STAT 443: Forecasting

Rui Gong

February 19, 2021

Contents

1 Time Series 3
1.1 Introduction 3
1.2 Forecasting 4
1.3 Definition of Stationary 6
1.4 White Noise and Stationary Examples 8
1.5 Weak VS Strong Stationary 11
1.6 Theoretiacl $\left(L^{2}\right)$ framework for time series (optional) 13
1.7 Useful tools for time series 14
1.8 Signal+Noise Models 15
1.9 Time Series Differencing 17
1.10 Autocorrelation and Empirical Autocorrelation: 19
1.11 Modes of Convergence of Random Variables 21
1.12 M-dependent CLT (Optional) 26
$1.132+\delta$ Moment Calculation 31
1.14 Linear Process CLT 33
1.15 Aymptotic Properties of Empirical ACF 36
1.16 Interpreting the ACF 39
1.17 Moving Average Processes 40
1.18 Autoregressive Processes 43
1.19 Autoregressive Moving Average Processes 47
1.20 Proof of Causality\&Stationaryity condition for ARMA Processes 50
1.21 ARMA Processes: Example 53
1.22 L2 Stationary Process Forecasting 55
1.23 Best Linear Prediction 57
1.24 Partial Autocorrelation 59
1.25 Casual and Invertible ARMA Process Forecasting 62
1.26 ARMA Forecasting: Example 65
1.27 Estimating $A R M A(p, q)$ Parameters: AR Case 72
1.28 ARMA Parameter Estimation:MLE 74
1.29 Selecting the Orders of $A R M A(p, q)$ Model 76
1.30 Model Selection: Information Criteria 78
1.31 ARIMA Models: 80

1 Time Series

1.1 Introduction

Definition 1

We say x_{1}, \ldots, x_{T} is an (observed) time series of length T if x_{t} denotes an observation obtained at time t. In particular, the observations are ordered in time.

- If $X_{t} \in \mathbb{R}$, we say x_{1}, \ldots, x_{T} is a real-valued or scalar time series.
- If $X_{t} \in \mathbb{R}^{p}$, we say x_{1}, \ldots, x_{T} is a multivariate or vector valued time series.

With the time series data, comparing to classical statistics, we still care about prediction and inference.
However, in contrast, the data oftern exhibit:

1. Heterogeneity \rightarrow Time trends $\rightarrow E\left[X_{t}\right] \neq E\left[X_{t+h}\right]$

Heteroskedasticity $\rightarrow \operatorname{Var}\left(X_{t}\right) \neq \operatorname{Var}\left(X_{t+h}\right)$
2. Serial Dependence (Serial Correlation) \rightarrow observations that are temporally close appear to depend on each other.

Definition 2

Formally, we say $\left\{X_{t}\right\}_{t \in \mathbb{Z}}$ is a time series if $\left\{X_{t}: t \in \mathbb{Z}\right\}$ is a Stocahstic Proces indexed by \mathbb{Z}. This means that there is a common probability space (Ω, \mathcal{F}, P) so that $\forall t \in \mathbb{Z}, X_{t}$: $\Omega \rightarrow \mathbb{R}$ is a random variable. In relation to the original definition, we say x_{1}, \ldots, x_{T} is an $\underline{\text { observed stretch }}$ or a realization or a sample path of length T from $\left\{X_{t}\right\}_{t \in \mathbb{Z}}$.

1.2 Forecasting

Consider a time series x_{1}, \ldots, x_{T}. Based on x_{1}, \ldots, x_{T}, we should like to produce a "best guess" for X_{T+h} :

$$
\hat{X}_{T+h}=\hat{X}_{T+h \mid T}=f_{h}\left(x_{T}, \ldots, x_{1}\right)
$$

Definition 3

For $h \geqslant 1$, our "best guess" $\hat{X}_{T+h}=f_{h}\left(x_{T}, \ldots, x_{1}\right)$ is called a forecast of X_{T+h} at horizon h.

- $\hat{X}_{T+h}=$ forecast
- $h=$ horizon

There are two primary goals in forecasting:

1. Choose f_{h} "optimally".

Normally, we or the practitioner have some measure, say $L(*, *)$, in mind for determining how "close" \hat{X}_{T+h} is to X_{T+h}. We then wish to choose f_{h} such that

$$
L\left(X_{T+h}, f_{h}\left(X_{T}, \ldots, X_{1}\right)\right) \text { is minimized }
$$

Mose common measure $L(*, *)$ is Mean-Squared Error (MSE), where

$$
L(x, y)=E\left[(x-y)^{2}\right]
$$

2. Quantify the uncertainty in the forecase

This entails providing some description of how close we expect \hat{X}_{T+h} to be to X_{T+h}

Example

Suppose every minute, we flip a coin such that

$$
\begin{aligned}
H & \rightarrow 1 \\
T & \rightarrow-1
\end{aligned}
$$

$X_{t}=$ outcome in minute $t, t=1, \ldots, T$. This produces a time series of length T, which is a random sequence of 1's and -1 's.
Note $E\left[X_{t}\right]=0$, for $h \geqslant 1$, consider $\hat{X}_{T+h}=f\left(X_{T}, \ldots, X_{1}\right)$

$$
\begin{aligned}
L\left(X_{T+h}, \hat{X}_{T+h}\right) & =E\left[\left(X_{T+h}-\hat{X}_{T+h}\right)^{2}\right] \\
& =\underbrace{E\left[X_{T+h}^{2}\right]}_{\operatorname{Var}\left(X_{t}\right)}+E\left[\hat{X}_{T+h}^{2}\right]-2 \underbrace{E\left[X_{T+h} \hat{X}_{T+h}\right]}_{E\left[X_{T+h}\right] \hat{E}\left[X_{T+h}\right]=0} \\
& =E\left[X_{T+h}^{2}\right]+E\left[\hat{X}_{T+h}^{2}\right]
\end{aligned}
$$

which is minimzed by taking $\hat{X}_{T+h}=0$
There is nothing "wrong" with the forecast, but ideally would also be able to say that the sequence appears to be random.

How can we quantify the uncertainty in forecasting?
The predictive distribution

$$
X_{T+h} \mid X_{T}, \ldots, X_{1}
$$

Excellent: Predictive intervals/sets
For some $\alpha \in(0,1)$ find I_{α} such that

$$
P\left(X_{T+h} \in I_{\alpha} \mid X_{T}, \ldots, X_{1}\right)=\alpha(\alpha=0.95, \text { e.g. })
$$

often such intervals take the form

$$
I_{\alpha}=\left(\hat{X}_{T+h}-\hat{\sigma}_{h}, \hat{X}_{T+h}+\hat{\sigma}_{h}\right)
$$

Remark. 1. Estimiating predictive distributions leads one towards estimating the joint distribution of $X_{T+h}, X_{T}, \ldots, X_{1}$ (ARMA,ARIMA,etc).
2. It is important that we acknowledge that some things cannot be predicted!!!

1.3 Definition of Stationary

Given a time series X_{1}, \ldots, X_{T}, we are frequently interested in estimating the joinr distribution of

$$
X_{T+h}, X_{T}, \ldots, X_{1}
$$

The joint distribution is a feature of the process $\left\{X_{t}\right\}_{t \in \mathbb{Z}}$

$$
X_{1}, \ldots, X_{T} \underset{\text { infer }}{\longrightarrow}\left\{X_{t}\right\}_{t \in \mathbb{Z}}
$$

- Worst Case: $X_{t} \sim F_{t}$, where F_{t} is a changing function of t. If so, it's hard to pool the data X_{1}, \ldots, X_{T} to estimate F_{t}
- Serial Dependence: If the distribution of $\left(X_{t}, X_{t+h}\right)$ depends strongly on t, we have a similar problem in estimating. (e.g. $\left.\operatorname{cov}\left(X_{t}, X_{t+h}\right)\right)$

Definition 4

We say that a time series $\left\{X_{T}\right\}_{t \in \mathbb{Z}}$ is strongly stationary or strictly stationary if $\forall k \geqslant$ $1, i_{1}, \ldots, i_{k}, h \in \mathbb{Z}$

$$
\left(X_{i_{1}}, \ldots, X_{i_{k}}\right) \stackrel{D}{=}\left(X_{i_{1+h}}, \ldots, X_{i_{k+h}}\right)
$$

for all $k=1,2, \ldots$, all time points i_{1}, \ldots, i_{k}, and all $h \in \mathbb{Z}$ In other words, shifting the window on which you view the data does NOT change its distribution.

This implies that if $F_{t}=\mathrm{CDF}$ of X_{t}, then

$$
F_{t}=F_{t+h}=F
$$

Definition 5

For a time series $\left\{X_{t}\right\}_{t \in \mathbb{Z}}$ with $E\left[X_{t}^{2}\right]<\infty, \forall t \in \mathbb{Z}$, we denote the mean function of the series as

$$
\mu_{t}=E\left[X_{t}\right]
$$

and the autovariance function of the series is

$$
\gamma(t, s)=E\left[\left(X_{t}-\mu_{t}\right)\left(X_{s}-\mu_{s}\right)\right]=\operatorname{cov}\left(X_{t}, X_{s}\right)
$$

Definition 6

We say that $\left\{X_{t}\right\}_{t \in \mathbb{Z}}$ is weakly stationary if $E\left[X_{t}\right]=\mu$, does not depend on t, and if

$$
\gamma(t, s)=f(|t-s|)
$$

i.e., $\gamma(t, s)$ is a function of $|t-s|$

In this case, we usually write

$$
\gamma(h)=\operatorname{cov}\left(X_{t}, X_{t+h}\right)
$$

and we call the input h the "lag" parameter.
Additional terminology:

- The property when $E\left[X_{t}\right]=\mu$ does note depend on t is oftern called "first order" stationary.
- The property when $\gamma(t, s)=\gamma(|t-s|)$ only depends on the lag $|t-s|$ is called "second order" stationary.
- For a second order stationary process

$$
\begin{aligned}
\gamma(h) & =\operatorname{cov}\left(X_{t}, X_{t+h}\right) \\
& =\operatorname{cov}\left(X_{t-h}, X_{t}\right) \\
& =\gamma(-h)
\end{aligned}
$$

Normally, we only record $\gamma(h), h \geqslant 0$

1.4 White Noise and Stationary Examples

Definition 7

We say $\left\{X_{t}\right\}_{t \in \mathbb{Z}}$ is a strong white noise if $E\left[X_{t}\right]=0$ and the $\left\{X_{t}\right\}$ are independent and identically distributed (iid).

Definition 8

We say $\left\{X_{t}\right\}_{t \in \mathbb{Z}}$ is a weak white noise if $E\left[X_{t}\right]=0$, and

$$
\gamma(t, s)=\operatorname{cov}\left(X_{t}, X_{s}\right)= \begin{cases}\sigma^{2}, & |s-t|=0 \\ 0, & |t-s|>0\end{cases}
$$

Definition 9

We say $\left\{X_{t}\right\}_{t \in \mathbb{Z}}$ is a Gaussian white noise if

$$
X_{t} \underset{i i d}{\sim} N\left(0, \sigma^{2}\right)
$$

Example

Suppose $\left\{W_{t}\right\}_{t \in \mathbb{Z}}$ is a strong white noise. Then $E\left[W_{t}\right]=0$ (doesn't depend on t).

$$
\gamma(t, s)=\operatorname{cov}\left(W_{t}, W_{S}\right)=E\left[W_{t} W_{s}\right]= \begin{cases}\sigma_{W}^{2}, & |t-s|=0 \\ 0, & |t-s|>0\end{cases}
$$

$\left\{W_{t}\right\}_{t \in \mathbb{Z}}$ weakly stationary (γ only depends on $|t-s|$).
$\left\{W_{t}\right\}_{t \in \mathbb{Z}}$ is also strictly stationary. Let $k \geqslant 1, i_{1}<i_{2}<\ldots<i_{k}, k \in \mathbb{Z}$.

$$
\begin{aligned}
P\left(W_{i_{1} \leqslant t_{1}, \ldots, W_{i_{k}} \leqslant t_{k}}\right) & =\prod_{j=1}^{k} P\left(W_{i_{j}} \leqslant t_{j}\right) \\
& =\prod_{j=1}^{k} P\left(W_{i_{j+h}} \leqslant t_{j}\right) \\
& =P\left(W_{i_{1+h}, \ldots, W_{i_{k+h}}} \leqslant t_{k}\right)
\end{aligned}
$$

Example

Suppose $\left\{W_{t}\right\}_{t \in \mathbb{Z}}$ is a strong white noise. Define

$$
X_{t}=W_{t}+\theta W_{t-1}, \theta \in \mathbb{R}
$$

Then $E\left[X_{t}\right]=E\left[W_{t}+\theta W_{t-1}\right]=0$,

$$
\gamma(t, s)=\operatorname{cov}\left(X_{t}, X_{s}\right)= \begin{cases}\left(1+\theta^{2}\right) \sigma_{W}^{2}, & |t-s|=0 \\ \theta \sigma_{w}^{2}, & |t-s|=1 \\ 0, & |t-s|>1\end{cases}
$$

When $|t-s|=0$,

$$
E\left[\left(W_{t}+\theta W_{t-1}\right)^{2}\right]=E\left[W_{t}^{2}\right]+\theta^{2} E\left[W_{t-1}^{2}\right]+2 E\left[\theta W_{t} W_{t-1}\right]=\left(1+\theta^{2}\right) \sigma_{w}^{2}+0
$$

When $t=s+1$ (or $s=t+1$)

$$
E\left[\left(W_{s+1}+\theta W_{s}\right)\left(W_{s}+\theta W_{s-1}\right)\right]=\theta E\left[W_{s}^{2}\right]=\theta \sigma_{W}^{2}
$$

When $|t-s|>1, W_{t}+\theta W_{t-1}$ is independent of $W_{s}+\theta W_{s-1}$
Continued: $\left\{X_{t}\right\}_{t \in \mathbb{Z}}$ is also strictly stationary. Suppose $k \geqslant 1, i_{1}, \ldots, i_{k}, h \in \mathbb{Z},\left(i_{1}<\right.$ \ldots, i_{k}),

$$
\begin{aligned}
P\left(X_{i_{1}} \leqslant t_{1}, \ldots, X_{i_{k}} \leqslant t_{k}\right) & =P\left(W_{i_{1}}+\theta W_{i_{1}-1} \leqslant t_{1}, \ldots, W_{i_{k}}+\theta W_{i_{k}-1} \leqslant t_{k}\right) \\
& =P\left[\left(\begin{array}{c}
W_{i_{1}} \\
\vdots \\
W_{i_{k}}
\end{array}\right) \in B\right] \\
& =P\left[\left(\begin{array}{c}
W_{i_{1}+h} \\
\vdots \\
W_{i_{k}+h}
\end{array}\right) \in B\right] \\
& =P\left(X_{i_{1}+h} \leqslant t_{1}, \ldots, X_{i_{k}+h} \leqslant t_{k}\right)
\end{aligned}
$$

where B is a subset of $\mathbb{R}^{i_{k}-i_{1}+1}$

Definition 10

Suppose $\left\{\varepsilon_{t}\right\}_{t \in \mathbb{Z}}$ is a strong white noise. Then if $X_{t}=g\left(\varepsilon_{t}, \varepsilon_{t-1}, \ldots,\right)$ for some function:

$$
g: \mathbb{R}^{\infty} \rightarrow \mathbb{R}
$$

, we say that $\left\{X_{t}\right\}_{t \in \mathbb{Z}}$ is a Bernoulli shift

Theorem 1

If $\left\{X_{t}\right\}_{t \in \mathbb{Z}}$ is a Bernoulli shift, then $\left\{X_{t}\right\}_{t \in \mathbb{Z}}$ is strictly stationary.

Remark. Nobert Wiener conjectured that every stationary sequence is a Bernoulli shift (The TRUTH is almost every one is).

Example

Suppose W_{t} is strong white noise. Let

$$
X_{t}=\sum_{i=0}^{t} W_{i}+\sum_{i=t}^{-1} W_{i}
$$

This is called a two-sided Random Walk. You can show that X_{t} is firt-order stationary, but not second-order stationary. (Consider the case when s, t have different signs and the same signs.)

1.5 Weak VS Strong Stationary

Sadly,

$$
X_{t} \text { strictly stationary } \nrightarrow X_{t} \text { weakly stationary }
$$

Ex: Suppose $X_{t} \underset{i \text { id }}{\sim}$ Cauchy Random Variables. i.e.

$$
P\left(X_{t} \leqslant S\right)=\int_{-\infty}^{S} \frac{1}{\pi\left(1+x^{2}\right)} d x
$$

Then $E\left[X_{t}\right]$ doesn't exist, and hence not weakly stationary. But it's strongly stationary because it's a strong white noise.
If X_{t} strictly stationary and $E\left[X_{0}^{2}\right]<\infty \Longrightarrow X_{t}$ is weakly stationary. Note that if X_{t} is strictly stationary, then

$$
\left(X_{t}\right) \stackrel{D}{X}_{0} \Longrightarrow E\left[X_{t}\right]=E\left[X_{0}\right](\text { Not depend on } t)
$$

also,

$$
\operatorname{Var}\left(X_{t}\right)=\operatorname{Var}\left(X_{0}\right)
$$

By Cauchy-Schwarz inequality,

$$
\gamma(t, s)=\operatorname{cov}\left(X_{t}, X_{s}\right) \leqslant \operatorname{Var}\left(X_{t}\right)<\infty
$$

and suppose $t<s$,

$$
\begin{aligned}
\operatorname{cov}\left(X_{t}, X_{s}\right) & =\operatorname{cov}\left(X_{0}, X_{s-t}\right)=f(|t-s|) \\
\left(X_{t}, X_{s}\right) & \stackrel{D}{=}\left(X_{t-t}, X_{s-t}\right) \\
& =\stackrel{D}{=}\left(X_{0}, X_{s-t}\right)
\end{aligned}
$$

Definition 11

$\left\{X_{t}\right\}_{t \in \mathbb{Z}}$ is said to be a Gaussian Process (or Gaussian times series) if for each $k \geqslant 1, i_{1}<$ $i_{2}<i_{k}$,

$$
\left(X_{i_{1}}, \ldots, X_{i_{k}}\right) \sim \operatorname{MultiNormal}\left(\underline{\mu}_{k}\left(i_{1}, \ldots, i_{k}\right), \Sigma_{k \times k}\left(i_{1}, \ldots, i_{k}\right)\right)=N_{k}\left(\underline{\mu}_{k}, \Sigma_{k \times k}\right)
$$

where

$$
\underline{\mu}_{k}=\left[\begin{array}{c}
E\left[X_{i_{1}}\right] \\
\vdots \\
E\left[X_{i_{k}}\right]
\end{array}\right], \Sigma_{k \times k}=\left(\operatorname{cov}\left(X_{i_{j}}, X_{i_{r}}\right)_{1 \leqslant j, r \leqslant k}\right)
$$

Proposition

If X_{t} is weakly stationary and Gaussian, then X_{t} is strictly stationary.

