2

T7

t=1

T7

s=1

E[WtWt+1WsWs+1]! "# $
<∞; ∕=0 only if s=t

=
1

T 2

T7

t=1

E[W 2
t W

2
t+1]

=
T

T 2
σ2
W → 0 as T → ∞

By Chebyshev’s Inequality, G1,T = op(1) (Similar steps for G2,T , G3,T ). Then we can write

γ̂(1) =
1

T

T7

t=1

θW 2
t +

7
op(1)

Hence we have
γ̂(1) −→ θσ2

W
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1.12 M-dependent CLT (Optional)
Suppose Xt is a mean zero, strictly stationary time series (E[X2

t < ∞]). Note we didn’t assume
Xt are iid. We frequently faces with the problem:

1. What is the approximate distribution of

1√
T

T7

t=1

Xt =
√
TXT

D≈ N(0, σ2
x)?

2. If Xt is a strong white noise. What’s the approximately distribution of

γ̂(h) =
1

T

T−h7

t=1

XtXt+h + op(1)

XtXt+h := Yt is strictly stationary

When is the average of the possibly dependent variables generally normal?

• Only way to understand how the {Xt}t∈Z, we have to observe replicates of the process.

• If process is suitably ”weakly dependent”; then we can observe replicates of the process by
viewing on overlapping windows.

Definition 22

We say a time series {Xt}t∈Z is m-dependent for m ∈ Z+, if for all t1 < t2 . . . < td1 < s1 <
s2 < . . . < sd2 ∈ Z such that td1 +m " s1 and

(Xt1 , . . . , Xtd1
) is independe of (Xs1 , . . . , XSds

)

it means two windows separated by (at least) m units are independent.

Example 7

Xt = Wt + θWt−1 where Wt is a strong white noise is 2-dependent.
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Theorem 2

Suppose Xt is a strictly stationary, and m-dependent time series with E[Xt] = 0, E[X2
t ] <

∞. Then

ST =
1√
T

T7

t=1

Xt =
√
TX

D→ N(0, σ2
m)(T → ∞)

where

σ2
m =

m7

h=−m

γ(h) = γ(0) + 2
m7

h=1

γ(h)

This is a generalization of the standard CLT to m-dependence.

Definition 23

Preliminaries: We say {Xi,j, 1 " j " ni, 1 " i " ∞} forms a triangular array of mean
zero L2 random variables, if E[Xi,j] = 0, E[X2

i,j] < ∞, for each i-fixed Xi,1, . . . , Xi,ni
are

independent, and ni < ni+1

X1,1, . . . , X1,n1

X1,1, . . . , . . . , X2,n2 ←− Row-wise random variables are independent
..., . . . , . . . , . . . , . . . , . . .

Theorem 3: Lindeberg-Feller CLT for triangular array

et {Xi,j, 1 " j " ni, 1 " i " ∞} be a triangular array of mean zero L2-rvs. Define
σ2
i =

9ni

j=1 V ar(Xi,j) and Si =
1
σi

9ni

j=1 Xi,j (Row-wis sum standardized).
(Lindeberg’s Condition) If for ε > 0,

1

σ2
i

ni7

j=1

E[Xi,j
2

{Xi,j>εσi}] → 0 as i → ∞

Then Si
D→ N(0, 1)

The indicator in the condition is looking for the variable that contributes a non-negligible
varaince. The whole summation is calculating the percentage of the variance that are con-
tributed by those variables with significant variance. Sometimes it’s called a uniform asymp-
totic negligible condition, it’s saying that all of the random variable are negligible in the
sense none of them contribute significantly to the variance.
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Proof. of M-dependent CLT
”Bernstein Blocking Argument”

aT = Big Block Size, m = little block size

Assume aT → ∞ as T → ∞, aT
T

→ 0.

N = number of blocks =
?

T

m+ aT

@

Bj = {i : (j − 1)(aT +m) + 1 " i " jaT + (j − 1)m}
bj = {i : jaT + (j − 1)m+ 1 " i " j(aT +m)}

Since aT ↖ ∞, for T sufficiently large, aT > m and so by m-dependence,
9

t∈Bj
Xt is indepen-

dent of
9

t∈Bk
Xt(j ∕= k). Similar for bj, bk, j ∕= k.

1√
T

=
1√
T

N7

j=1

7

t∈Bj

Xt =
1√
T

∼N
j=1

7

t∈bj

+Remainder

= G1,T +G2,T +G3,T

V ar(G2,T ) =
1

T

N7

j=1

E

+

-(
7

t∈bj

Xt)
2

4

6 =!"#$
strict stationary

N

T
E

A
(

m7

t=1

Xt)
2

B

E

A
(

m7

t=1

Xt)
2

B
=

m7

t=1

m7

s=1

E [XtXs] =
m7

t=1

m7

s=1

γ(|t− s|) =
m−17

h=1−m

(m− |h|)γ(h) < ∞

=⇒ V ar(G2,T ) =
N

T
∗ constant =

?
T

aT +m

@
/T ∗ constant → 0 [aT → ∞]

Hence, as T → ∞, aT → ∞, we will have G2,T = op(1) by Chebyshev’s Inequality.

Notice G1,T = 1√
T

9N
j=1

9
t∈Bj

Xt =
9N

j=1

!
t∈Bj

Xt
√
T

, and we let Yj,T =

!
t∈Bj

Xt
√
T

(this variable
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forms a triangular array, imagining each row shares the same T )

V ar(G1,T ) =
N7

j=1

V ar(Yj,T )

V ar(Yj,T ) = V ar(Y1,T )

=
1

T
E

+

-
;

aT7

t=1

Xi

<2
4

6

=
1

T

aT7

t=1

aT7

s=1

E[XtXs]

=
1

T

aT−17

h=1−aT

(aT − |h|)γ(h)

=
1

T

h=m7

h=−m

(aT − |h|)γ(h) if |h|! m, then γ(h) = 0 by m-independence

=⇒ V ar(G1,T ) =
N

T

m7

h=−m

(aT − |h|)γ(h) ≈ 1

aT

m7

h=−m

(aT − |h|)γ(h) −→
T→∞

m7

h=−m

γ(h)

Hence we know the variance of G1,T is bounded.
Check Lindeberg’s Condition: σ2

N = V ar(G1,T ) ≈ const, so we must show:

N7

j=1

E

+

-Y 2
j,T!"#$
iid

{|Yj,T |>εσN}

4

6

=N ∗ E
C
Y 2
j,T {|Yj,T |>εσN}

D
→ 0 as T → ∞

Aside E[|Y |2+δ] !
δ>0

E[|Y |2+δ
{|Y |>ε}] ! εδE[|Y |2 {|Y |>ε}], so we have

E[|Y |2 {|Y |>ε}] "
E[|Y |2+δ]

εδ

It may be shown that E[|Y 2+δ
j,T ] " const

E
aT
T

F 2+δ
2 , so

N ∗ E
C
Y 2
j,T {|Yj,T |>εσN}

D
" N

(εσN)δ
const

GaT
T

H 2+δ
2

=
const
(εσN)δ

NaT
T

GaT
T

H δ
2 → 0(T → ∞)

This implies G1,T

σN

D→ N(0, 1), and since σ2
N →

9m
h=−m γ(j), we have

G1,T
D→ N

;
0,

m7

h=−m

γ(h)

<
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Since, at the beginning, we’ve shown that G2,T = op(1), so we have

1√
T

T7

t=1

Xt
D→ N

;
0,

m7

h=−m

γ(h)

<

as required.
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1.13 2 + δ Moment Calculation
We want to show that

E[|Y1,t|2+δ] " constant
GaT
T

H 2+δ
2

, where Y1,T = 1√
T

9aT
t=1 Xt, and aT = Big Block Size → ∞, (T → ∞), aT

T
→ 0. Xt are

m-denpendent random variables. Want

E[|Xi|2+δ] < ∞(δ > 0) ⇔ consta
2+δ
2

T

Tools: Rosenthal’s Inequality. If X1, . . . , Xn are independent RV’s with E[|Xi|2+δ] < ∞(δ > 0),
then

E[|
n7

i=1

Xi|2+δ] " cpn
δ/2

n7

i=1

E[|Xi|]2+δ

In particular, if X1, . . . , Xn are iid, then

E[|
n7

i=1

Xi|2+δ] " cpn
(2+δ)/2E[|X1|]2+δ

For proof: see Petrov, Limit theorems of probability theory, P59.
Tool: For arbitrary RV’s X1, . . . , Xn,

E[|
n7

i=1

Xi|2+δ] " n(δ+2)−1

n7

i=1

E[|Xi|]2+δ

proof: By Jensen’s Inequality, for all real numbers a1, . . . , an

| 1
n

n7

i=1

ai|2+δ" 1

n

n7

i=1

|ai|2+δ

=⇒ |
n7

i=1

ai|2+δ" n(2+δ)−1

n7

i=1

|ai|2+δ

Replace ai with Xi, take expectation.