Proof. If X_{t} weakly stationary, $E\left[X_{t}\right]=\mu, \forall t$, and

$$
\begin{aligned}
& \left(X_{i_{1}}, \ldots, X_{i_{k}}\right) \rightarrow\left[\begin{array}{c}
E\left[X_{i_{1}}\right] \\
\vdots \\
E\left[X_{i_{k}}\right]
\end{array}\right]=\left[\begin{array}{c}
\mu \\
\vdots \\
\mu
\end{array}\right]=\underline{\mu}=\left[\begin{array}{c}
E\left[X_{i_{1}+h}\right] \\
\vdots \\
E\left[X_{i_{k}+h}\right]
\end{array}\right] \\
& \operatorname{Var}\left(X_{i_{1}}, \ldots, X_{i_{k}}\right) \\
& =\left[\operatorname{cov}\left(X_{i_{j}}, X_{i_{r}}\right)_{1 \leqslant j, r \leqslant k}\right] \\
& \\
& =\left[\operatorname{cov}\left(X_{0}, X_{i_{r}-i_{j}}\right)\right] \\
& \\
& =\left[\operatorname{cov}\left(X_{0}, X_{i_{r}+h-\left(i_{j}+h\right)}\right)\right] \\
& \\
& =\left[\operatorname{cov}\left(X_{i_{j}+h}, X_{i_{r}+h}\right)\right] \\
&
\end{aligned}
$$

Using Gaussian assumption, we know

$$
\left(X_{i_{1}}, \ldots, X_{i_{k}}\right) \stackrel{D}{=} N_{k}\left(\underline{\mu}, \Sigma_{k \times k}\right) \stackrel{D}{=}\left(X_{i_{1}+h, \ldots, X_{i_{k}+h}}\right)
$$

Hence, $\left\{X_{t}\right\}_{t \in \mathbb{Z}}$ is stricly stationary.
Exercise. Prove that if X_{t} is not weak;y stationary in this sense then X_{t} is not strictly stationary. (Hint:either $E\left[X_{t}\right]$ depends on t or $\gamma\left(X_{t}, X_{s}\right)$ is not a function of $|t-s|$)

1.6 Theoretiacl $\left(L^{2}\right)$ framework for time series (optional)

- $X_{t}=\lim _{h \rightarrow \infty} X_{h, t}$ In what sense does this limit exist?
- How "close" are two random variables x, y
- Is there a random variable that achieves $\inf _{y \in S} d(y, z)$

Definition 12

Consider a probability space (Ω, \mathcal{F}, P). The space L^{2} is the set of random variables X : $\Omega \rightarrow \mathbb{R}$ (measurable) such that $E\left[X^{2}\right]<\infty$

Definition 13

We say that $\left\{X_{t}\right\}_{t \in \mathbb{Z}}$ is an L^{2}-time series if $X_{t} \in L^{2}, \forall t \in \mathbb{Z}$

Remark. L^{2} is a Hilbert space when equipped with inner-product, $x, y \in L^{2}$

$$
\langle X, Y\rangle=E[X Y]
$$

where $\langle *, *\rangle$ is an inner product.

1. Linear: $\langle a x+b y, z\rangle=a\langle x, z\rangle+b\langle y, z\rangle$
2. $\langle X, X\rangle=E\left[X^{2}\right]=0 \Leftrightarrow x=0$ a.s.(i.e. $\left.P(X=0)=1\right)$
3. Symmetric: $\langle X, Y\rangle=\langle Y, X\rangle$
L^{2} is also complete with this inner product i.e., whenever $X_{n} \in L^{2}$ so that $E\left[\left(X_{n}-X_{m}\right)^{2}\right]=0$ as $n, m \Longrightarrow \infty$, then $\exists X \in L^{2}$ such that $X_{n} \rightarrow X$ i.e. $E\left[\left(X_{n}-X\right)^{2}\right] \rightarrow \infty$ This follows from the "famous" Riesz-Fisher Theorem.

1.7 Useful tools for time series

1. Existence

$$
X_{t, n}=\sum_{j=0}^{n} \psi_{j} \varepsilon_{t-j},\left\{\varepsilon_{t}\right\} \text { is a strong } \mathrm{WN}
$$

Since $n>m$,

$$
\begin{aligned}
E\left[\left(X_{t, n}-X_{t, m}\right)^{2}\right] & =E\left[\left(\sum_{j=m+1}^{n} \psi_{j} \varepsilon_{t-j}\right)^{2}\right] \\
& =\sum_{j=m+1}^{n} \psi_{j}^{2} \sigma_{\varepsilon}^{2} \rightarrow 0
\end{aligned}
$$

as $n, m \rightarrow 0$ if e.g. $\sum_{j=0}^{\infty} \psi_{j}^{2}<\infty$, then there must exist a Random Variable X_{t} such that $X_{t}=\lim _{n \rightarrow \infty} X_{t, m}=\sum_{j=0}^{\infty} \psi_{j} \varepsilon_{t-j}$ and $X_{t} \in L^{2}$.
2. Projection Theorem and Forecasting

Forecasting can often be cast as finding a random variable y among a collection of possible forecast \mathcal{M} (e.g. $\left.\mathcal{M}=\operatorname{span}\left\{X_{T}, \ldots, X_{1}\right\}\right)$, such that

$$
y=\arg \inf _{z \in \mathcal{M} E\left[\left(X_{T+h}-z\right)^{2}\right]}
$$

when \mathcal{M} is a closed linear subspace of L^{2}, the projection theorem gaurantees that such a y exists, and it must satisfy

$$
\left\langle X_{T+h}-y, z\right\rangle=0, \forall z \in \mathcal{M}
$$

1.8 Signal+Noise Models

"Ideally", a time series that we are considering was generated from a stationary process. If so, we can pool data to estimate the process underlying structure (e.g. its marginal distribution, and serial dependence structure).
Most time series are evidently not stationary

Signal+Noise Model: $X_{t}=S_{t}+\varepsilon_{t}$

- S_{t} is the deterministic "signal" or "trends of the series.
- ε_{t} is the "noise" added to the signal satisfying $E\left[\varepsilon_{t}\right]=0$.

There exists a (strong) white noise W_{t} such that

$$
\begin{aligned}
& \varepsilon_{t}=g\left(W_{t}, W_{t-1}, \ldots\right)[\text { Stationary Noise }] \\
& \varepsilon_{t}=g_{t}\left(W_{t}, W_{t-1}, \ldots\right)[\text { non-Stationary Noise }]
\end{aligned}
$$

The terms $\left\{W_{t}\right\}$ are often called the "innovation" or "shock" driving the random behaviour of X_{t}

Example 1

$\varepsilon_{t}=g_{t}\left(W_{t}, W_{t-1}, \ldots\right)$ might be $\varepsilon_{t}=\sum_{j=0}^{t} W_{j}$ (Random Walk), $\varepsilon_{t}=\sigma(t) W_{t}$ (changing variance models)
Goal: Estimate S_{t}, and infer the structure of $\varepsilon_{t}=g\left(W_{t}, W_{t-1}, \ldots\right)$
Goal: Estimate S_{t}, and infer the structure of $\varepsilon_{t}=g\left(W_{t}, W_{t-1}, \ldots\right)$
For the temperature data example, we may posit that

$$
S_{t}=\beta_{0}+\beta_{t}[\text { Linear Trend }]
$$

The trend may be estimated by ordinary least success (OLS). We choose to β_{0}, β_{1} minimize

$$
\sum_{i=1}^{T}\left(X_{t}-\left[\beta_{0}+\beta_{1} t\right]\right)^{2}
$$

, note $\beta_{1}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}, \beta_{0}=\bar{y}-\beta_{1} \bar{x}$

Definition 14

Detrending a time series constitutes computing residuals based on an estimate for the signal/trend. A detrended time series is a time series of such residuals.

1. Estimate $S_{t} \rightarrow \hat{S}_{t}$
2. Detrend series: $X_{t}-\hat{S}_{t}=y_{t} . y_{t}$ is the "detrended" series.

If the trend is now 0 (only noise left), there appears to be substantial serial dependence remaining in the series.

Figure: Residuals of OLS fit. A "Detrended" Time Series... Maybe not

1.9 Time Series Differencing

Signal+Noise Models: $X_{t}=S_{t}+\varepsilon_{t}$
Hopefully, upon estimating S_{t} with \hat{S}_{t}, we find $X_{t}-\hat{S}_{t}=\hat{\varepsilon}_{t}$ (Detrended Series) looks reasonably stationary.
If so, we might proceed in estimating the structure of $\left\{\hat{\varepsilon}_{t}\right\}_{t=1, \ldots, T}$ as if it were stationary.

Figure: Residuals of OLS fit. A "Detrended" Time Series... Maybe not Posit a random walk with drift model:

$$
X_{t}=\sigma+X_{t-1}+\varepsilon_{t}, \varepsilon \sim \text { Strong White Noise }
$$

Note here the σ is a drift term, constant

$$
\begin{aligned}
X_{t} & =\sigma+X_{t-1}+\varepsilon_{t} \\
& =\sigma+\sigma+X_{t-2}+\varepsilon_{t-1}+\varepsilon_{t}
\end{aligned}
$$

$$
=\underbrace{t * \sigma+X_{0}}_{\text {linear }}+\underbrace{\sum_{j=1}^{t} \varepsilon_{j}}_{\text {Random Walk noise }}
$$

Notice that under the Random Walk Model

$$
X_{t}-X_{t-1}=\nabla X_{t}=\sigma+\varepsilon_{t}
$$

so if X_{t} follows a random walk model, then the series $Y_{t}=\nabla X_{t}$ should have behave like a white noise shifted by σ.

Definition 15

Differencing a time series constitutes computing the difference between successive terms. A diffrenced time series is a time series of such differences.
The first differenced series is denoted

$$
\nabla X_{t}=X_{t}-X_{t-1}
$$

and is the series $X_{2}-X_{1}, X_{3}-X_{2}, \ldots, X_{T}-X_{T-1}($ length $T-1)$.
Higher order differences are calculated recursively, so

$$
\underbrace{\nabla_{\text {order difference }}^{d} X_{t}}_{d^{t h}}=\nabla^{d-1} \nabla X_{t}\left(\nabla^{0} X_{t}=X_{t}\right)
$$

Detrending and Differencing are both ways of reducing a (potentially non-staionary) time series to an approximately stationary series.
Differencing VS Detrending:

- Pros
- Differencing does not require parameter estimation (Don't estimate S_{t})
- Higher order differencing can reduce even very "trendy" series to look more like noise.
- Cons
- Differencing can "wash away" features of time series, and introduce more complicated structures.
- The trend is often of interest, and good estimates of the trend lead to improved longrange forecasts.

Example 2: Differencing Complicate Series

$X_{t}=W_{t}$, where $W_{t} \sim$ Strong White Noise :

$$
\begin{gathered}
\nabla X_{t}=W_{t}-W_{t-1}=Y_{t} \\
\gamma_{x}(h)=\operatorname{cov}\left(X_{t}, X_{t+h}\right)= \begin{cases}\sigma_{w}^{2}, & h=0 \\
0, & h \geqslant 1\end{cases} \\
\gamma_{Y}(h)=\operatorname{cov}\left(Y_{t}, Y_{t+h}\right)= \begin{cases}2 \sigma_{w}^{2}, & h=0 \\
-\sigma_{w}^{2}, & h=1 \\
0, & h \geqslant 2\end{cases}
\end{gathered}
$$

1.10 Autocorrelation and Empirical Autocorrelation:

Usually through either detrending or differencing, we arrive at a series X_{t} that we may consider as stationary.
Given such a series, we wish to estimate g, so that

$$
X_{t}=g\left(W_{t}, W_{t-1}, \ldots\right)
$$

where $\left\{W_{t}\right\}$ is an "innovation" sequence (strong white noise)

Definition 16

A time series $\left\{X_{t}\right\}_{t \in \mathbb{Z}}$ is said to be a linear process, if there exists a strong white noise $\left\{W_{t}\right\}_{t \in \mathbb{Z}}$, and coefficients $\left\{\psi_{l}\right\}_{l \in \mathbb{Z}}, \psi_{l} \in \mathbb{R}$, such that $\sum_{l=-\infty}^{\infty}\left|\psi_{l}\right|<\infty$, and $X_{t}=$ $\sum_{-\infty}^{\infty} \psi_{l} W_{t-l}\left[\mathrm{It}\right.$'s a well-defined as a limit in L^{2}, and it might depend on the future.]

Definition 17

$\left\{X_{t}\right\}_{t \in \mathbb{Z}}$ is a causal linear process, if

$$
X_{t}=\sum_{l=0}^{\infty} \psi_{l} W_{t-l}
$$

It only depends on W 's in the "past".

Remark. Linear processes are strictly stationary (Bernoulli Shift)

Example 3

$X_{t}=W_{t}+\theta W_{t-1}, W_{t} \sim$ Strong White Noise. X_{t} is a linear process.

$$
\gamma_{X}(h)= \begin{cases}\left(1+\theta^{2}\right) \sigma_{w}^{2}, & h=0 \\ \theta \sigma_{w}^{2}, & h=1 \\ 0, & h \geqslant 2\end{cases}
$$

Note: When $h=0, \gamma_{X}(h)$ is always non-zero. When $h=1, \gamma_{X}(h)$ is non-zero if θ ("lagged" term coefficients) in the linear process are non-zero.
Suggests a way of slewthing out what $g\left(W_{t}, W_{t-1}, \ldots\right)=\sum_{l=0}^{\infty} \psi_{l} W_{t-l}$ must look like.

Definition 18

Suppose X_{t} is weakly stationary. The autocorrelation function of X_{T} (Abbrev: ACF) is

$$
\rho_{X}(h)=\frac{\gamma(h)}{\gamma(0)}, h \geqslant 0
$$

Note since $\gamma(0)=\operatorname{Var}\left(X_{t}\right)=\operatorname{Var}\left(X_{0}\right) \mathrm{m}$

$$
|\gamma(h)|=\left|\operatorname{cov}\left(X_{t}, X_{t+h}\right)\right| \leqslant \sqrt{\operatorname{Var}\left(X_{t}\right) \operatorname{Var}\left(X_{t+h}\right)}=\operatorname{Var}\left(X_{0}\right)
$$

by stationary, $\operatorname{Var}\left(X_{t}\right)=\operatorname{Var}\left(X_{t+h}\right)=\operatorname{Var}\left(X_{0}\right)$. Also,

$$
|\rho(h)| \leqslant 1 \Longrightarrow-1 \leqslant \rho(h) \leqslant 1
$$

Esitimating $\gamma(h)$ and $\rho(h)$:

$$
\gamma(h)=\operatorname{cov}\left(X_{t}, X_{t+h}\right)=E\left[\left(X_{t}-\mu\right)\left(X_{t+h}-\mu\right)\right], \mu=E\left[X_{t}\right]
$$

Hence a sensible estimator is

$$
\begin{aligned}
\hat{\mu} & =\frac{1}{T} \sum_{t=1}^{T} X_{t}=\bar{X} \text { (Sample mean/Time series avg.) } \\
\hat{\gamma}(h) & =\frac{1}{T} \sum_{t=1}^{T-h}\left(X_{t}-\bar{x}\right)\left(X_{t+h}-\bar{X}\right) \approx \frac{1}{T-h} \sum_{t=1}^{T-h}\left(X_{t}-\bar{X}\right)\left(X_{t+h}-\bar{X}\right) \\
\hat{\rho}(h) & =\frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}
\end{aligned}
$$

Example 4

$X_{t}=W_{t}, W_{t} \sim$ Strong White Noise $\operatorname{Var}\left(W_{t}\right)=\sigma_{W}^{2}<\infty$

$$
\begin{aligned}
\gamma_{X}(h) & = \begin{cases}\sigma_{W}^{2}, & h=0 \\
0, & h \geqslant 1\end{cases} \\
\Longrightarrow \rho_{X}(h) & = \begin{cases}1, & h=1 \longleftarrow \rho(0)=\gamma(0) / \gamma(0)=0 \\
0, & h \geqslant 1\end{cases}
\end{aligned}
$$

1.11 Modes of Convergence of Random Variables

$\hat{\gamma}(h)$ is an estimator of $\gamma(h)$, and we want to discuss the asymptotic properties of this estimator. Introduce(Review):

1. Stochastic Boundedness(Op and op notation)
2. Convergence in Probability

3. Convergence in Distribution

Definition 19

Suppose $\left\{X_{n}\right\}_{n \geqslant 1}$ is a sequence of random variable, we say that X_{n} is bounded in probability by Y_{n} if $\forall \varepsilon>0, \exists M, N \in \mathbb{R}$ such that $\forall n \geqslant \mathbb{N}$,

$$
P\left(\left|X_{n} / Y_{n}\right|>M\right) \leqslant \varepsilon
$$

Shorthand: $X_{n}=O p\left(Y_{n}\right) \Longrightarrow{ }^{"} X_{n}$ is on the order of $Y_{n}{ }^{" /}$

Definition 20

We say X_{n} converges in probability to X if $\forall \varepsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left(\left|X_{n}-X\right|>\varepsilon\right)=0
$$

If a_{n} is a sequence of scalars, we abbriviate X_{n} / a_{n} converges in probability to zero as

$$
X_{n}=o p\left(a_{n}\right) \Longleftrightarrow P\left(\left|X_{n} / a_{n}\right|>\varepsilon\right) \rightarrow 0, \text { as } n \rightarrow 0, \forall \varepsilon>0
$$

Hence, X_{n} converges to zero in probability denoted as

$$
X_{n}=o p(1)
$$

We also write $X_{n} \xrightarrow{P} X$ to denote X_{n} converges to X in probability.