Proof.
aT7

t=1

Xt =
m7

j=0

7

∀k mod m=j,t=k+1
1!t!aT

Xt

so
9

∀k mod m=j,t=k+1
1!t!aT

Xt, variables in this sum separated by at least m-time steps, and are hence
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iid. So we got,

E

+

-
IIIII

aT7

t=1

Xt

IIIII

2+δ
4

6 " (m+ 1)(2+δ)−1

m7

j=0

E

+

,-

IIIIIII

7

∀k mod m=j,t=k+1
1!t!aT

Xt

IIIIIII

2+δ4

56

" (m+ 1)(2+δ)−1

m7

j=0

=
aT

m+ 1

> 2+δ
2

cpE[|X1|]2+δ

= (m+ 1)(2+δ)−1m

=
aT

m+ 1

> 2+δ
2

cpE[|X1|]2+δ

= const ∗ aT
2+δ
2
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1.14 Linear Process CLT
If Xt ∼ m-dependent, strictly stationary, E[Xt] = 0, E[X2

t ] < ∞, then

1√
T

T7

t=1

Xt
D→ N(0,

m7

h=−m

γ(h))

EX:Xt =
9m

t=0 ψlWt−l, whhere {wt}t∈Z is a strong White noise in L2.
A general linear process

Xt =
∞7

l=0

ψlWt−l

is not m-dependent, because it depends on the white noise arbitrarily back to the past.

Theorem 4: Basic Approximation Theorem BAT

Suppose Xn is a sequence of random variables so that there exists an array {Ym,n,m, n ! 1},

1. For each fixed m, Ym,n
D→ Ym as n → ∞.

2. Ym
D→ Y , as m → ∞ for some random variable Y

3. limm→∞ lim supn→∞P (|Xn − Ym,n|> ε) = 0, ∀ε > 0

Then Xn
D→ Y as n → ∞.

Normally, Ym,n is often an ”m-dependent approximation to Xn. Proof is in Shumway and
Stoffer.

Theorem 5: Linear Process CLT

Suppose

Xt =
∞7

l=0

ψlWt−l

is a causal linear process with
9∞

l=0|ψl|< ∞, {Wt}t∈Z is a strong white noise in L2. Then
if St =

1√
T

9T
t=1 Xt,

ST
D→ N(0,

∞7

l=−∞

γ(l))(T → ∞)

,where the variance of the ST is the ”long-run variance” of Xt
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Xt is strictly (and weakly) stationary.

γ(h) = E[XtXt+h] = E

A; ∞7

l=0

ψlWt−l

<; ∞7

j=0

ψjWt+h−j

<B

Fubin’s Theorem =
∞7

l=0

∞7

j=0

ψlψj E[Wt−lWt+h−j! "# $
∕=0, if j=l+h

]

=
∞7

l=0

ψlψl+hσ
2
W

∞7

h=−∞

γ(h) =
∞7

h=−∞

IIIII

∞7

l=0

ψlψl+hσ
2
W

IIIII "
∞7

l=0

|ψl|
∞7

h=−∞

|ψh|σ2
W < ∞

so
9∞

h=−∞ γ(h) is well-defined.

E[ST ] = E

;
1√
T

T7

t=1

Xt

<
= 0 (E[Xt] = 0)

V ar(ST ) =
1

T

T7

t=1

T7

s=1

E[XtXs] =
1

T

T−17

h=1−T

(T − |h|)γ(h)

=
T−17

h=1−T

=
1− |h|

T

>
γ(h)

−→
by Dominated Convergence

∞7

h=−∞

γ(h)

Note:
G
1− |h|

T

H
γ(h) " |γ(h)|! "# $

summable

Proof. Define Xt,m =
9m

l=0 ψlWt−l, ST,m = 1√
T

9T
t=1 Xt,m (m-dependent approximation to ST )

1. By the m-dependent CLT

ST,m
D→ N(0,

m7

h=−m

γm(h)) =: S ′
m, γm(h) = E[Xt,mXt+h,m]

2. By Dominated Convergence
9m

h=−m γm(h) −→
m→∞

9∞
h=−∞ γ(h) , and hence

S ′
m

D→ N(0,
∞7

h=−∞

γ(h))
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3.

E[(ST,m − ST )
2] =

1

T
E

+

-
;

T7

t=1

(Xt −Xt,m)

<2
4

6

"
T−17

h=1−T

=
1− |h|

T

> ∞7

l=m+1

|ψl||ψl+h|σ2
W

"
∞7

l=m+1

|ψl|
; ∞7

h=−∞

|ψh|
<
σ2
W → 0, m → ∞

so condition (3) of the BAT is satisfied using Chebyshev’s Inequality. Hence

ST =
1√
T

T7

t=1

Xt
D→ N(0,

∞7

h=−∞

γ(h))
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1.15 Aymptotic Properties of Empirical ACF
If X1, . . . , XT is an observed time series that we think was generated by a stationary process,
Cov(Xt, Xt+h) Does not depend on t.

γ̂(h) =
1

T

T−h7

t=1

E
Xt −X

F E
Xt+h −X

F

ρ(h) = Corr(Xt, Xt+H) =
γ(h)

γ(0)
, ρ̂(h) =

γ̂(h)

γ̂(0)

Questions:

1. Are γ̂ and ρ̂ consistent?

2. What is the approximate distribution of γ̂(h) and ρ̂(h)?

Answer:

1. Consistency: By adding and subtracting µ in the difinition of γ̂(h), we may assume WLOG
that E[Xt] = 0.
Suppose {Xt}t∈Z is strictly stationary, and

Xt = g(Wt,Wt−1, . . . , )

which is a Bernoulli shift.
Then

X =
1

T

T7

t=1

Xt
P−→ 0

by the ergodic theorem (Xt is Ergodic).
Further more

γ̂(h) =
1

T

T7

t=1

(Xt −X)(Xt+h −X)

=
1

T

T−h7

t=1

XtXt+h

! "# $
Dominant term

− X

T

T−h7

t=1

Xt

! "# $
P
→0

− X

T

T7

t=1

Xt+h

! "# $
P
→0

+
T − h

T
X

2

! "# $
P
→0

Note: E[XtXt+h] = γ(h), XtXt+h = gh(Wt+h,Wt+h−1, . . . , ) (Still Ergodic). Again by the
Ergodic Theorem:

1

T

T−h7

t=1

XtXt+h
P→ γ(h)

which gives us

γ̂(h)
P→ γ(h), ρ̂(h) =

γ̂(h)

γ̂(0)

P→ ρ(h)
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under strict stationarity and E[X2
t ] < ∞.

2. Distribution of γ̂(h): Consider simple (but perhaps most important) case: Xt is a strong
white noise. E[X4

t ] < ∞
Finite 4th moment assumption is not really needed here but I will explain why it is classically
assumed.