Definition 21

We say that sequence of scalar random variable X_{n} with respective CDF's $F_{n}(x)$ converges in distribution to X with CDF $F(x)$ if for all continuity y of F,

$$
\lim _{n \rightarrow \infty}\left|F_{n}(y)-F(y)\right|=0
$$

Remark. When $F(x)$ is the CDF of a continuous random variable (e.g. a normal CDF), then

$$
\lim _{n \rightarrow \infty}\left|F_{n}(y)-F(y)\right|=0, \forall y \in \mathbb{R}
$$

Useful Tool: Chebyshev's Inequality: If $E\left[Y^{2}\right]<\infty$, then

$$
\begin{aligned}
E\left[Y^{2}\right] & =E\left[Y^{2} \mathbb{1}_{|Y| \geqslant M}+Y^{2} \mathbb{\rrbracket}_{|Y|<M}\right] \\
& =E\left[Y^{2} \mathbb{1}_{|Y| \geqslant M}\right]+E\left[Y^{2} \mathbb{1}_{|Y|<M}\right] \\
& \geqslant E\left[Y^{2} \mathbb{1}_{|Y| \geqslant M}\right] \\
& \geqslant M^{2} E\left[\mathbb{1}_{|Y| \geqslant M}\right. \\
& =M^{2} P(|Y| \geqslant M)
\end{aligned}
$$

which give us the Chebyshev's Inequality:

$$
P(|Y| \geqslant M) \leqslant \frac{E\left[Y^{2}\right]}{M^{2}}
$$

Generally when $E\left[|Y|^{k}\right]<\infty, P(|Y| \geqslant M) \leqslant \frac{E\left[|Y|^{k}\right]}{M^{k}}$

Example 5

Suppose X_{n} is a strong white noise in $L^{2}\left(E\left[X_{0}^{2}\right]<\infty\right)$, and let $\bar{X}_{T}=\frac{1}{T} \sum_{t=1}^{T} X_{t}$, then

1. $\left|\bar{X}_{T}\right|=o p(1)$

For $\varepsilon>0$,

$$
\begin{aligned}
\operatorname{Var}\left(\bar{X}_{T}\right) & =E\left[\bar{X}_{T}^{2}\right] \\
& =\frac{1}{T^{2}} E\left[\left(\sum_{t=1}^{T} X_{t}\right)^{2}\right] \\
& =\frac{1}{T^{2}}\left(\sum_{t=1}^{T} \sum_{t=1}^{T} E\left[X_{t} X_{s}\right]\right) \text { the expectation is non-zero only then } t=s \\
& =\frac{1}{T^{2}} \sum_{t=1}^{T} E\left[X_{t}^{2}\right] \\
& =\frac{1}{T^{2}} \sum_{t=1}^{T} E\left[X_{0}^{2}\right]=\frac{\sigma^{2}}{T}\left(\sigma^{2}=E\left[X_{0}^{2}\right]\right)
\end{aligned}
$$

Hence we will have,

$$
P\left(\left|\bar{X}_{T}\right|>\varepsilon\right) \leqslant \frac{E\left[\bar{X}_{T}^{2}\right]}{\varepsilon^{2}}=\frac{\sigma^{2} / T}{\varepsilon^{2}} \rightarrow 0
$$

as $T \rightarrow \infty$.
Hence, $\bar{X}_{T}=o p(1)$
2. $\bar{X}_{T}=O p\left(\frac{1}{\sqrt{T}}\right)$,

$$
\operatorname{Var}\left(\frac{\bar{X}_{T}}{1 / \sqrt{T}}\right)=\operatorname{Var}\left(\sqrt{T} \bar{X}_{T}\right)=T * \operatorname{Var}\left(\bar{X}_{T}\right)=\sigma^{2}
$$

so by Chebyshev's, for $M>0$,

$$
P\left(\left|\sqrt{T} \bar{X}_{T}\right|>M\right) \leqslant \frac{\operatorname{Var}\left(\sqrt{T} \bar{X}_{T}\right)}{M^{2}}=\frac{\sigma^{2}}{M^{2}} \rightarrow 0, \text { as } M \rightarrow \infty
$$

Note: if we look at the definition, we should know the equation above shall work for any T large enough, so if we keep T in the equation, it cannot work.
Hence, $\sqrt{T} \bar{X}_{T}=O p(1) \Rightarrow \bar{X}_{T}=O p\left(\frac{1}{\sqrt{T}}\right)$.
Alternatively, we can show this using the Central Limit Theorem by the CLT $\sqrt{T} \bar{X}_{T} \xrightarrow{D}$ $N\left(0, \sigma^{2}\right)$. Therefore, if $F_{T} \sim \mathrm{CDF}$ of $\sqrt{T} \bar{X}_{T}, \Phi \sim \mathrm{CDF}$ of $N(0,1)$ random variable.

$$
\left|F_{T}(x)-\Phi(x / \sigma)\right| \rightarrow 0, \text { as } T \rightarrow \infty, \forall x \in \mathbb{R}
$$

For $\varepsilon>0$, choose M such that $\Phi\left(-\frac{M}{\sigma}\right)=1-\Phi(M / \sigma) \leqslant \frac{\varepsilon}{4}$. For this M, choose T_{0}, so $T \geqslant T_{0} \Rightarrow$ $\left|F_{T}(-M)-\Phi(-M / \sigma)\right| \leqslant \varepsilon / 4$ and $\left|F_{T}(M)-\Phi(M / \sigma)\right| \leqslant \varepsilon / 4$. Then,

$$
\begin{aligned}
P\left(\mid \sqrt{T} \bar{X}_{T} \geqslant M\right) & =F_{T}(-M)+\left(1-F_{T}(M)\right) \\
& =\Phi(-M / \sigma)+(1-\Phi(M / \sigma))+F_{T}(-M)+-\Phi(-M / \sigma)+\Phi(M / \sigma)-F_{T}(M) \\
& \leqslant \varepsilon / 4+\varepsilon / 4+\varepsilon / 4+\varepsilon / 4 \\
& =\varepsilon
\end{aligned}
$$

Remark. In general,

$$
\frac{X_{n}}{a_{n}} \xrightarrow{D} \text { Non-degenerate R.V. } \Rightarrow X_{n}=O p\left(a_{n}\right)
$$

Remark. Algebra of $O p$ and $o p$ notation.

1. $X_{n}=O p\left(a_{n}\right), Y_{n}=O p\left(b_{n}\right) \Rightarrow X_{n}+Y_{n}=O p\left(\max \left\{a_{n}, b_{n}\right\}\right)$
2. $X_{n}=o p(1), Y_{n}=o p(1), X_{n}+Y_{n}=o p(1)$
3. $X_{n}=o p(1), Y_{n}=o p(1), X_{n} * Y_{n}=o p(1)$

Example 6

Suppose W_{t} is a strong white noise in L^{2} with $E\left[W_{t}^{4}\right]<\infty$. Let $X_{t}=W_{t}+\theta W_{t-1}, \theta \in \mathbb{R}$. Show that $\hat{\gamma}(1) \xrightarrow{P} \theta \sigma_{W}^{2}$

Proof.

$$
\begin{aligned}
\bar{X}_{T}=\bar{X}= & \frac{1}{T} \sum_{t=1}^{T} X_{t}=\frac{1}{T} \sum_{t=1}^{t}\left(W_{t}+\theta W_{t-1}\right)=\frac{1}{T} \sum_{t=1}^{T} W_{t}+\frac{\theta}{T} \sum_{t=1}^{T} W_{t-1}=o p(1) \\
\hat{\gamma}(1) & =\frac{1}{T} \sum_{t=1}^{T-1}\left(X_{t}-\bar{X}\right)\left(X_{t+1}-\bar{X}\right) \\
& =\frac{1}{T} \sum_{t=1}^{T-1} X_{t} X_{t+1}+\frac{T-1}{T} \bar{X}^{2}-\bar{X} \frac{1}{T} \sum_{t=1}^{T-1} X_{t}-\bar{X} \frac{1}{T} \sum_{t=1}^{T-1} X_{t+1} \\
& =\frac{1}{T} \sum_{t=1}^{T-1} X_{t} X_{t+1}+R_{1, T}+R_{2, T}+R_{3, T}
\end{aligned}
$$

Notice that, $R_{i, T}=o p(1), i=1,2,3$

$$
\begin{aligned}
\frac{1}{T} \sum_{t=1}^{T-1} X_{t} X_{t+1} & =\frac{1}{T} \sum_{t=1}^{T}\left(W_{t}+\theta W_{t-1}\right)\left(W_{t+1}+\theta W_{t}\right) \\
& =\frac{1}{T} \sum_{t=1}^{T} \theta W_{t}^{2}+G_{1, T}+G_{2, T}+G_{3, T}
\end{aligned}
$$

Now, $\frac{1}{T} \sum_{t=1}^{T} \theta W_{t}^{2} \xrightarrow{S L L N} \theta E\left[W_{t}^{2}\right]=\theta \sigma_{W}^{2}$ We take a look at $G_{1, T}$,

$$
\begin{aligned}
& G_{1, T}=\frac{1}{T} \sum_{t=1}^{T} W_{t} W_{t+1}, E\left[G_{1, T}\right]=\frac{1}{T} \sum_{t=1}^{T} \underbrace{E\left[W_{t} W_{t+1}\right]}_{=0} \\
& \begin{aligned}
\operatorname{Var}\left(G_{1, T}\right) & =E\left[G_{1, T}^{2}\right]=\frac{1}{T^{2}} \sum_{t=1}^{T} \sum_{s=1}^{T} \underbrace{E}_{<\infty ; \neq 0} \text { only if } s=t \\
& =\frac{1}{T^{2}} \sum_{t=1}^{T} E\left[W_{t}^{2} W_{t+1}^{2}\right] \\
& =\frac{T}{T^{2}} \sigma_{W}^{2} \rightarrow 0 \text { as } T \rightarrow \infty
\end{aligned}
\end{aligned}
$$

By Chebyshev's Inequality, $G_{1, T}=o p(1)$ (Similar steps for $G_{2, T}, G_{3, T}$). Then we can write

$$
\hat{\gamma}(1)=\frac{1}{T} \sum_{t=1}^{T} \theta W_{t}^{2}+\sum o p(1)
$$

Hence we have

$$
\hat{\gamma}(1) \longrightarrow \theta \sigma_{W}^{2}
$$

1.12 M-dependent CLT (Optional)

Suppose X_{t} is a mean zero, strictly stationary time series ($E\left[X_{t}^{2}<\infty\right]$). Note we didn't assume X_{t} are iid. We frequently faces with the problem:

1. What is the approximate distribution of

$$
\frac{1}{\sqrt{T}} \sum_{t=1}^{T} X_{t}=\sqrt{T} \bar{X}_{T} \stackrel{D}{\approx} N\left(0, \sigma_{x}^{2}\right) ?
$$

2. If X_{t} is a strong white noise. What's the approximately distribution of

$$
\hat{\gamma}(h)=\frac{1}{T} \sum_{t=1}^{T-h} X_{t} X_{t+h}+o p(1)
$$

$X_{t} X_{t+h}:=Y_{t}$ is strictly stationary
When is the average of the possibly dependent variables generally normal?

- Only way to understand how the $\left\{X_{t}\right\}_{t \in \mathbb{Z}}$, we have to observe replicates of the process.
- If process is suitably "weakly dependent"; then we can observe replicates of the process by viewing on overlapping windows.

Definition 22

We say a time series $\left\{X_{t}\right\}_{t \in \mathbb{Z}}$ is m-dependent for $m \in \mathbb{Z}_{+}$, if for all $t_{1}<t_{2} \ldots<t_{d_{1}}<s_{1}<$ $s_{2}<\ldots<s_{d_{2}} \in \mathbb{Z}$ such that $t_{d_{1}}+m \leqslant s_{1}$ and

$$
\left(X_{t_{1}}, \ldots, X_{t_{d_{1}}}\right) \text { is independe of }\left(X_{s_{1}}, \ldots, X_{S_{d_{s}}}\right)
$$

it means two windows separated by (at least) m units are independent.

Example 7

$X_{t}=W_{t}+\theta W_{t-1}$ where W_{t} is a strong white noise is 2-dependent.

Theorem 2

Suppose X_{t} is a strictly stationary, and m-dependent time series with $E\left[X_{t}\right]=0, E\left[X_{t}^{2}\right]<$ ∞. Then

$$
S_{T}=\frac{1}{\sqrt{T}} \sum_{t=1}^{T} X_{t}=\sqrt{T} \bar{X} \xrightarrow{D} N\left(0, \sigma_{m}^{2}\right)(T \rightarrow \infty)
$$

where

$$
\sigma_{m}^{2}=\sum_{h=-m}^{m} \gamma(h)=\gamma(0)+2 \sum_{h=1}^{m} \gamma(h)
$$

This is a generalization of the standard CLT to m-dependence.

Definition 23

Preliminaries: We say $\left\{X_{i, j}, 1 \leqslant j \leqslant n_{i}, 1 \leqslant i \leqslant \infty\right\}$ forms a triangular array of mean zero L^{2} random variables, if $E\left[X_{i, j}\right]=0, E\left[X_{i, j}^{2}\right]<\infty$, for each i-fixed $X_{i, 1}, \ldots, X_{i, n_{i}}$ are independent, and $n_{i}<n_{i+1}$

$$
\begin{aligned}
& X_{1,1}, \ldots, X_{1, n_{1}} \\
& X_{1,1}, \ldots, \ldots, X_{2, n_{2}} \longleftarrow \text { Row-wise random variables are independent } \\
& \vdots, \ldots, \ldots, \ldots, \ldots, \ddots
\end{aligned}
$$

Theorem 3: Lindeberg-Feller CLT for triangular array

et $\left\{X_{i, j}, 1 \leqslant j \leqslant n_{i}, 1 \leqslant i \leqslant \infty\right\}$ be a triangular array of mean zero L^{2}-rvs. Define $\sigma_{i}^{2}=\sum_{j=1}^{n_{i}} \operatorname{Var}\left(X_{i, j}\right)$ and $S_{i}=\frac{1}{\sigma_{i}} \sum_{j=1}^{n_{i}} X_{i, j}$ (Row-wis sum standardized).
(Lindeberg's Condition) If for $\varepsilon>0$,

$$
\frac{1}{\sigma_{i}^{2}} \sum_{j=1}^{n_{i}} E\left[X_{i, j}{ }^{2} \rrbracket_{\left\{X_{i, j}>\varepsilon \sigma_{i}\right\}}\right] \rightarrow 0 \text { as } i \rightarrow \infty
$$

Then $S_{i} \xrightarrow{D} N(0,1)$
The indicator in the condition is looking for the variable that contributes a non-negligible varaince. The whole summation is calculating the percentage of the variance that are contributed by those variables with significant variance. Sometimes it's called a uniform asymptotic negligible condition, it's saying that all of the random variable are negligible in the sense none of them contribute significantly to the variance.

Proof. of M-dependent CLT
"Bernstein Blocking Argument"

$$
a_{T}=\text { Big Block Size, } m=\text { little block size }
$$

Assume $a_{T} \rightarrow \infty$ as $T \rightarrow \infty, \frac{a_{T}}{T} \rightarrow 0$.

$$
\begin{aligned}
N & =\text { number of blocks }=\left\lfloor\frac{T}{m+a_{T}}\right\rfloor \\
B_{j} & =\left\{i:(j-1)\left(a_{T}+m\right)+1 \leqslant i \leqslant j a_{T}+(j-1) m\right\} \\
b_{j} & =\left\{i: j a_{T}+(j-1) m+1 \leqslant i \leqslant j\left(a_{T}+m\right)\right\}
\end{aligned}
$$

Since $a_{T} \nwarrow \infty$, for T sufficiently large, $a_{T}>m$ and so by m-dependence, $\sum_{t \in B_{j}} X_{t}$ is independent of $\sum_{t \in B_{k}} X_{t}(j \neq k)$. Similar for $b_{j}, b_{k}, j \neq k$.

$$
\begin{aligned}
& \frac{1}{\sqrt{T}}=\frac{1}{\sqrt{T}} \sum_{j=1}^{N} \sum_{t \in B_{j}} X_{t}=\frac{1}{\sqrt{T}} \sim_{j=1}^{N} \sum_{t \in b_{j}}+\text { Remainder } \\
&=G_{1, T}+G_{2, T}+G_{3, T} \\
& \operatorname{Var}\left(G_{2, T}\right)=\frac{1}{T} \sum_{j=1}^{N} E\left[\left(\sum_{t \in b_{j}} X_{t}\right)^{2}\right] \underbrace{=}_{\text {strict stationary }} \frac{N}{T} E\left[\left(\sum_{t=1}^{m} X_{t}\right)^{2}\right] \\
& E\left[\left(\sum_{t=1}^{m} X_{t}\right)^{2}\right]=\sum_{t=1}^{m} \sum_{s=1}^{m} E\left[X_{t} X_{s}\right]=\sum_{t=1}^{m} \sum_{s=1}^{m} \gamma(|t-s|)=\sum_{h=1-m}^{m-1}(m-|h|) \gamma(h)<\infty \\
& \Longrightarrow \operatorname{Var}\left(G_{2, T}\right)=\frac{N}{T} * \text { constant }=\left\lfloor\frac{T}{a_{T}+m}\right\rfloor / T * \text { constant } \rightarrow 0\left[a_{T} \rightarrow \infty\right]
\end{aligned}
$$

Hence, as $T \rightarrow \infty, a_{T} \rightarrow \infty$, we will have $G_{2, T}=o p(1)$ by Chebyshev's Inequality.
Notice $G_{1, T}=\frac{1}{\sqrt{T}} \sum_{j=1}^{N} \sum_{t \in B_{j}} X_{t}=\sum_{j=1}^{N} \frac{\sum_{t \in B_{j}} X_{t}}{\sqrt{T}}$, and we let $Y_{j, T}=\frac{\sum_{t \in B_{j}} X_{t}}{\sqrt{T}}$ (this variable
forms a triangular array, imagining each row shares the same T)

$$
\begin{aligned}
& \operatorname{Var}\left(G_{1, T}\right)=\sum_{j=1}^{N} \operatorname{Var}\left(Y_{j, T}\right) \\
& \operatorname{Var}\left(Y_{j, T}\right)=\operatorname{Var}\left(Y_{1, T}\right) \\
&=\frac{1}{T} E\left[\left(\sum_{t=1}^{a_{T}} X_{i}\right)^{2}\right] \\
&=\frac{1}{T} \sum_{t=1}^{a_{T}} \sum_{s=1}^{a_{T}} E\left[X_{t} X_{s}\right] \\
&=\frac{1}{T} \sum_{h=1-a_{T}}^{a_{T}-1}\left(a_{T}-|h|\right) \gamma(h) \\
&=\frac{1}{T} \sum_{h=-m}^{h=m}\left(a_{T}-|h|\right) \gamma(h) \text { if }|h| \geqslant m, \text { then } \gamma(h)=0 \text { by m-independence } \\
& \Longrightarrow \operatorname{Var}\left(G_{1, T}\right)=\frac{N}{T} \sum_{h=-m}^{m}\left(a_{T}-|h|\right) \gamma(h) \approx \frac{1}{a_{T}} \sum_{h=-m}^{m}\left(a_{T}-|h|\right) \gamma(h) \underset{T \rightarrow \infty}{\longrightarrow} \sum_{h=-m}^{m} \gamma(h)
\end{aligned}
$$

Hence we know the variance of $G_{1, T}$ is bounded.
Check Lindeberg's Condition: $\sigma_{N}^{2}=\operatorname{Var}\left(G_{1, T}\right) \approx$ const, so we must show:

$$
\left.\begin{array}{rl}
& \sum_{j=1}^{N} E[\underbrace{Y_{j, T}^{2}}_{\text {ind }} \mathbb{1}_{\left\{\left|Y_{j, T}\right|>\varepsilon \sigma_{N}\right\}}] \\
= & N * E\left[Y_{j, T}^{2} \mathbb{1}\left\{\left|Y_{j, T}\right|>\varepsilon \sigma_{N}\right\}\right.
\end{array}\right] \rightarrow 0 \text { as } T \rightarrow \infty
$$

Aside $E\left[|Y|^{2+\delta}\right] \underset{\delta>0}{\geqslant} E\left[|Y|^{2+\delta} \mathbb{1}_{\{|Y|>\varepsilon\}}\right] \geqslant \varepsilon^{\delta} E\left[|Y|^{2} \mathbb{\rrbracket}_{\{|Y|>\varepsilon\}}\right]$, so we have

$$
E\left[|Y|^{2} \mathbb{1}_{\{|Y|>\varepsilon\}}\right] \leqslant \frac{E\left[|Y|^{2+\delta}\right]}{\varepsilon^{\delta}}
$$

It may be shown that $E\left[\mid Y_{j, T}^{2+\delta}\right] \leqslant \operatorname{const}\left(\frac{a_{T}}{T}\right)^{\frac{2+\delta}{2}}$, so

$$
\begin{aligned}
& N * E\left[Y_{j, T}^{2} \mathbb{\mathbb { 1 }}\left\{\left|Y_{j, T}\right|>\varepsilon \sigma_{N}\right\}\right. \\
& \leqslant \frac{N}{\left(\varepsilon \sigma_{N}\right)^{\delta}} \operatorname{const}\left(\frac{a_{T}}{T}\right)^{\frac{2+\delta}{2}} \\
&=\frac{\text { const }}{\left(\varepsilon \sigma_{N}\right)^{\delta}} \frac{N a_{T}}{T}\left(\frac{a_{T}}{T}\right)^{\frac{\delta}{2}} \rightarrow 0(T \rightarrow \infty)
\end{aligned}
$$

This implies $\frac{G_{1, T}}{\sigma_{N}} \xrightarrow{D} N(0,1)$, and since $\sigma_{N}^{2} \rightarrow \sum_{h=-m}^{m} \gamma(j)$, we have

$$
G_{1, T} \xrightarrow{D} N\left(0, \sum_{h=-m}^{m} \gamma(h)\right)
$$

Since, at the beginning, we've shown that $G_{2, T}=o p(1)$, so we have

$$
\frac{1}{\sqrt{T}} \sum_{t=1}^{T} X_{t} \xrightarrow{D} N\left(0, \sum_{h=-m}^{m} \gamma(h)\right)
$$

as required.