γ̂(h)
P→ 0 in this case by strong white noise

Similarly as before

γ̂(h) =
1

T

T−h7

t=1

XtXt+h

! "# $
γ̃(h)

+smaller terms

Hence,

E[γ̃(h)) =
1

T

T−h7

t=1

E[XtXt+h] = 0(h ! 1)

V ar(γ̃(h)) = E[γ̃2(h)]

=
1

T 2

T−h7

t=1

T−h7

s=1

E[XtXt+hXsXs+h]! "# $
∕=0↔t=s

=
1

T 2

T−h7

t=1

E[X2
t X

2
t+h]

=
T − h

T 2
σ4
x (E[X2

t ] = σ2
X)

Therefore,
var(

√
T γ̃(h)) −→

T→∞
σ4
X

Theorem 6

If Xt is a strong white noise with E[X4
t ] < ∞,

√
T γ̃(h) =

1√
T

T−h7

t=1

XtXt+h! "# $
Not iid

D→ N(0, σ4
X)

The convergence can be obtained by M(h+1)-dependent CLT and Martingale CLT.

It follows that √
T γ̂(h)

D→ N(0, σ4
X)

Since γ̂(0)
P→ σ2

X , by Slutsky’s Theorem,

√
T
γ̂(h)

γ̂(0)
=

√
T ρ̂(h)

D→ N(0, 1)
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Useful Tool: If Xt is a strong white noise,
G
−Zα/2√

T
,
Zα/2√

T

H
is a (1− α) Prediction Interval for ρ̂(h)

for all h (T large), where Φ(Zα) = 1− α. Hence
G
−1.96√

T
, 1.96√

T

H
is an approximate 95% prediction

interval for ρ̂(h) assuming the data is generated by a strong white noise process.
Hence, if the data is a strong white noise, for the most of time the ACF should lie in this interval.
Also, since our empirical autocorrelation is consistent, we know if the true autocorrelation is non-
zero, for T large enough, the empirical autocorrelation will be outside of this interval.

Example 8
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1.16 Interpreting the ACF
We have an excellent understanding of how ρ̂(h) behaves when X1, . . . , XT is a strong white noise

ρ̂(h)
P→ 0 (h ! 1) ρ̂(h)

D≈ N

=
0,

1

T

>
(T is large)

What happens when we calculate the Empirical ACF for non-stationary data?

Example 9

Xt = t+Wt (Wt ∼ S.W.N.), we can see that Xt has a linear trend.

X =
1

T

T7

t=1

t+Wt =
1

T

T (T + 1)

2
+W =

T + 1

2
+W

γ̂(h) =
1

T

T−h7

t=1

=
t+Wt −

T + 1

2
−W

>=
t+ h+Wt+h −

T + 1

2
−W

>

=
1

T

T−h7

t=1

=
t− T + 1

2

>=
t+ h− T + 1

2

>
+ smaller terms

=
1

T

T−h7

t=1

=
t− T + 1

2

>2

+
1

T

T−h7

t=1

h

=
t− T + 1

2

>
+ smaller terms

≈ 1

T

T/27

t=1

t2 +
h

T

J
(T − h)(T − h+ 1)

2
− (T + 1)(T − h)

2

K

≈ O(T 2)! "# $
Dominated

+O(T )

It follows in this case that

γ̂(h)

T 2
→ Const for all h (T → ∞)

Hence,

ρ̂(h) =
γ̂(h)/T 2

γ̂(0)/T 2

P→ 1, ∀h

Moral: If Xt has a trend that is not properly remove, ρ̂(h) is likely to be large!!!
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1.17 Moving Average Processes
Suppose Xt is stationary. Identify serial dependence using ACF ρ̂(h)

Posit Xt = g(Wt,Wt−1], . . .) =
9∞

l=0 ψlWt−l [Linear Process].
Not feasible to estimate infinitely many parameters {ψl}∞l=0

Assume coefficients arise from a parsomonious linear model for Xt

Definition 24

Suppose {Wt}t∈Z is a strong white noise with V ar(Wt)σ
2
W < ∞. We say Xt is a Mov-

ing Average Process of order q (Abbrev. MA(q)) if there exists coefficient θ1, . . . , θq ∈
R, θq ∕= 0, so that

Xt = Wt + θ1Wt−1 + . . .+ θqWt−q =

q7

l=0

θlWt−l (θ0 = 1)

which is a truncated linear process for order q

Definition 25

The Backshift operator, B, is defined by

BjXt = Xt−j

B is assumed further to be linear in the sense that for a, b ∈ R,

(aBj + bBk)Xt = aBjXtbB
kXt = aXt−j + bXt−k

Example

∇Xt = first diff. of Xt = (1− B)Xt
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Definition 26

We sat θ(x) = 1 + θ1x+ . . . , θqX
q is the Moving Average Polynomial. If Xt ∼ MA(q),

Xt = Wt + θ1Wt−1 + . . .+ θqWt−q = θ(B)Wt

which is succinct expression defining MA(q)

Properties of MA(q) Processes:

1. MA(q) process= Strong White Noise.

2. If Xt ∼ MA(q), then

E[Xt = E

A
q7

k=0

θlWt−l

B
= 0

V ar(Xt) = E

+

-
;

q7

l=0

θlWt−l

<2
4

6 =

q7

l=0

θ2l σ
2
W

γ(h) = Cov(Xt, Xt+h) = E

A;
17

l=0

θlWt−l

<;
q7

k=0

θkWt+h−k

<B

=

%9q−|h|
j=0 θjθj+hσ

2
W , 0 " h " q

0, h > q

ρ(h) =
γ(h)

γ(0)
=

'
)

*

!q−|h|
j=0 θjθj+h!q

j=0 θ
2
j

, 0 " h " q

0 h ! q + 1

Note: By choose θ1, . . . , θq appropriately, we can get any ACF we want, ρ(h), 1 " h " q

3. Xt ∼ MA(q) =⇒ Xt is q-dependent
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1.18 Autoregressive Processes

Definition 27

Suppose {Wt}t∈Z is a strong white noise with V ar(Wt) < ∞. We say Xt is an Autoregres-
sive Process of order 1 (Abbrv. AR(1)) if there exists a constant φ so that

Xt = φXt−1 +Wt, t ∈ Z

Using Backshift operator, this may also be expressed as

(1− φB)Xt = Wt

Interpretation:

• Prediction: Form a linear model (Regression) for predicting Xt as Xt = φXt−1+Wt, where
Xt is the dependent variable and Xt−1 is the covariate/independent variable.

• Markovian Property:
Xt|Xt−1, Xt−2, . . . = Xt|Xt−1

Question: Does there exist a stationary process Xt satisfying

Xt = φXt−1 +Wt

Xt = φXt−1 +Wt, z ∈ Z
= φ(φXt−2 +Wt−1) +Wt = φ2Xt−2 + φWt−1 +Wt

...

= φkXt−k +
K−17

j=0

φjWt−j

So ,if |φ|> 1, Xt blows-up. Suppose |φ|< 1,, we have

L2 sense−→ 0 +
∞7

j=0

φjWt−j ← Causal Linear Process

Moreover, if Xt =
9∞

j=0 φ
jWt−j , Xt is strictly stationary, and

Xt =
∞7

j=0

φjWt−j =
∞7

j=1

φjWt−j +Wt

= φ

∞7

j=1

φj−1Wt−j +Wt

= φ
∞7

j=0

φjWt−1−j +Wt

= φXt−1 +Wt
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Xt satisfies AR(1) equation

Theorem 7

If |φ|< 1, then there exists a strictly stationary and Causal Linear Process Xt so that

Xt = φXt−1 +Wt

What if |φ|> 1? If Xt = φXt−1 +Wt, t ∈ Z

Xt = Xt+1/φ−Wt+1/φ

=
...

= Xt+k/φ
k −

k7

j=1

Wt+j

φj

L2−sense−→ −
∞7

j=1

Wt+j

φj

This sequence is strictly stationary! (Bernoulli-Shift). It depends on the future. Normally we try
to avoid this.
What if |φ|= 1?
In this case there is no stationary process Xt so that

Xt = φXt−1 +Wt

Proof. φ = 1. If Xt = Xt−1 +Wt, then suppose it’s stationary

Xt =
t7

j=1

Wj +X0

=⇒ Xt −X0 =
t7

j=1

Wj

V ar(Xt −X0) = V ar(Xt) + V ar(X0)− 2cov(Xt, X0) " 4V ar(X0)

V ar(
t7

j=1

Wj) = tσ2
W → ∞, as t → ∞

Contradiction.