$1.132+\delta$ Moment Calculation

We want to show that

$$
E\left[\left|Y_{1, t}\right|^{2+\delta}\right] \leqslant \text { constant }\left(\frac{a_{T}}{T}\right)^{\frac{2+\delta}{2}}
$$

, where $Y_{1, T}=\frac{1}{\sqrt{T}} \sum_{t=1}^{a_{T}} X_{t}$, and $a_{T}=$ Big Block Size $\rightarrow \infty,(T \rightarrow \infty), \frac{a_{T}}{T} \rightarrow 0 . X_{t}$ are m -denpendent random variables. Want

$$
E\left[\left|X_{i}\right|^{2+\delta}\right]<\infty(\delta>0) \Leftrightarrow \operatorname{const} a_{T}^{\frac{2+\delta}{2}}
$$

Tools: Rosenthal's Inequality. If X_{1}, \ldots, X_{n} are independent RV's with $E\left[\left|X_{i}\right|^{2+\delta}\right]<\infty(\delta>0)$, then

$$
E\left[\left|\sum_{i=1}^{n} X_{i}\right|^{2+\delta}\right] \leqslant c_{p} n^{\delta / 2} \sum_{i=1}^{n} E\left[\left|X_{i}\right|\right]^{2+\delta}
$$

In particular, if X_{1}, \ldots, X_{n} are iid, then

$$
E\left[\left|\sum_{i=1}^{n} X_{i}\right|^{2+\delta}\right] \leqslant c_{p} n^{(2+\delta) / 2} E\left[\left|X_{1}\right|\right]^{2+\delta}
$$

For proof: see Petrov, Limit theorems of probability theory, P59.
Tool: For arbitrary RV's X_{1}, \ldots, X_{n},

$$
E\left[\left|\sum_{i=1}^{n} X_{i}\right|^{2+\delta}\right] \leqslant n^{(\delta+2)-1} \sum_{i=1}^{n} E\left[\left|X_{i}\right|\right]^{2+\delta}
$$

proof: By Jensen's Inequality, for all real numbers a_{1}, \ldots, a_{n}

$$
\begin{aligned}
& \left|\frac{1}{n} \sum_{i=1}^{n} a_{i}\right|^{2+\delta} \leqslant \frac{1}{n} \sum_{i=1}^{n}\left|a_{i}\right|^{2+\delta} \\
\Longrightarrow & \left|\sum_{i=1}^{n} a_{i}\right|^{2+\delta} \leqslant n^{(2+\delta)-1} \sum_{i=1}^{n}\left|a_{i}\right|^{2+\delta}
\end{aligned}
$$

Replace a_{i} with X_{i}, take expectation.
Proof.

$$
\sum_{t=1}^{a_{T}} X_{t}=\sum_{j=0}^{m} \sum_{\substack{\bmod m=j, t=k+1 \\ 1 \leqslant t a_{T}}} X_{t}
$$

so $\sum \forall k \underset{\substack{\text { od } \\ 1 \leqslant t \leqslant j \neq T \\ \hline}}{ } X_{t=k+1}$, variables in this sum separated by at least m-time steps, and are hence
iid. So we got,

$$
\begin{aligned}
E\left[\left|\sum_{t=1}^{a_{T}} X_{t}\right|^{2+\delta}\right] & \leqslant(m+1)^{(2+\delta)-1} \sum_{j=0}^{m} E\left[\left|\sum_{\forall k \operatorname{cod} m=j, t=k+1}^{1 \leqslant t \leqslant a_{T}} X_{t}\right|^{2+\delta}\right] \\
& \leqslant(m+1)^{(2+\delta)-1} \sum_{j=0}^{m}\left(\frac{a_{T}}{m+1}\right)^{\frac{2+\delta}{2}} c_{p} E\left[\left|X_{1}\right|\right]^{2+\delta} \\
& =(m+1)^{(2+\delta)-1} m\left(\frac{a_{T}}{m+1}\right)^{\frac{2+\delta}{2}} c_{p} E\left[\left|X_{1}\right|\right]^{2+\delta} \\
& =\text { const } * a_{T}{ }^{\frac{2+\delta}{2}}
\end{aligned}
$$

1.14 Linear Process CLT

If $X_{t} \sim$ m-dependent, strictly stationary, $E\left[X_{t}\right]=0, E\left[X_{t}^{2}\right]<\infty$, then

$$
\frac{1}{\sqrt{T}} \sum_{t=1}^{T} X_{t} \xrightarrow{D} N\left(0, \sum_{h=-m}^{m} \gamma(h)\right)
$$

EX: $X_{t}=\sum_{t=0}^{m} \psi_{l} W_{t-l}$, whhere $\left\{w_{t}\right\}_{t \in \mathbb{Z}}$ is a strong White noise in L^{2}.
A general linear process

$$
X_{t}=\sum_{l=0}^{\infty} \psi_{l} W_{t-l}
$$

is not m -dependent, because it depends on the white noise arbitrarily back to the past.

Theorem 4: Basic Approximation Theorem BAT

Suppose X_{n} is a sequence of random variables so that there exists an array $\left\{Y_{m, n}, m, n \geqslant 1\right\}$,

1. For each fixed $m, Y_{m, n} \xrightarrow{D} Y_{m}$ as $n \rightarrow \infty$.
2. $Y_{m} \xrightarrow{D} Y$, as $m \rightarrow \infty$ for some random variable Y
3. $\lim _{m \rightarrow \infty} \limsup _{n \rightarrow \infty} P\left(\left|X_{n}-Y_{m, n}\right|>\varepsilon\right)=0, \forall \varepsilon>0$

Then $X_{n} \xrightarrow{D} Y$ as $n \rightarrow \infty$.
Normally, $Y_{m, n}$ is often an "m-dependent approximation to X_{n}. Proof is in Shumway and Stoffer.

Theorem 5: Linear Process CLT

Suppose

$$
X_{t}=\sum_{l=0}^{\infty} \psi_{l} W_{t-l}
$$

is a causal linear process with $\sum_{l=0}^{\infty}\left|\psi_{l}\right|<\infty,\left\{W_{t}\right\}_{t \in \mathbb{Z}}$ is a strong white noise in L^{2}. Then if $S_{t}=\frac{1}{\sqrt{T}} \sum_{t=1}^{T} X_{t}$,

$$
S_{T} \xrightarrow{D} N\left(0, \sum_{l=-\infty}^{\infty} \gamma(l)\right)(T \rightarrow \infty)
$$

,where the variance of the S_{T} is the "long-run variance" of X_{t}
X_{t} is strictly (and weakly) stationary.

$$
\begin{aligned}
& \gamma(h)=E\left[X_{t} X_{t+h}\right]=E\left[\left(\sum_{l=0}^{\infty} \psi_{l} W_{t-l}\right)\left(\sum_{j=0}^{\infty} \psi_{j} W_{t+h-j}\right)\right] \\
& \text { Fubin's Theorem }=\sum_{l=0}^{\infty} \sum_{j=0}^{\infty} \psi_{l} \psi_{j} \underbrace{E\left[W_{t-l} W_{t+h-j}\right]}_{\neq 0, \text { if } j=l+h} \\
&=\sum_{l=0}^{\infty} \psi_{l} \psi_{l+h} \sigma_{W}^{2} \\
& \sum_{h=-\infty}^{\infty} \gamma(h)=\sum_{h=-\infty}^{\infty}\left|\sum_{l=0}^{\infty} \psi_{l} \psi_{l+h} \sigma_{W}^{2}\right| \leqslant \sum_{l=0}^{\infty}\left|\psi_{l}\right| \sum_{h=-\infty}^{\infty}\left|\psi_{h}\right| \sigma_{W}^{2}<\infty
\end{aligned}
$$

so $\sum_{h=-\infty}^{\infty} \gamma(h)$ is well-defined.

$$
\begin{aligned}
E\left[S_{T}\right] & =E\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} X_{t}\right)=0\left(E\left[X_{t}\right]=0\right) \\
\operatorname{Var}\left(S_{T}\right) & =\frac{1}{T} \sum_{t=1}^{T} \sum_{s=1}^{T} E\left[X_{t} X_{s}\right]=\frac{1}{T} \sum_{h=1-T}^{T-1}(T-|h|) \gamma(h) \\
& =\sum_{h=1-T}^{T-1}\left(1-\frac{|h|}{T}\right) \gamma(h) \\
& \text { by Dominated Convergence } \sum_{h=-\infty}^{\infty} \gamma(h)
\end{aligned}
$$

Note: $\left(1-\frac{|h|}{T}\right) \gamma(h) \leqslant \underbrace{|\gamma(h)|}_{\text {summable }}$
Proof. Define $X_{t, m}=\sum_{l=0}^{m} \psi_{l} W_{t-l}, S_{T, m}=\frac{1}{\sqrt{T}} \sum_{t=1}^{T} X_{t, m}$ (m-dependent approximation to S_{T})

1. By the m-dependent CLT

$$
S_{T, m} \xrightarrow{D} N\left(0, \sum_{h=-m}^{m} \gamma_{m}(h)\right)=: S_{m}^{\prime}, \gamma_{m}(h)=E\left[X_{t, m} X_{t+h, m}\right]
$$

2. By Dominated Convergence $\sum_{h=-m}^{m} \gamma_{m}(h) \underset{m \rightarrow \infty}{\longrightarrow} \sum_{h=-\infty}^{\infty} \gamma(h)$, and hence

$$
S_{m}^{\prime} \xrightarrow{D} N\left(0, \sum_{h=-\infty}^{\infty} \gamma(h)\right)
$$

3.

$$
\begin{aligned}
E\left[\left(S_{T, m}-S_{T}\right)^{2}\right] & =\frac{1}{T} E\left[\left(\sum_{t=1}^{T}\left(X_{t}-X_{t, m}\right)\right)^{2}\right] \\
& \leqslant \sum_{h=1-T}^{T-1}\left(1-\frac{|h|}{T}\right) \sum_{l=m+1}^{\infty}\left|\psi_{l}\right|\left|\psi_{l+h}\right| \sigma_{W}^{2} \\
& \leqslant \sum_{l=m+1}^{\infty}\left|\psi_{l}\right|\left(\sum_{h=-\infty}^{\infty}\left|\psi_{h}\right|\right) \sigma_{W}^{2} \rightarrow 0, m \rightarrow \infty
\end{aligned}
$$

so condition (3) of the BAT is satisfied using Chebyshev's Inequality. Hence

$$
S_{T}=\frac{1}{\sqrt{T}} \sum_{t=1}^{T} X_{t} \xrightarrow{D} N\left(0, \sum_{h=-\infty}^{\infty} \gamma(h)\right)
$$

1.15 Aymptotic Properties of Empirical ACF

If X_{1}, \ldots, X_{T} is an observed time series that we think was generated by a stationary process, $\operatorname{Cov}\left(X_{t}, X_{t+h}\right)$ Does not depend on t.

$$
\begin{aligned}
& \hat{\gamma}(h)=\frac{1}{T} \sum_{t=1}^{T-h}\left(X_{t}-\bar{X}\right)\left(X_{t+h}-\bar{X}\right) \\
& \rho(h)=\operatorname{Corr}\left(X_{t}, X_{t+H}\right)=\frac{\gamma(h)}{\gamma(0)}, \hat{\rho}(h)=\frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}
\end{aligned}
$$

Questions:

1. Are $\hat{\gamma}$ and $\hat{\rho}$ consistent?
2. What is the approximate distribution of $\hat{\gamma}(h)$ and $\hat{\rho}(h)$?

Answer:

1. Consistency: By adding and subtracting μ in the difinition of $\hat{\gamma}(h)$, we may assume WLOG that $E\left[X_{t}\right]=0$.
Suppose $\left\{X_{t}\right\}_{t \in \mathbb{Z}}$ is strictly stationary, and

$$
X_{t}=g\left(W_{t}, W_{t-1}, \ldots,\right)
$$

which is a Bernoulli shift.
Then

$$
\bar{X}=\frac{1}{T} \sum_{t=1}^{T} X_{t} \xrightarrow{P} 0
$$

by the ergodic theorem (X_{t} is Ergodic).
Further more

$$
\begin{aligned}
\hat{\gamma}(h) & =\frac{1}{T} \sum_{t=1}^{T}\left(X_{t}-\bar{X}\right)\left(X_{t+h}-\bar{X}\right) \\
& =\underbrace{\frac{1}{T} \sum_{t=1}^{T-h} X_{t} X_{t+h}}_{\text {Dominant term }}-\underbrace{\frac{\bar{X}}{T} \sum_{t=1}^{T-h} X_{t}}_{P_{\rightarrow 0}}-\underbrace{\frac{T}{\rightarrow-h} \bar{X}^{2}}_{\substack{P \\
T} \sum_{t=1}^{\bar{X}} X_{t+h}} \underbrace{T}_{\substack{T}}
\end{aligned}
$$

Note: $E\left[X_{t} X_{t+h}\right]=\gamma(h), X_{t} X_{t+h}=g_{h}\left(W_{t+h}, W_{t+h-1}, \ldots,\right)$ (Still Ergodic). Again by the Ergodic Theorem:

$$
\frac{1}{T} \sum_{t=1}^{T-h} X_{t} X_{t+h} \xrightarrow{P} \gamma(h)
$$

which gives us

$$
\hat{\gamma}(h) \xrightarrow{P} \gamma(h), \hat{\rho}(h)=\frac{\hat{\gamma}(h)}{\hat{\gamma}(0)} \xrightarrow{P} \rho(h)
$$

under strict stationarity and $E\left[X_{t}^{2}\right]<\infty$.
2. Distribution of $\hat{\gamma}(h)$: Consider simple (but perhaps most important) case: X_{t} is a strong white noise. $E\left[X_{t}^{4}\right]<\infty$
Finite $4^{\text {th }}$ moment assumption is not really needed here but I will explain why it is classically assumed.

$$
\hat{\gamma}(h) \xrightarrow{P} 0 \text { in this case by strong white noise }
$$

Similarly as before

$$
\hat{\gamma}(h)=\underbrace{\frac{1}{T} \sum_{t=1}^{T-h} X_{t} X_{t+h}}_{\tilde{\gamma}(h)}+\text { smaller terms }
$$

Hence,

$$
\begin{aligned}
E[\tilde{\gamma}(h)) & =\frac{1}{T} \sum_{t=1}^{T-h} E\left[X_{t} X_{t+h}\right]=0(h \geqslant 1) \\
\operatorname{Var}(\tilde{\gamma}(h)) & =E\left[\tilde{\gamma}^{2}(h)\right] \\
& =\frac{1}{T^{2}} \sum_{t=1}^{T-h} \sum_{s=1}^{T-h} \underbrace{E\left[X_{t} X_{t+h} X_{s} X_{s+h}\right]}_{\neq 0 \leftrightarrow t=s} \\
& =\frac{1}{T^{2}} \sum_{t=1}^{T-h} E\left[X_{t}^{2} X_{t+h}^{2}\right] \\
& =\frac{T-h}{T^{2}} \sigma_{x}^{4}\left(E\left[X_{t}^{2}\right]=\sigma_{X}^{2}\right)
\end{aligned}
$$

Therefore,

$$
\operatorname{var}(\sqrt{T} \tilde{\gamma}(h)) \underset{T \rightarrow \infty}{\longrightarrow} \sigma_{X}^{4}
$$

Theorem 6

If X_{t} is a strong white noise with $E\left[X_{t}^{4}\right]<\infty$,

$$
\sqrt{T} \tilde{\gamma}(h)=\frac{1}{\sqrt{T}} \sum_{t=1}^{T-h} \underbrace{X_{t} X_{t+h}}_{\text {Not iid }} \xrightarrow{D} N\left(0, \sigma_{X}^{4}\right)
$$

The convergence can be obtained by $\mathrm{M}(\mathrm{h}+1)$-dependent CLT and Martingale CLT.

It follows that

$$
\sqrt{T} \hat{\gamma}(h) \xrightarrow{D} N\left(0, \sigma_{X}^{4}\right)
$$

Since $\hat{\gamma}(0) \xrightarrow{P} \sigma_{X}^{2}$, by Slutsky's Theorem,

$$
\sqrt{T} \frac{\hat{\gamma}(h)}{\hat{\gamma}(0)}=\sqrt{T} \hat{\rho}(h) \xrightarrow{D} N(0,1)
$$

Useful Tool: If X_{t} is a strong white noise, $\left(-\frac{Z_{\alpha / 2}}{\sqrt{T}}, \frac{Z_{\alpha / 2}}{\sqrt{T}}\right)$ is a $(1-\alpha)$ Prediction Interval for $\hat{\rho}(h)$ for all h (T large), where $\Phi\left(Z_{\alpha}\right)=1-\alpha$. Hence $\left(-\frac{1.96}{\sqrt{T}}, \frac{1.96}{\sqrt{T}}\right)$ is an approximate 95% prediction interval for $\hat{\rho}(h)$ assuming the data is generated by a strong white noise process.
Hence, if the data is a strong white noise, for the most of time the ACF should lie in this interval. Also, since our empirical autocorrelation is consistent, we know if the true autocorrelation is nonzero, for T large enough, the empirical autocorrelation will be outside of this interval.