Properties of Causal AR(1) [|φ|< 1].

1. The span of dependence of Xt is ”infinite”

Xt =
∞7

l=0

φlWt−l
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2. ACF.

V ar(Xt) = E

+

-
; ∞7

l=0

φlWt−l

<2
4

6 =
∞7

l=0

φ2lσ2
W = σ2

W/(1− φ2)

γ(h) = cov(Xt, Xt+h)

= E

A; ∞7

l=0

φlWt−l

<; ∞7

k=0

φkWt+h−k

<B

=
∞7

l=0

φlφl+hσ2
W

= φh

∞7

l=0

φ2lσ2
W

= φhσ2
W/(1− φ2)

Hence

ρ(h) =
γ(h)

γ(0)
= φh, h ! 0

[Note: this decays geometrically in the lag parameter]

Definition 28

We say Xt follows an autoregressive process of order p (Abbrv. AR(p)) if there exists
coefficients φ1, . . . ,φp ∈ R (φp ∕= 0) so that

Xt = φ1Xt−1 + . . .+ φpXt−p +Wt

We define
φ(x) = 1− φ1x− . . .− φpx

p

to be the Autoregressive Polynomial. Xt ∼ AR(p), if

φ(B)Xt = Wt
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1.19 Autoregressive Moving Average Processes
Moving Average Poly.

θ(x) = 1 + θ1x+ . . .+ θqx
q, (θq ∕= 0)

Autoregressive Poly.
φ(x) = 1− φ1x− . . .− φpx

p (φp ∕= 0)

If Wt ∼Strong white noise,

Xt = θ(B)Wt (Xt ∼ MA(p))

φ(B)Xt = Wt (Xt ∼ AR(p))

Why not combine the two!!!

Definition 29

Given a strong white noise sequence Wt, we say that Xt is an Autoregressive Moving Aver-
age Process of orders p&q (Abbrv, ARMA(p, q)), if

φ(B)Xt = θ(B)Wt

where
φ(x) = 1− φ1x− . . .− φpx

p (φp ∕= 0)

θ(x) = 1 + θ1x+ . . .+ θ1x
1, (θq ∕= 0)

This implies the model

Xt = φ1Xt−1 + . . .+ φpXt−p +Wt + θ1Wt−1 + . . .+ θqWt−q

Using ARMA models to model Autocorrelation:
MA(q):ACF may be specified at lags 1, . . . , q
AR(p): ACF has geometric decay/oscillations
ARMA combine the two

Remark. Parameter Redundancy Consider Xt = Wt (Xt ∼ MA(0)), then 0.5Xt−1 = 0.5Wt−1

=⇒ Xt − 0.5Xt−1 = Wt − 0.5Wt−1 =⇒ Xt ∼ ARM(1, 1)

where
φ(z) = 1− 0.5z =⇒ zero of φ is z0 = 2

θ(z) = 1− 0.5z =⇒ zero of θ is z0 = 2

Note if we observe the ARMA above, we know we can degrade it to a MA(0) model as above.
Parameter redundancy manifests as shared zeros in the φ&θ. We always assume models are ”re-
duced” by factoring and dividing away common zeros in φ(z) and θ(z).
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Definition 30

We say an ARMA(p, q) model is causal if there exists Xt satisfying φ(B)Xt = θ(B)Wt,
and

Xt =
∞7

l=0

ψlWt−l

which is a Causal Linear Process Solution

Definition 31

We say an ARMA(p, q) model is invertible if there exists Xt satisfying φ(B)Xt = θ(B)Wt,
and

Wt =
∞7

l=0

πlXt−l

Wt can be expressed as a linear function of Xt

Causality+Invertibility =⇒ Information in {Xt}t!T is the same as Information in {Wt}t!T

Theorem 8: Causality

By the fundamental theorem of algebra, the autoregressive polynomial φ(z) has p roots, say
z1, . . . , zp ∈ C (Complex Plane).
If ρ = min1!j!p|zj|> 1, then there exists a stationary and causal Xt to the ARMA equa-
tions: φ(B)Xt = θ(B)Wt, Xt =

9∞
l=0 ψlWt−l.

The coefficients {ψl}∞l=0 satisfy
9∞

l=0|ψl|< ∞ [In fact: |ψl|" 1
ρl
← Geometric Decay]. And

ψ(z) =
∞7

l=0

ψlz
l =

θ(z)

ψ(z)
, |z|" 1

In essence, Xt =
θ(B)
φ(B)

Wt =
9∞

j=0 ψjB
jWt

Key: 1
φ(z)

=
9∞

j=0 ψjz
j, |z|" 1 ( 1

φ
has a convergent power series representation |z|" 1.)
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Theorem 9: Invertibility

If Z1, . . . , Zq are the zeros of θ(z), and min1!j!q|zi|> 1, then Xt is invertible,

Wt =
∞7

l=0

πlXt−l

Coefficients {πl}∞l=0 satisfy

π(z) =
∞7

l=0

πlz
l =

φ(z)

θ(z)
, |z|" 1

which is a convergent power series.
Moral: When we look for coefficients φ1, . . . ,φp, θ1, . . . , θq, we want to do so in such a way
that

φ(z), θ(z) ∕= 0, |z|" 1

So the zeros of θ(z),φ(z) are not in the unit circle.
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1.20 Proof of Causality&Stationaryity condition for ARMA Processes
Suppose ψ(z) =

9∞
l=0 ψlz

l, where
9∞

l=0|ψl|< ∞. Define ψ(B)Xt =
9∞

l=0 ψlXt−l.

Lemma 10

If {Xt}t∈Z is a stationary (in any sense) process in L2, then

Yt =
∞7

l=0

ψlXt−l = ψ(B)Xt

is stationary (in the same sense).

Proof. If Yt is well-defined, stationarity follows easily. Since if Xt is strictly stationary =⇒ Yt

strictly stationary. (Bernoulli shift of Xt).
If Xt is weakly stationary. (Assume E[Xt] = 0,

E[YtYt+h] = E

A; ∞7

l=0

ψlXt−l

<; ∞7

k=0

ψkXt+h−k

<B
=

∞7

l=0

∞7

k=0

ψlψkγX(h− k + l)

which doesn’t depend on t.
Yt is well-defined as a limit on L2; By Cauchy-Schwarz, γX(h) " V ar(X0). So if Yt,n =9n

l=0 ψlXt−l, then for n > m,

E[(Yt,n − Yt,m)
2] = E

+

-
;

n7

l=m+1

ψlXt−l

<2
4

6 =
n7

l=m+1

n7

k=m+1

ψlψkγX(k − l) " V ar(X0)
n7

l=m+1

n7

k=m+1

|ψl||ψk|

" V ar(X0)

;
n7

l=m+1

|ψL|
<2

→ 0 Since
∞7

l=0

|ψl|< ∞

Therefore, Yt = limn→∞ Yt,n is well defined in L2

Corollary 11

Notice then that if Xt is stationary, α(z) =
9∞

l=0 αlz
l, β(z) =

9∞
l=0 βlz

l, with
9

|αl|<
∞,

9
|βl|< ∞. Then

Yt = α(B)β(B)Xt =
∞7

l=0

;
l7

j=0

αjβl−j

<
Xt−l

Where
9l

j=0 αjβl−j is the coefficient of zl in the power series α(z)β(z)

Moral:Iteratively applying Backshift operations has the same ”Algebra” as power series multi-
plication.
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Proof. Causality Theorem. Suppose φ(Z)=Autoregressive Polynomial has zeros z1, . . . , zp ∈ C
so that min1!i!p|zi|> q

Then there must exist ε > 0 so that
min
1!i!p

|zi|> 1 + ε

Hence the function ξ(z) = 1
φ(z)

is Holomorphic (Analytic) on the set {z ∈ C : |z|" 1+ ε
2
}. Hence,

ξ(z) must have a power series representation converging on |z|" 1 + ε
2

ξ(z) =
∞7

l=0

ξlz
l
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Since
9∞

l=0 ξ(1+
ε
2
)l < ∞, the sequence |ξl|(1+ ε

2
)l " k for some k ∈ R. Hence |ξl|" k(1+ ε

2
)−l,

and hence
9∞

l=0|ξl|< ∞.
Define Xt = ξ(B)θ(B)Wt, then

φ(B)Xt = φ(B)ξ(B)θ(B)Wt = θ(b)Wt

Hence Xt = ξ(B)θ(B)Wt =: θ(B)
φ(B)

Wt solves the ARMA equations.