1.16 Interpreting the ACF

We have an excellent understanding of how $\hat{\rho}(h)$ behaves when X_{1}, \ldots, X_{T} is a strong white noise

$$
\hat{\rho}(h) \xrightarrow{P} 0(h \geqslant 1) \quad \hat{\rho}(h) \stackrel{D}{\approx} N\left(0, \frac{1}{T}\right)(T \text { is large })
$$

What happens when we calculate the Empirical ACF for non-stationary data?

Example 9

$X_{t}=t+W_{t}\left(W_{t} \sim S . W . N.\right)$, we can see that X_{t} has a linear trend.

$$
\begin{aligned}
\bar{X} & =\frac{1}{T} \sum_{t=1}^{T} t+W_{t}=\frac{1}{T} \frac{T(T+1)}{2}+\bar{W}=\frac{T+1}{2}+\bar{W} \\
\hat{\gamma}(h) & =\frac{1}{T} \sum_{t=1}^{T-h}\left(t+W_{t}-\frac{T+1}{2}-\bar{W}\right)\left(t+h+W_{t+h}-\frac{T+1}{2}-\bar{W}\right) \\
& =\frac{1}{T} \sum_{t=1}^{T-h}\left(t-\frac{T+1}{2}\right)\left(t+h-\frac{T+1}{2}\right)+\text { smaller terms } \\
& =\frac{1}{T} \sum_{t=1}^{T-h}\left(t-\frac{T+1}{2}\right)^{2}+\frac{1}{T} \sum_{t=1}^{T-h} h\left(t-\frac{T+1}{2}\right)+\text { smaller terms } \\
& \approx \frac{1}{T} \sum_{t=1}^{T / 2} t^{2}+\frac{h}{T}\left[\frac{(T-h)(T-h+1)}{2}-\frac{(T+1)(T-h)}{2}\right] \\
& \approx \underbrace{O\left(T^{2}\right)}_{\text {Dominated }}+O(T)
\end{aligned}
$$

It follows in this case that

$$
\frac{\hat{\gamma}(h)}{T^{2}} \rightarrow \text { Const for all } h(T \rightarrow \infty)
$$

Hence,

$$
\hat{\rho}(h)=\frac{\hat{\gamma}(h) / T^{2}}{\hat{\gamma}(0) / T^{2}} \xrightarrow{P} 1, \forall h
$$

Moral: If X_{t} has a trend that is not properly remove, $\hat{\rho}(h)$ is likely to be large!!!

1.17 Moving Average Processes

Suppose X_{t} is stationary. Identify serial dependence using ACF $\hat{\rho}(h)$

Posit $X_{t}=g\left(W_{t}, W_{t-1]}, \ldots\right)=\sum_{l=0}^{\infty} \psi_{l} W_{t-l}$ [Linear Process].
Not feasible to estimate infinitely many parameters $\left\{\psi_{l}\right\}_{l=0}^{\infty}$
Assume coefficients arise from a parsomonious linear model for X_{t}

Definition 24

Suppose $\left\{W_{t}\right\}_{t \in \mathbb{Z}}$ is a strong white noise with $\operatorname{Var}\left(W_{t}\right) \sigma_{W}^{2}<\infty$. We say X_{t} is a Moving Average Process of order q (Abbrev. $M A(q)$) if there exists coefficient $\theta_{1}, \ldots, \theta_{q} \in$ $\mathbb{R}, \theta_{q} \neq 0$, so that

$$
X_{t}=W_{t}+\theta_{1} W_{t-1}+\ldots+\theta_{q} W_{t-q}=\sum_{l=0}^{q} \theta_{l} W_{t-l}\left(\theta_{0}=1\right)
$$

which is a truncated linear process for order q

Definition 25

The Backshift operator, B, is defined by

$$
B^{j} X_{t}=X_{t-j}
$$

B is assumed further to be linear in the sense that for $a, b \in \mathbb{R}$,

$$
\left(a B^{j}+b B^{k}\right) X_{t}=a B^{j} X_{t} b B^{k} X_{t}=a X_{t-j}+b X_{t-k}
$$

Example

$$
\nabla X_{t}=\text { first diff. of } X_{t}=(1-B) X_{t}
$$

Definition 26

We sat $\theta(x)=1+\theta_{1} x+\ldots, \theta_{q} X^{q}$ is the Moving Average Polynomial. If $X_{t} \sim M A(q)$,

$$
X_{t}=W_{t}+\theta_{1} W_{t-1}+\ldots+\theta_{q} W_{t-q}=\theta(B) W_{t}
$$

which is succinct expression defining $M A(q)$

Properties of $M A(q)$ Processes:

1. $M A(q)$ process= Strong White Noise.
2. If $X_{t} \sim M A(q)$, then

$$
\begin{aligned}
E\left[X_{t}\right. & =E\left[\sum_{k=0}^{q} \theta_{l} W_{t-l}\right]=0 \\
\operatorname{Var}\left(X_{t}\right) & =E\left[\left(\sum_{l=0}^{q} \theta_{l} W_{t-l}\right)^{2}\right]=\sum_{l=0}^{q} \theta_{l}^{2} \sigma_{W}^{2} \\
\gamma(h) & =\operatorname{Cov}\left(X_{t}, X_{t+h}\right)=E\left[\left(\sum_{l=0}^{1} \theta_{l} W_{t-l}\right)\left(\sum_{k=0}^{q} \theta_{k} W_{t+h-k}\right)\right] \\
& = \begin{cases}\sum_{j=0}^{q-|h|} \theta_{j} \theta_{j+h} \sigma_{W}^{2}, & 0 \leqslant h \leqslant q \\
0, & h>q\end{cases} \\
\rho(h) & =\frac{\gamma(h)}{\gamma(0)}= \begin{cases}\frac{\sum_{j=0}^{q-|h|} \theta_{j} \theta_{j+h}}{\sum_{j=0}^{q} \theta_{j}^{2}}, & 0 \leqslant h \leqslant q \\
0 & h \geqslant q+1\end{cases}
\end{aligned}
$$

Note: By choose $\theta_{1}, \ldots, \theta_{q}$ appropriately, we can get any ACF we want, $\rho(h), 1 \leqslant h \leqslant q$
3. $X_{t} \sim M A(q) \Longrightarrow X_{t}$ is q-dependent

MA(2)

Series ma0.sim

Series ma1.sim
MA(1)

Series ma2.sim

1.18 Autoregressive Processes

Definition 27

Suppose $\left\{W_{t}\right\}_{t \in \mathbb{Z}}$ is a strong white noise with $\operatorname{Var}\left(W_{t}\right)<\infty$. We say X_{t} is an Autoregressive Process of order 1 (Abbrv. $A R(1)$) if there exists a constant ϕ so that

$$
X_{t}=\phi X_{t-1}+W_{t}, t \in \mathbb{Z}
$$

Using Backshift operator, this may also be expressed as

$$
(1-\phi B) X_{t}=W_{t}
$$

Interpretation:

- Prediction: Form a linear model (Regression) for predicting X_{t} as $X_{t}=\phi X_{t-1}+W_{t}$, where X_{t} is the dependent variable and X_{t-1} is the covariate/independent variable.
- Markovian Property:

$$
X_{t}\left|X_{t-1}, X_{t-2}, \ldots=X_{t}\right| X_{t-1}
$$

Question: Does there exist a stationary process X_{t} satisfying

$$
\begin{aligned}
& \quad X_{t}=\phi X_{t-1}+W_{t} \\
& X_{t}=\phi X_{t-1}+W_{t}, z \in \mathbb{Z} \\
& =\phi\left(\phi X_{t-2}+W_{t-1}\right)+W_{t}=\phi^{2} X_{t-2}+\phi W_{t-1}+W_{t} \\
& \vdots \\
& = \\
& \phi^{k} X_{t-k}+\sum_{j=0}^{K-1} \phi^{j} W_{t-j}
\end{aligned}
$$

So ,if $|\phi|>1, X_{t}$ blows-up. Suppose $|\phi|<1$, we have

$$
L^{2} \xrightarrow{\text { sense }} 0+\sum_{j=0}^{\infty} \phi^{j} W_{t-j} \leftarrow \text { Causal Linear Process }
$$

Moreover, if $X_{t}=\sum_{j=0}^{\infty} \phi^{j} W_{t-j}, X_{t}$ is strictly stationary, and

$$
\begin{aligned}
X_{t}=\sum_{j=0}^{\infty} \phi^{j} W_{t-j} & =\sum_{j=1}^{\infty} \phi^{j} W_{t-j}+W_{t} \\
& =\phi \sum_{j=1}^{\infty} \phi^{j-1} W_{t-j}+W_{t} \\
& =\phi \sum_{j=0}^{\infty} \phi^{j} W_{t-1-j}+W_{t} \\
& =\phi X_{t-1}+W_{t}
\end{aligned}
$$

X_{t} satisfies $A R(1)$ equation

Theorem 7

If $|\phi|<1$, then there exists a strictly stationary and Causal Linear Process X_{t} so that

$$
X_{t}=\phi X_{t-1}+W_{t}
$$

What if $|\phi|>1$? If $X_{t}=\phi X_{t-1}+W_{t}, t \in \mathbb{Z}$

$$
\begin{aligned}
X_{t} & =X_{t+1} / \phi-W_{t+1} / \phi \\
& =\vdots \\
& =X_{t+k} / \phi^{k}-\sum_{j=1}^{k} \frac{W_{t+j}}{\phi^{j}} \\
& L^{2} \xrightarrow{\text { sense }}-\sum_{j=1}^{\infty} \frac{W_{t+j}}{\phi^{j}}
\end{aligned}
$$

This sequence is strictly stationary! (Bernoulli-Shift). It depends on the future. Normally we try to avoid this.
What if $|\phi|=1$?
In this case there is no stationary process X_{t} so that

$$
X_{t}=\phi X_{t-1}+W_{t}
$$

Proof. $\phi=1$. If $X_{t}=X_{t-1}+W_{t}$, then suppose it's stationary

$$
\begin{gathered}
X_{t}=\sum_{j=1}^{t} W_{j}+X_{0} \\
\Longrightarrow X_{t}-X_{0}=\sum_{j=1}^{t} W_{j} \\
\operatorname{Var}\left(X_{t}-X_{0}\right)=\operatorname{Var}\left(X_{t}\right)+\operatorname{Var}\left(X_{0}\right)-2 \operatorname{cov}\left(X_{t}, X_{0}\right) \leqslant 4 \operatorname{Var}\left(X_{0}\right) \\
\operatorname{Var}\left(\sum_{j=1}^{t} W_{j}\right)=t \sigma_{W}^{2} \rightarrow \infty, \text { as } t \rightarrow \infty
\end{gathered}
$$

Contradiction.
Properties of Causal $A R(1)[|\phi|<1]$.

1. The span of dependence of X_{t} is "infinite"

$$
X_{t}=\sum_{l=0}^{\infty} \phi^{l} W_{t-l}
$$

2. ACF .

$$
\begin{aligned}
\operatorname{Var}\left(X_{t}\right)=E & {\left[\left(\sum_{l=0}^{\infty} \phi^{l} W_{t-l}\right)^{2}\right]=\sum_{l=0}^{\infty} \phi^{2 l} \sigma_{W}^{2}=\sigma_{W}^{2} /\left(1-\phi^{2}\right) } \\
\gamma(h) & =\operatorname{cov}\left(X_{t}, X_{t+h}\right) \\
& =E\left[\left(\sum_{l=0}^{\infty} \phi^{l} W_{t-l}\right)\left(\sum_{k=0}^{\infty} \phi^{k} W_{t+h-k}\right)\right] \\
= & \sum_{l=0}^{\infty} \phi^{l} \phi^{l+h} \sigma_{W}^{2} \\
& =\phi^{h} \sum_{l=0}^{\infty} \phi^{2 l} \sigma_{W}^{2} \\
& =\phi^{h} \sigma_{W}^{2} /\left(1-\phi^{2}\right)
\end{aligned}
$$

Hence

$$
\rho(h)=\frac{\gamma(h)}{\gamma(0)}=\phi^{h}, h \geqslant 0
$$

[Note: this decays geometrically in the lag parameter]

Definition 28

We say X_{t} follows an autoregressive process of order p (Abbrv. $A R(p)$) if there exists coefficients $\phi_{1}, \ldots, \phi_{p} \in \mathbb{R}\left(\phi_{p} \neq 0\right)$ so that

$$
X_{t}=\phi_{1} X_{t-1}+\ldots+\phi_{p} X_{t-p}+W_{t}
$$

We define

$$
\phi(x)=1-\phi_{1} x-\ldots-\phi_{p} x^{p}
$$

to be the Autoregressive Polynomial. $X_{t} \sim A R(p)$, if

$$
\phi(B) X_{t}=W_{t}
$$

Figure: Realizations of $A R(1)$ processes

Figure: Corresponding ACF plots

1.19 Autoregressive Moving Average Processes

Moving Average Poly.

$$
\theta(x)=1+\theta_{1} x+\ldots+\theta_{q} x^{q},\left(\theta_{q} \neq 0\right)
$$

Autoregressive Poly.

$$
\phi(x)=1-\phi_{1} x-\ldots-\phi_{p} x^{p}\left(\phi_{p} \neq 0\right)
$$

If $W_{t} \sim$ Strong white noise,

$$
\begin{aligned}
X_{t} & =\theta(B) W_{t}\left(X_{t} \sim M A(p)\right) \\
\phi(B) X_{t} & =W_{t}\left(X_{t} \sim A R(p)\right)
\end{aligned}
$$

Why not combine the two!!!

Definition 29

Given a strong white noise sequence W_{t}, we say that X_{t} is an Autoregressive Moving Average Process of orders $p \& q$ (Abbrv, $A R M A(p, q)$), if

$$
\phi(B) X_{t}=\theta(B) W_{t}
$$

where

$$
\begin{aligned}
& \phi(x)=1-\phi_{1} x-\ldots-\phi_{p} x^{p}\left(\phi_{p} \neq 0\right) \\
& \theta(x)=1+\theta_{1} x+\ldots+\theta_{1} x^{1}, \quad\left(\theta_{q} \neq 0\right)
\end{aligned}
$$

This implies the model

$$
X_{t}=\phi_{1} X_{t-1}+\ldots+\phi_{p} X_{t-p}+W_{t}+\theta_{1} W_{t-1}+\ldots+\theta_{q} W_{t-q}
$$

Using ARMA models to model Autocorrelation:
$M A(q)$:ACF may be specified at lags $1, \ldots, q$
$A R(p)$: ACF has geometric decay/oscillations
$A R M A$ combine the two
Remark. Parameter Redundancy Consider $X_{t}=W_{t}\left(X_{t} \sim M A(0)\right)$, then $0.5 X_{t-1}=0.5 W_{t-1}$

$$
\Longrightarrow X_{t}-0.5 X_{t-1}=W_{t}-0.5 W_{t-1} \Longrightarrow X_{t} \sim A R M(1,1)
$$

where

$$
\begin{aligned}
\phi(z) & =1-0.5 z \\
\theta(z) & =1-0.5 z
\end{aligned} \text { zero of } \phi \text { is } z_{0}=2, \text { zero of } \theta \text { is } z_{0}=2
$$

Note if we observe the $A R M A$ above, we know we can degrade it to a $M A(0)$ model as above. Parameter redundancy manifests as shared zeros in the $\phi \& \theta$. We always assume models are "reduced" by factoring and dividing away common zeros in $\phi(z)$ and $\theta(z)$.

Definition 30

We say an $A R M A(p, q)$ model is causal if there exists X_{t} satisfying $\phi(B) X_{t}=\theta(B) W_{t}$, and

$$
X_{t}=\sum_{l=0}^{\infty} \psi_{l} W_{t-l}
$$

which is a Causal Linear Process Solution

Definition 31

We say an $A R M A(p, q)$ model is invertible if there exists X_{t} satisfying $\phi(B) X_{t}=\theta(B) W_{t}$, and

$$
W_{t}=\sum_{l=0}^{\infty} \pi_{l} X_{t-l}
$$

W_{t} can be expressed as a linear function of X_{t}
Causality+Invertibility \Longrightarrow Information in $\left\{X_{t}\right\}_{t \leqslant T}$ is the same as Information in $\left\{W_{t}\right\}_{t \leqslant T}$

Theorem 8: Causality

By the fundamental theorem of algebra, the autoregressive polynomial $\phi(z)$ has p roots, say $z_{1}, \ldots, z_{p} \in \mathbb{C}$ (Complex Plane).
If $\rho=\min _{1 \leqslant j \leqslant p}\left|z_{j}\right|>1$, then there exists a stationary and causal X_{t} to the $A R M A$ equations: $\phi(B) X_{t}=\theta(B) W_{t}, X_{t}=\sum_{l=0}^{\infty} \psi_{l} W_{t-l}$.
The coefficients $\left\{\psi_{l}\right\}_{l=0}^{\infty}$ satisfy $\sum_{l=0}^{\infty}\left|\psi_{l}\right|<\infty$ [In fact: $\left|\psi_{l}\right| \leqslant \frac{1}{\rho^{l}} \leftarrow$ Geometric Decay]. And

$$
\psi(z)=\sum_{l=0}^{\infty} \psi_{l} z^{l}=\frac{\theta(z)}{\psi(z)},|z| \leqslant 1
$$

In essence, $X_{t}=\frac{\theta(B)}{\phi(B)} W_{t}=\sum_{j=0}^{\infty} \psi_{j} B^{j} W_{t}$
Key: $\frac{1}{\phi(z)}=\sum_{j=0}^{\infty} \psi_{j} z^{j},|z| \leqslant 1\left(\frac{1}{\phi}\right.$ has a convergent power series representation $|z| \leqslant 1$.)

Theorem 9: Invertibility

If Z_{1}, \ldots, Z_{q} are the zeros of $\theta(z)$, and $\min _{1 \leqslant j \leqslant q}\left|z_{i}\right|>1$, then X_{t} is invertible,

$$
W_{t}=\sum_{l=0}^{\infty} \pi_{l} X_{t-l}
$$

Coefficients $\left\{\pi_{l}\right\}_{l=0}^{\infty}$ satisfy

$$
\pi(z)=\sum_{l=0}^{\infty} \pi_{l} z^{l}=\frac{\phi(z)}{\theta(z)},|z| \leqslant 1
$$

which is a convergent power series.
Moral: When we look for coefficients $\phi_{1}, \ldots, \phi_{p}, \theta_{1}, \ldots, \theta_{q}$, we want to do so in such a way that

$$
\phi(z), \theta(z) \neq 0,|z| \leqslant 1
$$

So the zeros of $\theta(z), \phi(z)$ are not in the unit circle.