Remark. If φ(z) = 0, |z|< 1 (zeros inside the unit circle), then

1

φ(z)
=

∞7

−∞
ξlz

l, 1− ε < |Z|< 1 + ε

In this case, Xt = ξ(B)θ(B)Wt =
9∞

l=−∞ ψlWt−l (Two sided Linear process, Not Causal, future
dependent).
If φ(z) = 0 for some |z|= 1m there is no stationary solution [Unit Root Time Series].
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1.21 ARMA Processes: Example
Consider a ARMA(2, 2) model,

Xt =
1

4
Xt−1 +

1

8
Xt−1 +Wt −

5

6
Wt−1 +

1

6
Wt−2

Is there a stationary and Causal Solution Xt? Is it invertible? Is there parameter redundancy?

AR poly: φ(z) = 1− 1

4
z − 1

8
z2

MA poly: θ(z) = 1− 5

6
z +

1

6
z2

Roots of φ :
2±

√
4 + 4 ∗ 8
−2

= −1± 3 = −4, 2

Roots of θ : 2, 3

=⇒ φ(z) =
1

8
(z + 4)(z − 2), θ(z) =

1

6
(z − 2)(z − 3)

and they share a common zero, shows parameters are redundant.
Xt satisfies an ARMA(1, 1) with

φ(z) = −1

8
(z + 4), θ(z) =

1

6
(z − 3)

Since the roots of φ and θ are outside of the unit circle in . Xt is stationary causal and invertible.
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Example 10

Suppose Xt = −1
4
Xt−1 + Wt − 1

3
Wt−1, then Xt ∼ ARMA(1, 1). φ(z) = 1 + 1

4
z =⇒

Root is −4. So Xt is stationary and Causal, and can be represented as a linear process:

Xt =
∞7

l=0

ψlWt−L

We know

ψ(z) =
∞7

l=0

ψlz
l =

θ(z)

φ(z)
, |z|" 1

=⇒ ψ(z)φ(z) = θ(z) =⇒ Calculate ψl by matching coefficients

Note:
φ(z) = 1 +

1

4
z, θ(z) = 1− 1

3
z

ψ(z)φ(z) = θ(z)

=⇒ z0 : ψ0 = 1

=⇒ z1 :
ψ0

4
+ ψ1 = −1

3
=⇒ ψ1 = − 7

12

=⇒ z2 :
ψ1

4
+ ψ2 = 0 =⇒ ψ2 = − 7

48
...

=⇒ zl :
ψl−1

4
+ ψl = 0 =⇒ ψl = − 7

12

=
1

4

>l−1

Where ψl−1

4
+ ψl is called a finite linear difference equation and it must be solved. It is

automated in the ARMAtoMA function in R.

If Xt is a stationary and Causal solution to the ARMA(p, q) model

Xt =
∞7

j=0

ψjWt−j

γX(h) = E[XtXt+h] = E

A; ∞7

j=0

ψjWt−j

<; ∞7

k=0

ψkWt+h−k

<B

= σ2
W

∞7

j=0

ψjψj+h

Coefficients ψj can be solved for as in the previous example by solving a finite difference equation.
Automated in the ARMAacf function in R.
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1.22 L2 Stationary Process Forecasting
Suppose we observe a time series

X1, . . . , XT

that we believe has been generated by an underlying stationary process. We would like to produce
an h-step ahead forecast

X̂T+h = X̂T+h|T = f(XT , . . . , X1)

to forecast XT+h. Ideally X̂T+h would minimize the prediction error

L(XT+h, X̂T+h) = min
f

L(XT+h, f(XT , . . . , X1))

where L is a Loss function.
Frequently, the loss function is taken to be Mean-Squared Error (MSE)

L(XT+h, X̂T+h) = E

JG
XT+h − X̂T+h

H2
K

when using MSE, it is natural to consider

L2 = {Random variable X : E[X2] < ∞}

L2 is a Hilbert space when equipped with the inner product

〈x, y〉 = E[xy]

Hilbert spaces are generalizations of Euclidean space (Rd) in which the geometry and notion of
projection are preserved

proj(x → y) = 〈x, y〉 y

Theorem 12: Projection Theorem

We say M " L2 is a closed linear subspace, if

• Linearity: x, y ∈ M,α, β ∈ R,αx+ βy ∈ M

• Closed: If Xn → X (E[(Xn −X)2] → 0), and Xn ∈ M , then X ∈ M

If M is a closed linear subspace in L2 and x ∈ L2, then exists a unique x̂ ∈ M so that

E
C
(x− x̂)2

D
= inf

y∈M
E
C
(x− y)2

D

Moreover, x̂ satisfies

• Prediction Equations/Normal Equations: x− x̂ ∈ M⊥ =⇒ E[(x− x̂)h] = 0, ∀y ∈ M

In MES forecasting, we want to choose X̂T+h satisfying

E
C
(xT+h − x̂T+h)

2D = inf
y∈M

E
C
(xT+h − y)2

D

where M is a closed linear subspace based on the available data.
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1. M = M1 = {z : z = f(xT , . . . , X1), f is any Borel Measurable function} In this case,

x̂T+h = E[xT+h|xT , . . . , x1]

which is the ideal situation. Unfortunately, M1 is enormous and complicated! (you have lots
of functions to consider)

2. M = M2 = span{1, xT , . . . , x1} = {y : y = α0 +
9T

j=1 αjxj} where α0, . . . ,αT ∈ R so
they are the linear functions of x1, . . . , xT .
x̂T+h is called the Best Linear Predictor (BLP)
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1.23 Best Linear Prediction
Suppose Xt is a (weakly) stationary time series. Best linear prediction entails finding x̂T+h so that

E[(xT+h − x̂T+h)
2] = inf

y∈M2

E[(xT+h − y)2]

where

M2 = span{1, xT , . . . , x1} = {y : y = α0 +
T7

j=1

αjxj}

x̂T+h is the best predictor among all linear functions of xT , . . . , x1.

Definition 32

If x̂ satisfies
E[(x− x̂)2] = inf

y∈M
E[(x− y)2]

we say x̂ is the projection of x onto M . Write

x̂ = proj(x|M)

BLP x̂T+h = proj(xT+h|span{1, xT , . . . , x1})

Consider the case when h = 1. The BLP is of the form

x̂T+1 = φT,0 +
T7

j=1

φT,jxj
∼= φT,0 +

T7

j=0

φT,j(xj − µ)

where µ = E[xt]. x̂T+1 must satisfy the prediction equations, which is

E[(xT+1 − x̂T+1)y] = 0, ∀y ∈ span{1, xT , . . . , x1}

In particular,
E[(xT+1 − x̂T+1) ∗ 1] = 0, y = 1

E[(xT+1 − x̂T+1) ∗ xj] = 0, 1 " j " T, y = xj

Since E[xj − µ] = 0, we have

0 = E[xT+1 − x̂T+1] = µ− φT,0 + 0 =⇒ φT,0 = µ

Before proceeding, note that this implies

E[(xT+1 − x̂T+1)xj] = E[(xT+1 − µ− (x̂T+1 − µ))(xj − µ)]

so we may assume WLOG µ = 0 =⇒ E[xixj] = γ(j − i)
Therefore, (expand the last equation above and notice φT,0 = 0

0 = E[(xT+1 − x̂T+1)xk] = γ(T + 1− k)−
T7

j=1

φT,jγ(j − k), 1 " k " T

=⇒
T7

j=1

φT,jγ(j − k) = γ(T + 1− k)
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which is a linear system of equations of φT,1 . . . ,φT,T

If

γ
T
=

.