1.20 Proof of Causality \&Stationaryity condition for ARMA Processes

Suppose $\psi(z)=\sum_{l=0}^{\infty} \psi_{l} z^{l}$, where $\sum_{l=0}^{\infty}\left|\psi_{l}\right|<\infty$. Define $\psi(B) X_{t}=\sum_{l=0}^{\infty} \psi_{l} X_{t-l}$.

Lemma 10

If $\left\{X_{t}\right\}_{t \in \mathbb{Z}}$ is a stationary (in any sense) process in L^{2}, then

$$
Y_{t}=\sum_{l=0}^{\infty} \psi_{l} X_{t-l}=\psi(B) X_{t}
$$

is stationary (in the same sense).

Proof. If Y_{t} is well-defined, stationarity follows easily. Since if X_{t} is strictly stationary $\Longrightarrow Y_{t}$ strictly stationary. (Bernoulli shift of X_{t}).
If X_{t} is weakly stationary. (Assume $E\left[X_{t}\right]=0$,

$$
E\left[Y_{t} Y_{t+h}\right]=E\left[\left(\sum_{l=0}^{\infty} \psi_{l} X_{t-l}\right)\left(\sum_{k=0}^{\infty} \psi_{k} X_{t+h-k}\right)\right]=\sum_{l=0}^{\infty} \sum_{k=0}^{\infty} \psi_{l} \psi_{k} \gamma_{X}(h-k+l)
$$

which doesn't depend on t.
Y_{t} is well-defined as a limit on L^{2}; By Cauchy-Schwarz, $\gamma_{X}(h) \leqslant \operatorname{Var}\left(X_{0}\right)$. So if $Y_{t, n}=$ $\sum_{l=0}^{n} \psi_{l} X_{t-l}$, then for $n>m$,

$$
\begin{aligned}
E\left[\left(Y_{t, n}-Y_{t, m}\right)^{2}\right] & =E\left[\left(\sum_{l=m+1}^{n} \psi_{l} X_{t-l}\right)^{2}\right]=\sum_{l=m+1}^{n} \sum_{k=m+1}^{n} \psi_{l} \psi_{k} \gamma_{X}(k-l) \leqslant \operatorname{Var}\left(X_{0}\right) \sum_{l=m+1}^{n} \sum_{k=m+1}^{n}\left|\psi_{l}\right|\left|\psi_{k}\right| \\
& \leqslant \operatorname{Var}\left(X_{0}\right)\left(\sum_{l=m+1}^{n}\left|\psi_{l}\right|\right)^{2} \\
& \rightarrow 0 \text { Since } \sum_{l=0}^{\infty}\left|\psi_{l}\right|<\infty
\end{aligned}
$$

Therefore, $Y_{t}=\lim _{n \rightarrow \infty} Y_{t, n}$ is well defined in L^{2}

Corollary 11

Notice then that if X_{t} is stationary, $\alpha(z)=\sum_{l=0}^{\infty} \alpha_{l} z^{l}, \beta(z)=\sum_{l=0}^{\infty} \beta_{l} z^{l}$, with $\sum\left|\alpha_{l}\right|<$ $\infty, \sum\left|\beta_{l}\right|<\infty$. Then

$$
Y_{t}=\alpha(B) \beta(B) X_{t}=\sum_{l=0}^{\infty}\left(\sum_{j=0}^{l} \alpha_{j} \beta_{l-j}\right) X_{t-l}
$$

Where $\sum_{j=0}^{l} \alpha_{j} \beta_{l-j}$ is the coefficient of z^{l} in the power series $\alpha(z) \beta(z)$
Moral:Iteratively applying Backshift operations has the same "Algebra" as power series multiplication.

Proof. Causality Theorem. Suppose $\phi(Z)=$ Autoregressive Polynomial has zeros $z_{1}, \ldots, z_{p} \in \mathbb{C}$ so that $\min _{1 \leqslant i \leqslant p}\left|z_{i}\right|>q$

Then there must exist $\epsilon>0$ so that

$$
\min _{1 \leqslant i \leqslant p}\left|z_{i}\right|>1+\epsilon
$$

Hence the function $\xi(z)=\frac{1}{\phi(z)}$ is Holomorphic (Analytic) on the set $\left\{z \in \mathbb{C}:|z| \leqslant 1+\frac{\epsilon}{2}\right\}$. Hence, $\xi(z)$ must have a power series representation converging on $|z| \leqslant 1+\frac{\epsilon}{2}$

$$
\xi(z)=\sum_{l=0}^{\infty} \xi_{l} z^{l}
$$

Since $\sum_{l=0}^{\infty} \xi\left(1+\frac{\epsilon}{2}\right)^{l}<\infty$, the sequence $\left|\xi_{l}\right|\left(1+\frac{\epsilon}{2}\right)^{l} \leqslant k$ for some $k \in \mathbb{R}$. Hence $\left|\xi_{l}\right| \leqslant k\left(1+\frac{\epsilon}{2}\right)^{-l}$, and hence $\sum_{l=0}^{\infty}\left|\xi_{l}\right|<\infty$.
Define $X_{t}=\xi(B) \theta(B) W_{t}$, then

$$
\phi(B) X_{t}=\phi(B) \xi(B) \theta(B) W_{t}=\theta(b) W_{t}
$$

Hence $X_{t}=\xi(B) \theta(B) W_{t}=: \frac{\theta(B)}{\phi(B)} W_{t}$ solves the ARMA equations.
Remark. If $\phi(z)=0,|z|<1$ (zeros inside the unit circle), then

$$
\frac{1}{\phi(z)}=\sum_{-\infty}^{\infty} \xi_{l} z^{l}, 1-\epsilon<|Z|<1+\epsilon
$$

In this case, $X_{t}=\xi(B) \theta(B) W_{t}=\sum_{l=-\infty}^{\infty} \psi_{l} W_{t-l}$ (Two sided Linear process, Not Causal, future dependent).
If $\phi(z)=0$ for some $|z|=1 \mathrm{~m}$ there is no stationary solution [Unit Root Time Series].

1.21 ARMA Processes: Example

Consider a $A R M A(2,2)$ model,

$$
X_{t}=\frac{1}{4} X_{t-1}+\frac{1}{8} X_{t-1}+W_{t}-\frac{5}{6} W_{t-1}+\frac{1}{6} W_{t-2}
$$

Is there a stationary and Causal Solution X_{t} ? Is it invertible? Is there parameter redundancy?

$$
\begin{gathered}
\text { AR poly: } \phi(z)=1-\frac{1}{4} z-\frac{1}{8} z^{2} \\
\text { MA poly: } \theta(z)=1-\frac{5}{6} z+\frac{1}{6} z^{2} \\
\text { Roots of } \phi: \frac{2 \pm \sqrt{4+4 * 8}}{-2}=-1 \pm 3=-4,2 \\
\text { Roots of } \theta: 2,3 \\
\Longrightarrow \\
\phi(z)=\frac{1}{8}(z+4)(z-2), \theta(z)=\frac{1}{6}(z-2)(z-3)
\end{gathered}
$$

and they share a common zero, shows parameters are redundant.
X_{t} satisfies an $A R M A(1,1)$ with

$$
\phi(z)=-\frac{1}{8}(z+4), \theta(z)=\frac{1}{6}(z-3)
$$

Since the roots of ϕ and θ are outside of the unit circle in. X_{t} is stationary causal and invertible.

Example 10

Suppose $X_{t}=-\frac{1}{4} X_{t-1}+W_{t}-\frac{1}{3} W_{t-1}$, then $X_{t} \sim \operatorname{ARMA}(1,1) . \phi(z)=1+\frac{1}{4} z \Longrightarrow$ Root is -4 . So X_{t} is stationary and Causal, and can be represented as a linear process:

$$
X_{t}=\sum_{l=0}^{\infty} \psi_{l} W_{t-L}
$$

We know

$$
\begin{aligned}
& \psi(z)=\sum_{l=0}^{\infty} \psi_{l} z^{l}=\frac{\theta(z)}{\phi(z)},|z| \leqslant 1 \\
& \Longrightarrow \psi(z) \phi(z)=\theta(z) \Longrightarrow \text { Calculate } \psi_{l} \text { by matching coefficients }
\end{aligned}
$$

Note:

$$
\begin{aligned}
& \phi(z)=1+\frac{1}{4} z, \theta(z)=1-\frac{1}{3} z \\
& \psi(z) \phi(z)=\theta(z) \\
& \Longrightarrow z^{0}: \psi_{0}=1 \\
& \Longrightarrow z^{1}: \frac{\psi_{0}}{4}+\psi_{1}=-\frac{1}{3} \Longrightarrow \psi_{1}=-\frac{7}{12} \\
& \Longrightarrow z^{2}: \frac{\psi_{1}}{4}+\psi_{2}=0 \Longrightarrow \psi_{2}=-\frac{7}{48} \\
& \vdots \\
& \Longrightarrow z^{l}: \frac{\psi_{l-1}}{4}+\psi_{l}=0 \Longrightarrow \psi_{l}=-\frac{7}{12}\left(\frac{1}{4}\right)^{l-1}
\end{aligned}
$$

Where $\frac{\psi_{l-1}}{4}+\psi_{l}$ is called a finite linear difference equation and it must be solved. It is automated in the $A R M$ Ato $M A$ function in R .

If X_{t} is a stationary and Causal solution to the $A R M A(p, q)$ model

$$
\begin{gathered}
X_{t}=\sum_{j=0}^{\infty} \psi_{j} W_{t-j} \\
\gamma_{X}(h)=E\left[X_{t} X_{t+h}\right]=E\left[\left(\sum_{j=0}^{\infty} \psi_{j} W_{t-j}\right)\left(\sum_{k=0}^{\infty} \psi_{k} W_{t+h-k}\right)\right] \\
=\sigma_{W}^{2} \sum_{j=0}^{\infty} \psi_{j} \psi_{j+h}
\end{gathered}
$$

Coefficients ψ_{j} can be solved for as in the previous example by solving a finite difference equation. Automated in the ARMAacf function in R.

1.22 L2 Stationary Process Forecasting

Suppose we observe a time series

$$
X_{1}, \ldots, X_{T}
$$

that we believe has been generated by an underlying stationary process. We would like to produce an h-step ahead forecast

$$
\hat{X}_{T+h}=\hat{X}_{T+h \mid T}=f\left(X_{T}, \ldots, X_{1}\right)
$$

to forecast X_{T+h}. Ideally \hat{X}_{T+h} would minimize the prediction error

$$
L\left(X_{T+h}, \hat{X}_{T+h}\right)=\min _{f} L\left(X_{T+h}, f\left(X_{T}, \ldots, X_{1}\right)\right)
$$

where L is a Loss function.
Frequently, the loss function is taken to be Mean-Squared Error (MSE)

$$
L\left(X_{T+h}, \hat{X}_{T+h}\right)=E\left[\left(X_{T+h}-\hat{X}_{T+h}\right)^{2}\right]
$$

when using MSE, it is natural to consider

$$
L^{2}=\left\{\text { Random variable } X: E\left[X^{2}\right]<\infty\right\}
$$

L^{2} is a Hilbert space when equipped with the inner product

$$
\langle x, y\rangle=E[x y]
$$

Hilbert spaces are generalizations of Euclidean space $\left(\mathbb{R}^{d}\right)$ in which the geometry and notion of projection are preserved

$$
\operatorname{proj}(x \rightarrow y)=\langle x, y\rangle y
$$

Theorem 12: Projection Theorem

We say $M \leqslant L^{2}$ is a closed linear subspace, if

- Linearity: $x, y \in M, \alpha, \beta \in \mathbb{R}, \alpha x+\beta y \in M$
- Closed: If $X_{n} \rightarrow X\left(E\left[\left(X_{n}-X\right)^{2}\right] \rightarrow 0\right)$, and $X_{n} \in M$, then $X \in M$

If M is a closed linear subspace in L^{2} and $x \in L^{2}$, then exists a unique $\hat{x} \in M$ so that

$$
E\left[(x-\hat{x})^{2}\right]=\inf _{y \in M} E\left[(x-y)^{2}\right]
$$

Moreover, \hat{x} satisfies

- Prediction Equations/Normal Equations: $x-\hat{x} \in M^{\perp} \Longrightarrow E[(x-\hat{x}) h]=0, \forall y \in M$ In MES forecasting, we want to choose \hat{X}_{T+h} satisfying

$$
E\left[\left(x_{T+h}-\hat{x}_{T+h}\right)^{2}\right]=\inf _{y \in M} E\left[\left(x_{T+h}-y\right)^{2}\right]
$$

where M is a closed linear subspace based on the available data.

1. $M=M_{1}=\left\{z: z=f\left(x_{T}, \ldots, X_{1}\right), f\right.$ is any Borel Measurable function $\}$ In this case,

$$
\hat{x}_{T+h}=E\left[x_{T+h} \mid x_{T}, \ldots, x_{1}\right]
$$

which is the ideal situation. Unfortunately, M_{1} is enormous and complicated! (you have lots of functions to consider)
2. $M=M_{2}=\overline{\operatorname{span}}\left\{1, x_{T}, \ldots, x_{1}\right\}=\left\{y: y=\alpha_{0}+\sum_{j=1}^{T} \alpha_{j} x_{j}\right\}$ where $\alpha_{0}, \ldots, \alpha_{T} \in \mathbb{R}$ so they are the linear functions of x_{1}, \ldots, x_{T}.
\hat{x}_{T+h} is called the Best Linear Predictor (BLP)

1.23 Best Linear Prediction

Suppose X_{t} is a (weakly) stationary time series. Best linear prediction entails finding \hat{x}_{T+h} so that

$$
E\left[\left(x_{T+h}-\hat{x}_{T+h}\right)^{2}\right]=\inf _{y \in M_{2}} E\left[\left(x_{T+h}-y\right)^{2}\right]
$$

where

$$
M_{2}=\overline{\operatorname{span}}\left\{1, x_{T}, \ldots, x_{1}\right\}=\left\{y: y=\alpha_{0}+\sum_{j=1}^{T} \alpha_{j} x_{j}\right\}
$$

\hat{x}_{T+h} is the best predictor among all linear functions of x_{T}, \ldots, x_{1}.

Definition 32

If \hat{x} satisfies

$$
E\left[(x-\hat{x})^{2}\right]=\inf _{y \in M} E\left[(x-y)^{2}\right]
$$

we say \hat{x} is the projection of x onto M. Write

$$
\hat{x}=\operatorname{proj}(x \mid M)
$$

$\operatorname{BLP} \hat{x}_{T+h}=\operatorname{proj}\left(x_{T+h} \mid \overline{\operatorname{span}}\left\{1, x_{T}, \ldots, x_{1}\right\}\right)$
Consider the case when $h=1$. The BLP is of the form

$$
\hat{x}_{T+1}=\phi_{T, 0}+\sum_{j=1}^{T} \phi_{T, j} x_{j} \cong \phi_{T, 0}+\sum_{j=0}^{T} \phi_{T, j}\left(x_{j}-\mu\right)
$$

where $\mu=E\left[x_{t}\right] . \hat{x}_{T+1}$ must satisfy the prediction equations, which is

$$
E\left[\left(x_{T+1}-\hat{x}_{T+1}\right) y\right]=0, \forall y \in \overline{\operatorname{span}}\left\{1, x_{T}, \ldots, x_{1}\right\}
$$

In particular,

$$
\begin{aligned}
E\left[\left(x_{T+1}-\hat{x}_{T+1}\right) * 1\right] & =0, y=1 \\
E\left[\left(x_{T+1}-\hat{x}_{T+1}\right) * x_{j}\right] & =0,1 \leqslant j \leqslant T, y=x_{j}
\end{aligned}
$$

Since $E\left[x_{j}-\mu\right]=0$, we have

$$
0=E\left[x_{T+1}-\hat{x}_{T+1}\right]=\mu-\phi_{T, 0}+0 \Longrightarrow \phi_{T, 0}=\mu
$$

Before proceeding, note that this implies

$$
E\left[\left(x_{T+1}-\hat{x}_{T+1}\right) x_{j}\right]=E\left[\left(x_{T+1}-\mu-\left(\hat{x}_{T+1}-\mu\right)\right)\left(x_{j}-\mu\right)\right]
$$

so we may assume WLOG $\mu=0 \Longrightarrow E\left[x_{i} x_{j}\right]=\gamma(j-i)$
Therefore, (expand the last equation above and notice $\phi_{T, 0}=0$

$$
\begin{aligned}
& 0=E\left[\left(x_{T+1}-\hat{x}_{T+1}\right) x_{k}\right]=\gamma(T+1-k)-\sum_{j=1}^{T} \phi_{T, j} \gamma(j-k), 1 \leqslant k \leqslant T \\
\Longrightarrow & \sum_{j=1}^{T} \phi_{T, j} \gamma(j-k)=\gamma(T+1-k)
\end{aligned}
$$

which is a linear system of equations of $\phi_{T, 1} \ldots, \phi_{T, T}$
If

$$
\underline{\gamma}_{T}=\left(\begin{array}{c}
\gamma(T) \\
\vdots \\
\gamma(1)
\end{array}\right) \in \mathbb{R}^{T}, \underline{\Gamma}_{T}=[\gamma(j-k), 1 \leqslant j, k, \leqslant T] \in \mathbb{R}^{T \times T}
$$

and $\phi_{T}=\left(\phi_{T, 1}, \ldots, \phi_{T, T}\right)^{T} \in \mathbb{R}^{T}$, this linea system may be expressed as

$$
\underline{\Gamma}_{T} \underline{\phi}_{T}=\underline{\gamma}_{T} \Longrightarrow \underline{\phi}_{T}=\underline{\Gamma}_{T}^{-1} \underline{\gamma}_{T}
$$

The BLP is then of the form

$$
\begin{aligned}
\hat{x}_{T+1} & =\underline{\phi}_{T}^{T} \underline{X}_{T}=\left(\underline{\Gamma}_{T}^{-1} \underline{\gamma}_{T}\right)^{T} \underline{X}_{T}, \text { where } \\
\underline{X}_{T} & =\left(x_{1}, \ldots, x_{T}\right)^{T}
\end{aligned}
$$

Theorem 13

If $\gamma(0)>0$, and $\gamma(h) \rightarrow 0$ as $h \rightarrow \infty$, then $\underline{\Gamma}_{T}$ is non-singular.
Takeaway: Most stationary processes (those whose serial dependence decays over time) have non-singular $\underline{\Gamma}_{T}$

Note that $\hat{x}_{T+1}^{2}=\underline{\gamma}_{T}^{T} \Gamma_{T}^{-1} \underline{X}_{T} \underline{X}_{T}^{T} \Gamma_{T}^{-1} \underline{\gamma}_{T}$

$$
\Longrightarrow E\left[\hat{x}_{T+1}^{2}\right]=\underline{\gamma}_{T}^{T} \Gamma_{T}^{-1} \underline{\gamma}_{T}
$$

also, since $E\left[x_{T+1} \underline{X}_{T}\right]=\underline{\gamma}_{T} \Longrightarrow E\left[x_{T+1} \hat{x}_{T+1}\right]=\underline{\gamma}_{T}^{T} \Gamma_{T}^{-1} \underline{\gamma}_{T}$ It follows that the Mean-Squared prediction error is

$$
\begin{aligned}
P_{T+1}^{t} & =E\left[\left(x_{T+1}-\hat{x}_{T+1}\right)^{2}\right]=E\left[x_{T+1}^{2}-2 x_{T+1} \hat{x}_{T+1}+\hat{x}_{T+1}^{2}\right] \\
& =\gamma(0)-2 \underline{\gamma}_{T}^{T} \Gamma_{T}^{-1} \underline{\gamma}_{T}+\underline{\gamma}_{T}^{T} \Gamma_{T}^{-1} \underline{\gamma}_{T}=\gamma(0)-\underline{\gamma}_{T}^{T} \Gamma_{T}^{-1} \underline{\gamma}_{T}
\end{aligned}
$$

The mean squared prediction error has a simple, computable form depending on $\gamma(h), 1 \leqslant h \leqslant T$.