/0
γ(T )

...
γ(1)

1

23 ∈ RT ,ΓT = [γ(j − k), 1 " j, k," T ] ∈ RT×T

and φT = (φT,1, . . . ,φT,T )
T ∈ RT , this linea system may be expressed as

ΓTφT
= γ

T
=⇒ φ

T
= Γ−1

T γ
T

The BLP is then of the form

x̂T+1 = φT

T
XT = (Γ−1

T γ
T
)TXT , where

XT = (x1, . . . , xT )
T

Theorem 13

If γ(0) > 0, and γ(h) → 0 as h → ∞, then ΓT is non-singular.
Takeaway: Most stationary processes (those whose serial dependence decays over time)
have non-singular ΓT

Note that x̂2
T+1 = γT

T
Γ−1
T XTX

T
TΓ

−1
T γ

T

=⇒ E[x̂2
T+1] = γT

T
Γ−1
T γ

T

also, since E[xT+1XT ] = γ
T

=⇒ E[xT+1x̂T+1] = γT
T
Γ−1
T γ

T
It follows that the Mean-Squared prediction error is

P t
T+1 = E[(xT+1 − x̂T+1)

2] = E[x2
T+1 − 2xT+1x̂T+1 + x̂2

T+1]

= γ(0)− 2γT

T
Γ−1
T γ

T
+ γT

T
Γ−1
T γ

T
= γ(0)− γT

T
Γ−1
T γ

T

The mean squared prediction error has a simple, computable form depending on γ(h), 1 " h " T .
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1.24 Partial Autocorrelation
If Xt ∼ ARMA(p, q), we might be able to identify p, q by looking at the ACF.

Xt ∼ AR(p) =⇒ ACF has geometric decay
Xt ∼ MA(p) =⇒ ACF is non-zero at first q lags, then zero beyond.

ACF if an ARMA(p, q) model can be calculated by calculating the linear process coefficients
{ψl}∞l=0

Automated in R using ARMAacf function.

Definition 33

The partial autocorrelation function of a stationary process {Xt}t∈Z is

φh,h = Corr (Xt+h − Proj(Xt+h|Xt+h−1, . . . , Xt+1), Xt − Proj(Xt|Xt+h−1, . . . , Xt+1))

Interpretation: Autocorrelation between Xt and Xt+h after removing the linear dependence on
the intervening variable Xt+h−1, . . . , Xt+1

Remark. If Xt ∼ AR(p), which is causal, then φh,h = 0 for h ! p+ 1
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Proof.

Xt ∼ AR(p) =⇒ Xt+h =

p7

j=1

φjXt+h−j +Wt+h

Proj(Xt+h|Xt+h−1, . . . , Xt+1) =
h−17

k=1

βkXt+h−k

and minimizes

E

+

-
;
Xt+h −

h−17

k=1

βkXt+h−k

<2
4

6 = E

+

-
;
Wt+h +

p7

j=1

φjXt+h−j −
h−17

k=1

βkXt+h−k

<2
4

6

= σ2
W + E

+

-
;

p7

j=1

φjXt+h−j −
h−17

k=1

βkXt+h−k

<2
4

6

where the second term can be minimized by setting βj = φj, 1 " j " p, βj = 0, h ! p+ 1
Hence,

Xt+h − Proj(Xt+h|Xt+h−1, . . . , Xt+1) = Wt+h (h ! p+ 1)

=⇒ φh,h = Corr(Wt+h, Xt − Proj(Xt|Xt+h−1, . . . , Xt+1)) = 0

we get it is 0 by causality, because Xt − Proj(Xt|Xt+h−1, . . . , Xt+1) is a term that only depends
on something before t+ h but not Wt+h itself.

Remark. It can be shown that if Xt ∼ MA(q), which is invertible, then

φh,h ∕= 0, |φh,h|= O(rh), 0 < r < 1
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Estimating the PACF: Using the BLP theory

φ̂h,h =
G
Γ̂−1
h γ̂

h

H
[h]

where

Γ̂h = [γ̂(j − k), 1 " j, k " h] ∈ Rh×h

γ̂h = [γ̂(1), . . . , γ̂(j)] ∈ Rh
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1.25 Casual and Invertible ARMA Process Forecasting
Suppose Xt follows a stationary and invertible ARMA(p, q) model so that φ(B)Xt = θ(B)Xt.
Havin observed XT , . . . , X1, we wish to predict XT+h,

X̂T+h = Proj(XT+h|span{1, XT , . . . , X1}) ≈ E[XT+h|XT , . . . , X1]

because by the Causality and Invertibility, Xt ∼ linear function of Wt

Further, x̂T+h ≈ x̃T+h = E[xt+h|XT , . . . , x1, x0, . . .] because Geometric decay of the dependence
on past values.
Since xt is causal and invertible, then

xt =
∞7

l=0

ψlwt−l, wt =
∞7

l=0

πlxt−l (π0 = ψ0 = 1)

Note: ψl’s and πl’s are computable by solving homogeneous linear difference equations.
These representations imply

Information in (XT , XT−1, . . . , ) = Information in (WT ,WT−1, . . .)

So x̃T+h = E[xT+h|xT , xT−1, . . .] = E[xT+h|wT , wT−1, . . .]

1.

x̃T+h = E[
∞7

l=0

ψlwT+h−l|wT , wT−1, . . .]

= E[
h−17

l=0

ψlwT+h−l|wT , . . .] + E[
∞7

l=h

ψlwT+h−l|wT , . . .]

Notice one term is independent of the given information, so it’s just the mean which is 0, the
second term is a function of the given information, so the equation is

∞7

l=h

ψlwT+h−l

Also, using invertibility

0 = E[wT+h|XT , XT−1, . . .] = E[
∞7

l=0

πlXT+h−l|XT , XT−1, . . .]

=
π0=1

x̃T+h +
h−17

l=1

πlx̃T+h−l +
∞7

l=h

πlxT+h−l

so we have

=⇒ x̃T+h = −
h−17

l=1

πlx̃T+h−l −
∞7

l=h

πlxT+h−l
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Truncated ARAM Prediction:

x̂T+h = −
h−17

j=1

πjx̂T+h−j −
T+h−17

j=h

πjxT+h−j

notice that we truncated the last term to the observed information.
Residuals:

ŵt = φ(B)x̂t − θ1ŵt−1 − . . .− θ2ŵt−q

Mean Initialization:

ŵt = 0, t " 0, t ! T, x̂t = 0, t " 0, x̂t = xt, 1 " t " T

Estimator for σ2
W : σ̂2

W = 1
T

9T
t=1 ŵ

2
t

Mean Squared Prediction Error:
Since x̂T+h ≈

9∞
j=h ψjwt−j ,

P T
T+h = E[(xT+h − x̂T+h)

2] = E[(
h−17

j=0

ψjwt−j)
2] = σ2

W

h−17

j=0

ψ2
j

Estimated Mean Square Prediction Error:

P̂ T
T+h = σ̂2

W

h−17

j=0

ψ2
j

Construction of Prediction Intervals:
Since x̂T+h ≈ E[xT+h|xT , xT−1, . . .], then

E[x̂T+h − xT+h] = 0, Tower Property

E[(x̂T+h − xT+h)
2] = P T

T+h

Hence,
x̂T+h − xT+hL

P̂ T
T+h

is an approximately mean zero and unit variance Random Variable.
Suppose cα is the α-critical value of the Random Variable. Then

x̂T+h ± cα/2

L
P T
T+h

is an approximate 1− α prediction interval for xT+h.
Choices for cα:

1. zα which is the standard normal critical value
Motivation: If wt is Gaussian, then xt =

9∞
l=0 ψlwt−l is Gaussian.
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2. Empirical Critical Value of Residuals (standardized)

ŵt

σW

, 1 " t " T

3. t-distribution, Pareto, or skewed distribution fit to standardized Residuals.