1.24 Partial Autocorrelation

If $X_{t} \sim A R M A(p, q)$, we might be able to identify p, q by looking at the ACF.
$X_{t} \sim A R(p) \Longrightarrow$ ACF has geometric decay
$X_{t} \sim M A(p) \Longrightarrow \mathrm{ACF}$ is non-zero at first q lags, then zero beyond.
ACF if an $A R M A(p, q)$ model can be calculated by calculating the linear process coefficients $\left\{\psi_{l}\right\}_{l=0}^{\infty}$
Automated in R using $A R M A_{a c f}$ function.

Figure: $\operatorname{ARMA}(1,1): x_{t}=.9 x_{t-1}+w_{t}+.5 w_{t-1}$. It is hard to tell the difference between this and an $\operatorname{AR}(p) A C F$

Definition 33

The partial autocorrelation function of a stationary process $\left\{X_{t}\right\}_{t \in \mathbb{Z}}$ is

$$
\phi_{h, h}=\operatorname{Corr}\left(X_{t+h}-\operatorname{Proj}\left(X_{t+h} \mid X_{t+h-1}, \ldots, X_{t+1}\right), X_{t}-\operatorname{Proj}\left(X_{t} \mid X_{t+h-1}, \ldots, X_{t+1}\right)\right)
$$

Interpretation: Autocorrelation between X_{t} and X_{t+h} after removing the linear dependence on the intervening variable $X_{t+h-1}, \ldots, X_{t+1}$
Remark. If $X_{t} \sim A R(p)$, which is causal, then $\phi_{h, h}=0$ for $h \geqslant p+1$

Proof.

$$
\begin{aligned}
& X_{t} \sim A R(p) \Longrightarrow X_{t+h}=\sum_{j=1}^{p} \phi_{j} X_{t+h-j}+W_{t+h} \\
& \operatorname{Proj}\left(X_{t+h} \mid X_{t+h-1}, \ldots, X_{t+1}\right)=\sum_{k=1}^{h-1} \beta_{k} X_{t+h-k}
\end{aligned}
$$

and minimizes

$$
\begin{aligned}
E\left[\left(X_{t+h}-\sum_{k=1}^{h-1} \beta_{k} X_{t+h-k}\right)^{2}\right] & =E\left[\left(W_{t+h}+\sum_{j=1}^{p} \phi_{j} X_{t+h-j}-\sum_{k=1}^{h-1} \beta_{k} X_{t+h-k}\right)^{2}\right] \\
& =\sigma_{W}^{2}+E\left[\left(\sum_{j=1}^{p} \phi_{j} X_{t+h-j}-\sum_{k=1}^{h-1} \beta_{k} X_{t+h-k}\right)^{2}\right]
\end{aligned}
$$

where the second term can be minimized by setting $\beta_{j}=\phi_{j}, 1 \leqslant j \leqslant p, \beta_{j}=0, h \geqslant p+1$
Hence,

$$
\begin{aligned}
& X_{t+h}-\operatorname{Proj}\left(X_{t+h} \mid X_{t+h-1}, \ldots, X_{t+1}\right)=W_{t+h}(h \geqslant p+1) \\
\Longrightarrow & \phi_{h, h}=\operatorname{Corr}\left(W_{t+h}, X_{t}-\operatorname{Proj}\left(X_{t} \mid X_{t+h-1}, \ldots, X_{t+1}\right)\right)=0
\end{aligned}
$$

we get it is 0 by causality, because $X_{t}-\operatorname{Proj}\left(X_{t} \mid X_{t+h-1}, \ldots, X_{t+1}\right)$ is a term that only depends on something before $t+h$ but not W_{t+h} itself.

Remark. It can be shown that if $X_{t} \sim M A(q)$, which is invertible, then

$$
\phi_{h, h} \neq 0,\left|\phi_{h, h}\right|=\mathcal{O}\left(r^{h}\right), 0<r<1
$$

Estimating the PACF: Using the BLP theory

$$
\hat{\phi}_{h, h}=\left(\hat{\Gamma}_{h}^{-1} \hat{\underline{\gamma}}_{h}\right)[h]
$$

where

$$
\begin{aligned}
\hat{\Gamma}_{h} & =[\hat{\gamma}(j-k), 1 \leqslant j, k \leqslant h] \in \mathbb{R}^{h \times h} \\
\hat{\gamma}_{h} & =[\hat{\gamma}(1), \ldots, \hat{\gamma}(j)] \in \mathbb{R}^{h}
\end{aligned}
$$

1.25 Casual and Invertible ARMA Process Forecasting

Suppose X_{t} follows a stationary and invertible $A R M A(p, q)$ model so that $\phi(B) X_{t}=\theta(B) X_{t}$. Havin observed X_{T}, \ldots, X_{1}, we wish to predict X_{T+h},

$$
\hat{X}_{T+h}=\operatorname{Proj}\left(X_{T+h} \mid \overline{\operatorname{span}}\left\{1, X_{T}, \ldots, X_{1}\right\}\right) \approx E\left[X_{T+h} \mid X_{T}, \ldots, X_{1}\right]
$$

because by the Causality and Invertibility, $X_{t} \sim$ linear function of W_{t}
Further, $\hat{x}_{T+h} \approx \tilde{x}_{T+h}=E\left[x_{t+h} \mid X_{T}, \ldots, x_{1}, x_{0}, \ldots\right]$ because Geometric decay of the dependence on past values.
Since x_{t} is causal and invertible, then

$$
x_{t}=\sum_{l=0}^{\infty} \psi_{l} w_{t-l}, w_{t}=\sum_{l=0}^{\infty} \pi_{l} x_{t-l}\left(\pi_{0}=\psi_{0}=1\right)
$$

Note: ψ_{l} 's and π_{l} 's are computable by solving homogeneous linear difference equations.
These representations imply

$$
\text { Information in }\left(X_{T}, X_{T-1}, \ldots,\right)=\text { Information in }\left(W_{T}, W_{T-1}, \ldots\right)
$$

So $\tilde{x}_{T+h}=E\left[x_{T+h} \mid x_{T}, x_{T-1}, \ldots\right]=E\left[x_{T+h} \mid w_{T}, w_{T-1}, \ldots\right]$
1.

$$
\begin{aligned}
\tilde{x}_{T+h} & =E\left[\sum_{l=0}^{\infty} \psi_{l} w_{T+h-l} \mid w_{T}, w_{T-1}, \ldots\right] \\
& =E\left[\sum_{l=0}^{h-1} \psi_{l} w_{T+h-l} \mid w_{T}, \ldots\right]+E\left[\sum_{l=h}^{\infty} \psi_{l} w_{T+h-l} \mid w_{T}, \ldots\right]
\end{aligned}
$$

Notice one term is independent of the given information, so it's just the mean which is 0 , the second term is a function of the given information, so the equation is

$$
\sum_{l=h}^{\infty} \psi_{l} w_{T+h-l}
$$

Also, using invertibility

$$
\begin{aligned}
0=E\left[w_{T+h} \mid X_{T}, X_{T-1}, \ldots\right] & =E\left[\sum_{l=0}^{\infty} \pi_{l} X_{T+h-l} \mid X_{T}, X_{T-1}, \ldots\right] \\
& =\tilde{x}_{T+h}+\sum_{l=1}^{h-1} \pi_{l} \tilde{x}_{T+h-l}+\sum_{l=h}^{\infty} \pi_{l} x_{T+h-l}
\end{aligned}
$$

so we have

$$
\Longrightarrow \quad \tilde{x}_{T+h}=-\sum_{l=1}^{h-1} \pi_{l} \tilde{x}_{T+h-l}-\sum_{l=h}^{\infty} \pi_{l} x_{T+h-l}
$$

Truncated ARAM Prediction:

$$
\hat{x}_{T+h}=-\sum_{j=1}^{h-1} \pi_{j} \hat{x}_{T+h-j}-\sum_{j=h}^{T+h-1} \pi_{j} x_{T+h-j}
$$

notice that we truncated the last term to the observed information.
Residuals:

$$
\hat{w}_{t}=\phi(B) \hat{x}_{t}-\theta_{1} \hat{w}_{t-1}-\ldots-\theta_{2} \hat{w}_{t-q}
$$

Mean Initialization:

$$
\hat{w}_{t}=0, t \leqslant 0, t \geqslant T, \hat{x}_{t}=0, t \leqslant 0, \hat{x}_{t}=x_{t}, 1 \leqslant t \leqslant T
$$

Estimator for $\sigma_{W}^{2}: \hat{\sigma}_{W}^{2}=\frac{1}{T} \sum_{t=1}^{T} \hat{w}_{t}^{2}$
Mean Squared Prediction Error:
Since $\hat{x}_{T+h} \approx \sum_{j=h}^{\infty} \psi_{j} w_{t-j}$,

$$
P_{T+h}^{T}=E\left[\left(x_{T+h}-\hat{x}_{T+h}\right)^{2}\right]=E\left[\left(\sum_{j=0}^{h-1} \psi_{j} w_{t-j}\right)^{2}\right]=\sigma_{W}^{2} \sum_{j=0}^{h-1} \psi_{j}^{2}
$$

Estimated Mean Square Prediction Error:

$$
\hat{P}_{T+h}^{T}=\hat{\sigma}_{W}^{2} \sum_{j=0}^{h-1} \psi_{j}^{2}
$$

Construction of Prediction Intervals:
Since $\hat{x}_{T+h} \approx E\left[x_{T+h} \mid x_{T}, x_{T-1}, \ldots\right]$, then

$$
\begin{aligned}
E\left[\hat{x}_{T+h}-x_{T+h}\right] & =0, \text { Tower Property } \\
E\left[\left(\hat{x}_{T+h}-x_{T+h}\right)^{2}\right] & =P_{T+h}^{T}
\end{aligned}
$$

Hence,

$$
\frac{\hat{x}_{T+h}-x_{T+h}}{\sqrt{\hat{P}_{T+h}^{T}}}
$$

is an approximately mean zero and unit variance Random Variable.
Suppose c_{α} is the α-critical value of the Random Variable. Then

$$
\hat{x}_{T+h} \pm c_{\alpha / 2} \sqrt{P_{T+h}^{T}}
$$

is an approximate $1-\alpha$ prediction interval for x_{T+h}. Choices for c_{α} :

1. z_{α} which is the standard normal critical value

Motivation: If w_{t} is Gaussian, then $x_{t}=\sum_{l=0}^{\infty} \psi_{l} w_{t-l}$ is Gaussian.
2. Empirical Critical Value of Residuals (standardized)

$$
\frac{\hat{w}_{t}}{\sigma_{W}}, 1 \leqslant t \leqslant T
$$

3. t-distribution, Pareto, or skewed distribution fit to standardized Residuals.

Long Range Behaviour of ARAMA forecasts: Suppose $Y_{t}=S_{t}+X_{t} X_{t} \sim A R M A(p, q)$,

$$
\hat{Y}_{T+h}=\hat{S}_{T+h}+\hat{X}_{T+h}=\hat{S}_{T+h}+\sum_{j=h}^{\infty} \psi_{j} W_{T+h-j}
$$

The last term goes to 0 geometrically when h increases.
\hat{Y}_{T+h} is converging fast to \hat{S}_{T+h} : Better get the trend for long Range Forecasts!

$$
P_{T+h}^{T}=\sigma_{W}^{2} \sum_{l=0}^{h-1} \psi_{L}^{2} \rightarrow \sigma_{W}^{2} \sum_{l=0}^{\infty} \psi_{l}^{2}=\gamma_{x}(0)
$$

In the long run, the MSE is the variance of X_{t}

1.26 ARMA Forecasting: Example

Figure: Weekly cardiovascular mortality, LA County.

$$
X_{T}=\text { Cardiovascular Mortality Series }
$$

Model

$$
X_{t}=S_{t}+Y_{t}, Y_{t} \sim \operatorname{ARMA}(p, q) \text { process }
$$

where

$$
\begin{aligned}
S_{t} & =\text { Seasonal + Polynomial trend } \\
& =\underbrace{\beta_{0}+\beta_{1} t+\beta_{2} t^{2}+\beta_{3} t^{3}}_{\text {Polynomial }}+\underbrace{\beta_{4} \sin \left(\frac{2 \pi}{52} t\right)+\beta_{5} \cos \left(\frac{2 \pi}{52} t\right)}_{\text {Yearly Cycle }}+\underbrace{\beta_{6} \sin \left(\frac{2 \pi}{26} t\right)+\beta_{7} \cos \left(\frac{2 \pi}{26} t\right)}_{\text {Half-Yearly Cycle }}
\end{aligned}
$$

Decided on this trend using AIC (later)

$$
\hat{y}_{t}=x_{t}-\hat{s}_{t}
$$

"Seems reasonably

Series residuals(reg2)

Series rec

Model \hat{Y}_{t} as $A R M A(2,1)$,

$$
Y_{t}=\underbrace{0.0885 Y_{t-1}+0.3195 Y_{t-2}+W_{t}+0.1328 W_{t-1}}_{\text {param. by MLE }}
$$

10-step Prediction of residuals

Figure: Forecasts with 95% prediction intervals

1.27 Estimating $A R M A(p, q)$ Parameters: AR Case

Suppose we observe a time series $X_{1}, \ldots, X_{T} \sim \operatorname{ARMA}(p, q)$

$$
\begin{gathered}
\phi(B) X_{t}=\theta(B) w_{t} \\
\phi(z)=1-\phi_{1} z-\cdots \phi_{p} z^{p}, \quad \theta(z)=1+\theta_{1} z+\cdots \theta_{q} z^{q}
\end{gathered}
$$

Goal: Estimate $\underbrace{\phi_{1}, \ldots, \phi_{p}}_{\text {AR parameters }} ; \underbrace{\theta_{1}, \ldots, \theta_{q}}_{\text {MA parameters }} ; ~ \underbrace{\sigma_{w}^{z}}_{\text {white noise variance }}$

- $\operatorname{AR}(1)$ case: $X_{t}=\phi X_{t-1}+w_{t}, \quad E w_{t}^{2}=\sigma_{w}^{2}$

Idea: use ordinary least squares(OLS).

$$
\hat{\phi}=\underset{|\phi|<1}{\operatorname{argmin}} \sum_{t=2}^{T}\left(X_{t}-\phi X_{t-1}\right)^{2}
$$

This leads to (upon some calculus):

$$
\begin{array}{r}
\hat{\phi}=\frac{\frac{1}{T} \sum_{t=2}^{T} X_{t} X_{t-1}}{\frac{1}{T} \sum_{t=2}^{T} X_{t}^{2}} \approx \frac{\hat{\gamma}(1)}{\hat{\gamma}(0)}=\hat{\rho}(1) \xrightarrow[T \rightarrow \infty]{P} \phi \\
\sigma_{w}^{2}=\frac{1}{T-1} \sum_{t=2}^{T}(\underbrace{X_{t}-\phi X_{t-1}}_{\text {estimated } w_{t}})^{2} \longleftarrow \text { Sample Variance of Residuals. }
\end{array}
$$

- AR(p) Case: $\quad X_{t}=\phi_{1} X_{t-1} t-\cdots+\phi_{p} X_{t-p}+w_{t}$

OLS: $\underline{\phi}=\left(\phi_{1}, \ldots, \phi_{p}\right)^{T} \in \mathbb{R}^{p}$

$$
\hat{\phi}=\underset{\substack{\phi: X_{t} \text { admits a staionary } \\ \text { and Casual Solution }}}{\operatorname{argmin}} \sum_{t=p+1}^{T}\left(X_{t}-\phi_{1} X_{t-1}-\cdots-\phi_{p} X_{t-p}\right)^{2}
$$

Solve using calculus (Take first order partial derivatives, set equal to zero).
This leads to a system of p linear equations of the form

$$
\begin{aligned}
& \quad \hat{\Gamma}_{p} \underline{\hat{\phi}}=\hat{\gamma}_{p} ; \quad \hat{\Gamma}_{p}=(\hat{\gamma}(j-k), 1 \leq j, k \leq p) \in \mathbb{R}^{p \times p} \\
& \hat{\gamma}_{p}=(\hat{\gamma}(1), \ldots, \hat{\gamma}(p))^{T}
\end{aligned}
$$

The resulting OLS estimator takes the approximate form:

$$
\underline{\hat{\phi}}=\hat{\Gamma}_{p}^{-1} \hat{\underline{\gamma}}_{p}, \quad \hat{\sigma}_{w}^{2}=\hat{\gamma}(0)-\underline{\hat{\gamma}}_{p}^{T} \hat{\Gamma}_{p}^{-1} \hat{\gamma}_{p}
$$

- Similar approach: use Method of Moments (Set parameters so that empirical moments match theoretical moments induced by the model)
If $X_{t} \sim A R(p)$, then for $1 \leq h \leq p$,

$$
\begin{aligned}
\gamma(h) & =E X_{t} X_{t+h}=E\left[X_{t}\left(\phi_{1} X_{t+h-1}+\cdots+\phi_{p} X_{t+h-p}+w_{t+h}\right)\right] \\
& =\phi_{1} \gamma(h-1)+\phi_{2} \gamma(h-2)+\cdots+\phi_{p} \gamma(h-p)+\underbrace{0}_{X_{t} \perp w_{t+h}}
\end{aligned}
$$

This implies the linear system: $\gamma_{p}=\underline{\Gamma_{p}} \underline{\phi} ; \gamma_{p}=(\gamma(1), \cdots, \gamma(p))^{T} \in \mathbb{R}^{p \times p}$

$$
\underline{\Gamma}_{p}=[\gamma(j-k) ; 1 \leq j, k \leq p] \in \mathbb{R}^{p \times p}
$$

- Note that $X_{t}=\sum_{l=0}^{\infty} \psi_{l} w_{t-l}, \psi_{0}=1$ and $w_{t}=X_{t}-\phi_{1} X_{t-1}-\cdots \phi_{p} X_{t-p}$.

$$
\left.\begin{array}{rl}
\Rightarrow \sigma_{w}^{2}=E\left[X_{t} w_{t}\right] & =E\left[X_{t}\left(X_{t}-\phi_{1} X_{t-1}-\cdots \phi_{p} X_{t-p}\right)\right] \\
& =\gamma(0)-\phi_{1} \gamma(1)-\cdots-\phi_{p} \gamma(p) \\
\underline{\gamma}_{p}=\Gamma_{p} \underline{\phi}
\end{array}\right\} \text { Yule-Walker Equations }
$$

\Rightarrow Yule-Walker Estimators: $\hat{\phi}=\hat{\Gamma}_{p}^{-1} \hat{\underline{\gamma}}_{p}, \quad \hat{\sigma}_{w}^{2}=\hat{\gamma}(0)-\hat{\underline{\gamma}}_{p}^{T} \hat{\Gamma}_{p}^{-1} \hat{\underline{\gamma}}_{p}$
Example: In the $A R(1)$ case, the $Y W$ estimators are

$$
\hat{\phi}=\frac{\hat{\gamma}(1)}{\hat{\gamma}(0)}=\hat{\rho}(1), \quad \hat{\sigma}_{w}^{2}=\hat{\gamma}(0)-\hat{\gamma}
$$

Theorem 14

If $X_{t} \stackrel{\text { causal }}{\sim} A R(p)$, then

$$
\frac{\hat{\phi}_{O L S, i}}{\hat{\phi}_{Y W, i}} \xrightarrow{p} 1 \quad \text { as } T \rightarrow \infty
$$

OLS and YW estimates are asymptotically equivalent. The i here means the i th autoregressive process coefficients.