Long Range Behaviour of ARAMA forecasts: Suppose Yt = St +Xt Xt ∼ ARMA(p, q),

ŶT+h = ŜT+h + X̂T+h = ŜT+h +
∞7

j=h

ψjWT+h−j

The last term goes to 0 geometrically when h increases.
ŶT+h is converging fast to ŜT+h: Better get the trend for long Range Forecasts!

P T
T+h = σ2

W

h−17

l=0

ψ2
L → σ2

W

∞7

l=0

ψ2
l = γx(0)

In the long run, the MSE is the variance of Xt
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1.26 ARMA Forecasting: Example

XT = Cardiovascular Mortality Series

Model
Xt = St + Yt, Yt ∼ ARMA(p, q) process

where

St = Seasonal + Polynomial trend

= β0 + β1t+ β2t
2 + β3t

3

! "# $
Polynomial

+ β4 sin

=
2π

52
t

>
+ β5 cos

=
2π

52
t

>

! "# $
Yearly Cycle

+ β6 sin

=
2π

26
t

>
+ β7 cos

=
2π

26
t

>

! "# $
Half-Yearly Cycle

Decided on this trend using AIC (later)
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Model Ŷt as ARMA(2, 1),

Yt = 0.0885Yt−1 + 0.3195Yt−2 +Wt + 0.1328Wt−1! "# $
param. by MLE
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1.27 Estimating ARMA(p, q) Parameters: AR Case
Suppose we observe a time series X1, ..., XT ∼ ARMA(p, q)

φ(B)Xt = θ(B)wt

φ(z) = 1− φ1z − · · ·φpz
p, θ(z) = 1 + θ1z + · · · θqzq

Goal: Estimate φ1, ...,φp! "# $
AR parameters

; θ1, ..., θq! "# $
MA parameters

; σz
w!"#$

white noise variance

• AR(1) case: Xt = φXt−1 + wt, Ew2
t = σ2

w

Idea: use ordinary least squares(OLS).

φ̂ = argmin
|φ|<1

T7

t=2

(Xt − φXt−1)
2.

This leads to (upon some calculus):

φ̂ =
1
T

9T
t=2 XtXt−1

1
T

9T
t=2 X

2
t

≈ γ̂(1)

γ̂(0)
= ρ̂(1)

P−→
T→∞

φ

σ2
w = 1

T−1

9T
t=2(Xt − φXt−1! "# $

estimated wt

)2 ←− Sample Variance of Residuals.

• AR(p) Case: Xt = φ1Xt−1t− · · ·+ φpXt−p + wt

OLS: φ = (φ1, ...,φp)
T ∈ Rp

φ̂ = argmin
φ:Xtadmits a staionary

and Casual Solution

9T
t=p+1(Xt − φ1Xt−1 − · · ·− φpXt−p)

2

Solve using calculus (Take first order partial derivatives, set equal to zero).

This leads to a system of p linear equations of the form

Γ̂pφ̂ = γ̂
p
; Γ̂p = (γ̂(j − k), 1 ≤ j, k ≤ p) ∈ Rp×p

γ̂p = (γ̂(1), ..., γ̂(p))T

The resulting OLS estimator takes the approximate form:

φ̂ = Γ̂
−1

p γ̂
p
, σ̂2

w = γ̂(0)− γ̂T

p
Γ̂−1
p γ̂p.
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• Similar approach: use Method of Moments (Set parameters so that empirical moments

match theoretical moments induced by the model)

If Xt ∼ AR(p), then for 1 ≤ h ≤ p,

γ(h) = EXtXt+h = E[Xt(φ1Xt+h−1 + · · ·+ φpXt+h−p + wt+h)]

= φ1γ(h− 1) + φ2γ(h− 2) + · · ·+ φpγ(h− p) + 0!"#$
Xt⊥wt+h

This implies the linear system: γp = Γpφ; γp = (γ(1), · · · , γ(p))T ∈ Rp×p

Γp = [γ(j − k); 1 ≤ j, k ≤ p] ∈ Rp×p

• Note that Xt =
9∞

l=0 ψlwt−l, ψ0 = 1 and wt = Xt − φ1Xt−1 − · · ·φpXt−p.

⇒ σ2
w = E[Xtwt] = E[Xt(Xt − φ1Xt−1 − · · ·φpXt−p)]

= γ(0)− φ1γ(1)− · · ·− φpγ(p)

γ
p
= Γpφ

M
(N

(O
Yule-Walker Equations

⇒ Yule-Walker Estimators: φ̂ = Γ̂
−1

p γ̂
p
, σ̂2

w = γ̂(0)− γ̂T

p
Γ̂
−1

p γ̂
p

Example: In the AR(1) case, the YW estimators are

φ̂ =
γ̂(1)

γ̂(0)
= ρ̂(1), σ̂2

w = γ̂(0)− γ̂

Theorem 14

If Xt
causal∼ AR(p), then

φ̂OLS,i

φ̂YW,i

p−→ 1 as T → ∞

OLS and YW estimates are asymptotically equivalent. The i here means the i th autoregres-
sive process coefficients.

Theorem 15
√
T (φ̂

YW
− φ)

D−→
T→∞

NP ( 0, σ2
ωΓ

−1
p! "# $

Optimal Variance among all possible (asymptotically)
unbrasedestimators.[Efficient]

)

σ̂2
w

p→ σ2
w

Result can be used to obtain confidence interval for φ.
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1.28 ARMA Parameter Estimation:MLE
Ordinary least squares and Yule Walker Equation estimators are effective in estimating the AR(p)
parameters, but are difficult to apply to fitting MA(q) and general ARMA(p, q) models since the
white noises wt are observable, and YW equations are not linear in the MA parameters.
Latent variables (e.g. variables associated with the noise wt) =⇒ MLE is best.

• Suppose Xt ∼ AR(1)

Xt = φXt−1 , wt ∼
iid

N(0, σ2
w) (Gaussian Distributional Assumption on Noise)

Then Xt =
∞7

l=0

φlwt−l is Gaussian

L2-limits of Gaussian RV’s are Gaussian (MGF or characteristic Function)

• Moreover, X1, ..., XT are jointly Gaussian, since

a1X1 + · · ·+ aTXT =
∞7

l=0

φl(a1w1−l + ...+ aTwT−l)

MLE: L(φ, σ2
w) = f(XT , XT−1, ...X1;φ, σ

2
w)

and L(φ, σ2
w) is likelihood of φ, σ2

w, f is joint density of XT , ..., X1 evaluated at the observed
data (Gaussian Density).

• Key idea in Time Series: To evaluate the likelihood, condition on the path/past!

f(XT , ..., X1) = f(XT |XT−1, ...X1)f(XT−1, ..., X1)

= f(XT |XT−1, ..., X1)f(XT−1|XT−2, ...X1)...f(X2|X1)f(X1)

= ΠT
i=1f(Xi|Xi−1, ...X1)

According to HWZ: Xi|Xi−1, ...X1 ∼ N(φXi−1, σ
2
w) by Xt ∼ AR(1)

• Thus

L(φ, σ2
w) = ΠT

i=2

1:
2πσ2

w

e
− (Xi−φXi−1)

2

2σ2
w · f(X1)

= (wπσ2
w)

−T−1
2 e

−
!T

i=2

(Xi−φXi−1)
2

2σ2
w · f(X1;φ, σ

2
w)

Maximizing L(φ, σ2
w) in this case leads to a similar estimator as OLS/YW.

• General ARMA(p,q) Case: Again XT , ..., X1 are jointly Gaussian if wt ∼ Gaussian

L(φ1, ...,φp, θ1, ..., θq, σ
2
w) = ΠT

i=1f(Xi|Xi−1, ..., X1)

Xi|Xi−1, ..., X1 ∼ N(E(Xi|Xi−1, ..., X1),MSE) ∼ N( ˜Xi|i−1(θ), P
i
i−1(θ))

This likelihood can be maximized using numerical optimization.(Newton-Raphson Algo-
rithm conjugate gradient). Note θ is the vector (φ1, . . . ,φp, θ1, . . . , θq, σ

2
w)
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Theorem 16: chapter 8 of Brockwell and Davis, Hannan(1980)

The MLE’s of φ1, ...,φp, θ1, ...θq, σ
2
w are

√
T consistent and asymptotically Normal, with

asymptotic covariance equal to the inverse of the information Matrix. In the sense they are
asymptotically optimal.