Theorem 15

$$
\sqrt{T}\left(\hat{\phi}_{Y W}-\underline{\phi}\right) \underset{T \rightarrow \infty}{\stackrel{D}{\longrightarrow}} N_{P}(\underbrace{0, \sigma_{\omega}^{2} \Gamma_{p}^{-1}}_{\begin{array}{c}
\text { Optimal Variance among all possible (asymptotically) } \\
\text { unbrasedestimators.[Efficient] }
\end{array}})
$$

$$
\hat{\sigma}_{w}^{2} \xrightarrow{p} \sigma_{w}^{2}
$$

Result can be used to obtain confidence interval for ϕ.

1.28 ARMA Parameter Estimation:MLE

Ordinary least squares and Yule Walker Equation estimators are effective in estimating the $A R(p)$ parameters, but are difficult to apply to fitting $M A(q)$ and general $A R M A(p, q)$ models since the white noises w_{t} are observable, and YW equations are not linear in the MA parameters.
Latent variables (e.g. variables associated with the noise $\left.w_{t}\right) \Longrightarrow$ MLE is best.

- Suppose $X_{t} \sim A R(1)$

$$
X_{t}=\phi X_{t-1} \quad, \quad w_{t} \underset{i d d}{\sim} N\left(0, \sigma_{w}^{2}\right) \quad \text { (Gaussian Distributional Assumption on Noise) }
$$

$$
\text { Then } X_{t}=\sum_{l=0}^{\infty} \phi^{l} w_{t-l} \quad \text { is Gaussian }
$$

L^{2}-limits of Gaussian RV's are Gaussian (MGF or characteristic Function)

- Moreover, X_{1}, \ldots, X_{T} are jointly Gaussian, since

$$
a_{1} X_{1}+\cdots+a_{T} X_{T}=\sum_{l=0}^{\infty} \phi^{l}\left(a_{1} w_{1-l}+\ldots+a_{T} w_{T-l}\right)
$$

MLE: $L\left(\phi, \sigma_{w}^{2}\right)=f\left(X_{T}, X_{T-1}, \ldots X_{1} ; \phi, \sigma_{w}^{2}\right)$
and $L\left(\phi, \sigma_{w}^{2}\right)$ is likelihood of ϕ, σ_{w}^{2}, f is joint density of X_{T}, \ldots, X_{1} evaluated at the observed data (Gaussian Density).

- Key idea in Time Series: To evaluate the likelihood, condition on the path/past!

$$
\begin{aligned}
f\left(X_{T}, \ldots, X_{1}\right) & =f\left(X_{T} \mid X_{T-1}, \ldots X_{1}\right) f\left(X_{T-1}, \ldots, X_{1}\right) \\
& =f\left(X_{T} \mid X_{T-1}, \ldots, X_{1}\right) f\left(X_{T-1} \mid X_{T-2}, \ldots X_{1}\right) \ldots f\left(X_{2} \mid X_{1}\right) f\left(X_{1}\right) \\
& =\prod_{i=1}^{T} f\left(X_{i} \mid X_{i-1}, \ldots X_{1}\right)
\end{aligned}
$$

According to HWZ: $X_{i} \mid X_{i-1}, \ldots X_{1} \sim N\left(\phi X_{i-1}, \sigma_{w}^{2}\right)$ by $X_{t} \sim A R(1)$

- Thus

$$
\begin{aligned}
L\left(\phi, \sigma_{w}^{2}\right) & =\Pi_{i=2}^{T} \frac{1}{\sqrt{2 \pi \sigma_{w}^{2}}} e^{-\frac{\left(X_{i}-\phi X_{i-1}\right)^{2}}{2 \sigma_{w}^{2}}} \cdot f\left(X_{1}\right) \\
& =\left(w \pi \sigma_{w}^{2}\right)^{-\frac{T-1}{2}} e^{-\sum_{i=2}^{T} \frac{\left(X_{i}-\phi X_{i-1}\right)^{2}}{2 \sigma_{w}^{2}}} \cdot f\left(X_{1} ; \phi, \sigma_{w}^{2}\right)
\end{aligned}
$$

Maximizing $L\left(\phi, \sigma_{w}^{2}\right)$ in this case leads to a similar estimator as OLS/YW.

- General ARMA(p,q) Case: Again X_{T}, \ldots, X_{1} are jointly Gaussian if $w_{t} \sim$ Gaussian

$$
\begin{gathered}
L\left(\phi_{1}, \ldots, \phi_{p}, \theta_{1}, \ldots, \theta_{q}, \sigma_{w}^{2}\right)=\Pi_{i=1}^{T} f\left(X_{i} \mid X_{i-1}, \ldots, X_{1}\right) \\
X_{i} \mid X_{i-1}, \ldots, X_{1} \sim N\left(E\left(X i \mid X_{i-1}, \ldots, X_{1}\right), M S E\right) \sim N\left(X_{i \mid i-1}(\underline{\theta}), P_{i-1}^{i}(\underline{\theta})\right)
\end{gathered}
$$

This likelihood can be maximized using numerical optimization.(Newton-Raphson Algorithm conjugate gradient). Note $\underline{\theta}$ is the vector $\left(\phi_{1}, \ldots, \phi_{p}, \theta_{1}, \ldots, \theta_{q}, \sigma_{w}^{2}\right)$

Theorem 16: chapter 8 of Brockwell and Davis, Hannan(1980)
The MLE's of $\phi_{1}, \ldots, \phi_{p}, \theta_{1}, \ldots \theta_{q}, \sigma_{w}^{2}$ are \sqrt{T} consistent and asymptotically Normal, with asymptotic covariance equal to the inverse of the information Matrix. In the sense they are asymptotically optimal.

Take away message:

1. MLE estimation reduces to OLS, YW equation estimation for $A R(p)$ models.
2. For general ARMA estimation MLE is thought to be optimal in most situaions.(used as a default/benchmark)

1.29 Selecting the Orders of $A R M A(p, q)$ Model

Using Maximum Likelihood Estimation, we can fit an $\operatorname{ARMA}(p, q)$ model to an observed series X_{1}, \ldots, X_{T}.

Question: How do we select the orders pand q of the model? Usual Methods

1. Examine ACF and PACF.
2. Model Diagnostics/Goodness-of-Fit tests:

Examine the Residuals of the $\operatorname{ARMA}(\mathbf{p}, \mathbf{q})$ model to check for the plausibility of the white noise assumption.
3. Model Selection Methods:

Information Criteria, Cross-Validation

Model Diagnostics: If the $\operatorname{ARMA}(\mathrm{p}, \mathrm{q})$ model fits the data well, then the estimated residuals

$$
\underline{\widehat{W}_{t}}=\frac{X_{t}-\tilde{X}_{\mid t-1}}{\sqrt{\widehat{P}_{t}^{t-1}}}
$$

should behave like white noise.
$\tilde{X}_{t \mid t-1} \sim$ truncated predictor of X_{t} based on X_{t-1}, \ldots, X_{1}. $\widehat{P}_{t}^{t-1} \sim$ estimated MSE.

This can be investigated by considering $\widehat{\rho}_{W}(h)$, the emprirical ACF of $\widehat{W}_{1}, \ldots, \widehat{W}_{T}$.
As a measure of how "white" the residuals are, it is common to evaluate the cumulative significance of $\widehat{\rho}_{W}(h) \quad 1 \leq h \leq H$ by applying a "white noise test".

Suppose W_{1}, \ldots, W_{T} is a strong White Noise, and $\widehat{\rho}_{W}(h)$ is the empirical ACF of this series.
We know: $\sqrt{T} \widehat{\rho}_{W}(h) \underset{\rightarrow}{D} N(0,1)$ for each fixed h . Also, for $j \neq h$,

$$
\begin{aligned}
\operatorname{Cov}\left(\sqrt{T} \widehat{\gamma}_{W}(h), \sqrt{T} \widehat{\gamma}_{W}(j)\right) & =T E\left[\sum_{t=1}^{T} W_{t} W_{t+h}\right]\left[\sum_{s=1}^{T} W_{s} W_{s+j}\right] \\
= & T \sum_{t=1}^{T} \sum_{s=1}^{T} \underbrace{E W_{t} W_{t+h} W_{s} W_{s+j}}_{\text {Always zero! }}=0
\end{aligned}
$$

Box-Ljung-Pierce Test (White Noise test for ARMA(p, q) models)

If $X_{t} \sim A R M A(p, q)$ model, and \widehat{W}_{t} are the model residuals with empirical ACF $\widehat{\rho}_{W}(h)$, then the test statistics is

$$
\begin{gathered}
Q(T, H)=T(T+2) \sum_{h=1}^{H} \frac{\widehat{\rho}_{W}^{2}(h)}{T-h} \approx T \sum_{h=1}^{H} \widehat{\rho}_{W}^{2}(h) \\
Q(T, H)=\xrightarrow[T \rightarrow \infty]{D} \chi^{2}(\underbrace{H-(p+q)}_{\text {Lose } \mathrm{p}+\mathrm{q} \text { degrees of freedom for fitting model }})
\end{gathered}
$$

The BLP test p-value is then computed as $P_{B L P}=P\left(\chi^{2}(H-(p+q))>Q(T, H)\right)$.
Remark. If $X_{t} \sim A R M A(p, q)$, and \widehat{W}_{t} are calculated based on an ARMA(p', q') model where $\mathrm{p}^{\prime}<\mathrm{p}$ or $\mathrm{q}^{\prime}<\mathrm{q}$ (Model is under specified), then

$$
Q(T, H) \underset{\rightarrow}{P} \infty \text { as } T \rightarrow \infty .
$$

Interpretation: If BLP - p-values are small, the model is ill-fitting or under specified.

1.30 Model Selection: Information Criteria

Model Selection: Information Criteria

Suppose we are trying to select the orders p and q of an $\operatorname{ARMA}(\mathrm{p}, \mathrm{q})$ model to fit to X_{1}, \ldots, X_{T}.
$\underline{\phi}=A R$ parameters $\quad \sigma_{w}^{2}=$ white noise variance.
$\underline{\theta}=$ MA parameters.
$L(X_{1}, \ldots, X_{T} ; \underbrace{\widehat{\phi}, \widehat{\theta}, \widehat{\sigma}_{w}^{2}}_{\text {Maximum likelihood Estimators }}) \leftarrow$ Natural idea: Maximize the likelihood of the data as a function of $\mathbf{p , q}$.

Problem: The likelihood is (monotonically) increasing as a function of \mathbf{p}, q. Maximizing would lead to overfitting. Solution: Maximize the likelihood subject to a penalty term on the number of parameters (complexity) of the Model.

Let the number of parameters in the $\operatorname{ARMA}(\mathrm{p}, \mathbf{q})$ model be denoted by $k=p+q+1$.

$$
-2 \underbrace{\log \left(L \left(X_{1}, \ldots, X_{T} ;\right.\right.}_{\text {Minimize, decreasing function of } \mathrm{k}} \widehat{\phi}, \widehat{\theta}, \widehat{\sigma}_{w}^{2}))+\underbrace{p(T, k)}_{\text {Increasing function of } \mathrm{k}}
$$

Optimal p and q Balance model fit with the penalty for complexity. Common Penalty Term Choices:

$$
A I C(p, q)=-2 \log \left(L\left(X_{1}, \ldots, X_{T} ; \widehat{\phi}, \widehat{\theta}, \widehat{\sigma}_{w}^{2}\right)+\frac{2 k+T}{T}\right.
$$

comes from estimating the KullbackLeibler distance from the fitted model to the "true" model.
$B I C(p, q)=-2 \log \left(L\left(X_{1}, \ldots, X_{T} ; \widehat{\phi}, \widehat{\theta}, \widehat{\sigma}_{w}^{2}\right)+\frac{k \log (T)}{T}\right.$
comes from approximating and maximizing the posterior distribution of the model given the data.

Interpretation: Smaller AIC/BIC = Better model. Information Criteria are also use in trend fitting:

Suppose

$$
x_{t}=s_{t}+y_{t}=\overbrace{f_{t}(\underbrace{\beta}_{\text {vector of parameters in } \mathbb{R}^{k} .})}^{\text {trend we fit }}+y_{t}
$$

Estimate β with $\widehat{\beta}$ using ordinary least squares.

$$
R S S_{T}=\sum_{t=1}^{T}\left(x_{t}-f_{t}(\widehat{\beta})\right)^{2}
$$

Information Criteria typically calculated assuming Y_{t} is Gaussian White Noise and are of the form

$$
R S S_{T}+\underbrace{p(T, k)}_{\text {use AIC or BIC penalty. }}
$$

Remarks:

1. In trend fitting, the assumption of Gaussian white noise residuals is often in doubt.
2. AIC/BIC are not perfect! They are lout one of many tools useful in model selection.

- Strengths:
(a) easy to compute
(b) Facilitates comparing many models quickly.
- Weakness:
(a) Likelihood must be specified.
(b) There is a degree of "Arbitrariness" to the choice of penalty.

3. It can be shown that minimizing the AIC is related to minimizing the 1 -step forecast MSE, and so when the application is forecasting, AIC is more common.

1.31 ARIMA Models:

We have seen that many time series appear stationary after differencing.

Definition 34

We say a time series X_{t} is integrated to order d if $\nabla^{d} X_{t}$ is stationary, but $\nabla^{j} X_{t}, 1 \leqslant j<d$ is not stationary.

Motivation:

If y_{t} is stationary, and $X_{t}=\sum_{j=1}^{t} y_{j}$, then X_{t} is integrated to order 1; $Z_{t}=\sum_{i=1}^{t} X_{i}$ is integrated to order 2, etc

Definition 35

We say X_{t} follows an Autoregressive Integrated Moving Average Process of orders p, d, q (Abbrv. $X_{t} \sim \operatorname{ARIMA}(p, d, q)$), if

$$
\phi(B) \underbrace{(1-B)^{d} X_{t}}_{\nabla^{d} X_{t} \text { follows an } \operatorname{ARIMA(p,q)}}=\theta(B) W_{t}
$$

and X_{t} is integrated to order d.

Forecasting $A R I M A(p, d, q)$ processes:

1. $y_{t}=\nabla^{d} X_{t}$ follows and $\operatorname{ARMA}(p, q)$ model, and so can be forecasted using truncated ARIMA prediction.
2. Forecasts $\hat{y}_{T+h \mid T}$ can be used to forecast X_{T+h} by reversing the differencing. For example, say $d=1$, then $y_{T+1}=X_{T+1}-X_{T}$, so $\hat{X}_{T+1 \mid T}=X_{T}+\hat{y}_{T+1 \mid T}$. This can be iterated to produce longer Horizon forecasts.

Prediction MSE is approximately of the form

$$
P_{T+h}^{T} \cong \sigma_{w}^{2} \sum_{j=1}^{n-1} \psi_{j, *}^{2}
$$

where $\psi_{j, *}^{2}$ is the coefficient of z^{j} in the power series expansion (centered of zeros) of

$$
\frac{\theta(z)}{\phi(z)(1-z)^{d}},|z|<1
$$

Idea: $X_{t} \approx \frac{\theta(z)}{\phi(z)(1-z)^{d}} W_{t}$

Example 11

$X_{t} \sim \operatorname{ARIMA}(0,1,0)$, then

$$
X_{t}-X_{t-1}=(1-B) X_{t}=W_{t} \Longrightarrow X_{t}=X_{t-1}+W_{t} \Longrightarrow X_{t}=\sum_{j=1}^{t} W_{j}
$$

If $y_{t}=\nabla X_{t}, \hat{y}_{T+h \mid T}=0$ (Forecasting W_{t} 's), implies that

$$
\hat{X}_{T+1 \mid T}=X_{T}+\hat{y}_{T+1 \mid T}=X_{T}
$$

Similarly,

$$
\hat{X}_{T+h \mid T}=X_{T}
$$

Best Predictor of Random Walk is the last know location.

Prediction MSE:

$$
\begin{aligned}
& \frac{\theta(z)}{\phi(z)(1-z)^{d}}=\frac{1}{1-z}=\sum_{j=0}^{\infty} z^{j},|z|<1 \\
\Longrightarrow & \psi_{j, *}=1, \forall j \\
\Longrightarrow & P_{T+h}^{T}=\sigma_{w}^{2} \sum_{j=0}^{n-1} \psi_{j, *}^{2}=n \sigma_{w}^{2}
\end{aligned}
$$

Note: $E\left[\left(\hat{X}_{T+h \mid T}-X_{T+h}\right)^{2}\right]=E\left[\left(\sum_{j=T+1}^{T+h} W_{j}\right)^{2}\right]=h \sigma_{w}^{2}$

How to decide in practice an degree of differencing d :

1. Eye-ball test (look when the differencing looks stationary)
2. Formal Stationary Tests (Dicky-Fuller, KPSS test)
3. Cross-Validation