Take away message:

1. MLE estimation reduces to OLS, YW equation estimation for AR(p) models.

2. For general ARMA estimation MLE is thought to be optimal in most situaions.(used as a
default/benchmark)
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1.29 Selecting the Orders of ARMA(p, q) Model
Using Maximum Likelihood Estimation, we can fit an ARMA(p, q) model to an observed series
X1, ..., XT .

Question: How do we select the orders p and q of the model? Usual Methods

1. Examine ACF and PACF.

2. Model Diagnostics/Goodness-of-Fit tests:
Examine the Residuals of the ARMA(p, q) model to check for the plausibility of the
white noise assumption.

3. Model Selection Methods:
Information Criteria, Cross-Validation

Model Diagnostics: If the ARMA(p, q) model fits the data well, then the estimated residuals

PWt =
Xt − X̃t | t−1L

QP t−1
t

should behave like white noise.

X̃t | t−1 ∼ truncated predictor of Xt based on Xt−1, . . . , X1.
QP t−1
t ∼ estimated MSE.

This can be investigated by considering QρW (h), the emprirical ACF of PW1, . . . ,PWT .

As a measure of how ”white” the residuals are, it is common to evaluate the cumulative signif-
icance of QρW (h) 1 ≤ h ≤ H by applying a ”white noise test”.

Suppose W1, . . . ,WT is a strong White Noise, and QρW (h) is the empirical ACF of this series.

We know:
√
T QρW (h)D−→N(0, 1) for each fixed h. Also, for j ∕= h,

Cov(
√
TQγW (h),

√
TQγW (j)) = TE[

T7

t=1

WtWt+h][
T7

s=1

WsWs+j]

= T

T7

t=1

T7

s=1

EWtWt+hWsWs+j! "# $
Always zero!

= 0

Box-Ljung-Pierce Test (White Noise test for ARMA(p, q) models)
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If Xt ∼ ARMA(p, q) model, and PWt are the model residuals with empirical ACF QρW (h), then
the test statistics is

Q(T,H) = T (T + 2)
H7

h=1

Qρ2W (h)

T − h
≈ T

H7

h=1

Qρ2W (h)

Q(T,H) =
D−−−→

T→∞ χ2( H − (p+ q)! "# $
Lose p + q degrees of freedom for fitting model

)

The BLP test p-value is then computed as PBLP = P (χ2(H − (p+ q)) > Q(T,H)).

Remark. If Xt ∼ ARMA(p, q), and PWt are calculated based on an ARMA(p’, q’) model where
p’ < p or q’ < q (Model is under specified), then

Q(T,H) P−→ ∞ as T → ∞.

Interpretation: If BLP − p-values are small, the model is ill-fitting or under specified.
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1.30 Model Selection: Information Criteria
Model Selection: Information Criteria

Suppose we are trying to select the orders p and q of an ARMA(p, q) model to fit to X1, . . . , XT .

φ = AR parameters σ2
w = white noise variance.

θ = MA parameters.

L(X1, . . . , XT ; Qφ, Qθ, Qσ2
w! "# $

Maximum likelihood Estimators

) ← Natural idea: Maximize the likelihood of the data

as a function of p,q.

Problem: The likelihood is (monotonically) increasing as a function of p, q. Maximizing
would lead to overfitting. Solution: Maximize the likelihood subject to a penalty term on the
number of parameters (complexity) of the Model.

Let the number of parameters in the ARMA(p, q) model be denoted by k = p+ q + 1.

−2 log(L(X1, . . . , XT ;! "# $
Minimize, decreasing function of k

Qφ, Qθ, Qσ2
w)) + p(T, k)! "# $

Increasing function of k.

Optimal p and q Balance model fit with the penalty for complexity. Common Penalty Term Choices:

AIC(p, q) = −2log(L(X1, . . . , XT ; Qφ, Qθ, Qσ2
w) +

2k+T
T

comes from estimating the KullbackLeibler distance from the fitted model to the ”true” model.

BIC(p, q) = −2log(L(X1, . . . , XT ; Qφ, Qθ, Qσ2
w) +

klog(T )
T

comes from approximating and maximizing the posterior distribution of the model given the
data.

Interpretation: Smaller AIC/BIC = Better model. Information Criteria are also use in trend
fitting:

Suppose

xt = st + yt =

trend we fit# $! "
ft( β!"#$

vector of parameters in Rk .

)+yt

Estimate β with Qβ using ordinary least squares.
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RSST =
T7

t=1

(xt − ft(Qβ))2

Information Criteria typically calculated assuming Yt is Gaussian White Noise and are of the
form

RSST + p(T, k)! "# $
use AIC or BIC penalty.

Remarks:

1. In trend fitting, the assumption of Gaussian white noise residuals is often in doubt.

2. AIC/BIC are not perfect! They are lout one of many tools useful in model selection.

• Strengths:

(a) easy to compute
(b) Facilitates comparing many models quickly.

• Weakness:

(a) Likelihood must be specified.
(b) There is a degree of ”Arbitrariness” to the choice of penalty.

3. It can be shown that minimizing the AIC is related to minimizing the 1-step forecast MSE,
and so when the application is forecasting, AIC is more common.
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1.31 ARIMA Models:
We have seen that many time series appear stationary after differencing.

Definition 34

We say a time series Xt is integrated to order d if ∇dXt is stationary, but ∇jXt, 1 " j < d
is not stationary.

Motivation:
If yt is stationary, and Xt =

9t
j=1 yj , then Xt is integrated to order 1; Zt =

9t
i=1 Xi is integrated

to order 2, etc

Definition 35

We say Xt follows an Autoregressive Integrated Moving Average Process of orders p, d, q
(Abbrv. Xt ∼ ARIMA(p, d, q)), if

φ(B) (1− B)dXt! "# $
∇dXt follows an ARIMA(p,q)

= θ(B)Wt

and Xt is integrated to order d.

Forecasting ARIMA(p, d, q) processes:

1. yt = ∇dXt follows and ARMA(p, q) model, and so can be forecasted using truncated
ARIMA prediction.

2. Forecasts ŷT+h|T can be used to forecast XT+h by reversing the differencing. For example,
say d = 1, then yT+1 = XT+1 − XT , so X̂T+1|T = XT + ŷT+1|T . This can be iterated to
produce longer Horizon forecasts.

Prediction MSE is approximately of the form

P T
T+h

∼= σ2
w

n−17

j=1

ψ2
j,∗

where ψ2
j,∗ is the coefficient of zj in the power series expansion (centered of zeros) of

θ(z)

φ(z)(1− z)d
, |z|< 1

Idea: Xt ≈ θ(z)
φ(z)(1−z)d

Wt
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Example 11

Xt ∼ ARIMA(0, 1, 0), then

Xt −Xt−1 = (1− B)Xt = Wt =⇒ Xt = Xt−1 +Wt =⇒ Xt =
t7

j=1

Wj

If yt = ∇Xt, ŷT+h|T = 0 (Forecasting Wt’s), implies that

X̂T+1|T = XT + ŷT+1|T = XT

Similarly,
X̂T+h|T = XT

Best Predictor of Random Walk is the last know location.

Prediction MSE:
θ(z)

φ(z)(1− z)d
=

1

1− z
=

∞7

j=0

zj, |z|< 1

=⇒ ψj,∗ = 1, ∀j

=⇒ P T
T+h = σ2

w

n−17

j=0

ψ2
j,∗ = nσ2

w

Note: E[(X̂T+h|T −XT+h)
2] = E[(

9T+h
j=T+1 Wj)

2] = hσ2
w
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How to decide in practice an degree of differencing d:

1. Eye-ball test (look when the differencing looks stationary)

2. Formal Stationary Tests (Dicky-Fuller, KPSS test)

3. Cross-Validation
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