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1 Time Series

1.1 Introduction

Definition 1

We say z1,...,xp is an (observed) time series of length 7" if x; denotes an observation
obtained at time ¢. In particular, the observations are ordered in time.

o If X; € R, wesay xy,...,xr is areal-valued or scalar time series.

o If X; € RP, we say x1, ...,y is a multivariate or vector valued time series.

With the time series data, comparing to classical statistics, we still care about prediction and
inference.
However, in contrast, the data oftern exhibit:

1. Heterogeneity— Time trends — E[X;] # E[X;.4]
Heteroskedasticity — Var(X;) # Var(Xis)

2. Serial Dependence (Serial Correlation)— observations that are temporally close appear to
depend on each other.

Definition 2

Formally, we say { X}z is a time series if {X; : ¢ € Z} is a Stocahstic Proces indexed
by Z. This means that there is a common probability space (2, F, P) so that V¢ € Z, X; :
) — R is a random variable. In relation to the original definition, we say x1, ...,y is an
observed stretch or a realization or a sample path of length 7" from { X} };c7.
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1.2 Forecasting

Consider a time series z1, ..., xp. Based on z1, ..., zp, we should like to produce a "best guess”
for Xpip:
Xron = Xognr = fulor, ... 1)
Definition 3
For h > 1, our "’best guess” XT+h = fu(xp, ..., x1) is called a forecast of X7, at horizon
h.

o X, = forecast

e h = horizon

There are two primary goals in forecasting:

1. Choose f; “optimally”.
Normally, we or the practitioner have some measure, say L(x, %), in mind for determining
how “close” X, is to Xr,. We then wish to choose f;, such that

L(X7in, fn(Xr,..., X)) is minimized
Mose common measure L(x, *) is Mean-Squared Error (MSE), where

L(z.y) = El(z — y)°]

2. Quantify the uncertainty in the forecase
This entails providing some description of how close we expect X to be to X7,

Suppose every minute, we flip a coin such that

H—1
T — —1

X; = outcome in minutet, ¢ = 1, ..., 7. This produces a time series of length 7', which is a
random sequence of 1’s and —1’s.
Note F[X;] =0, for h > 1, consider X1, = f(Xr,..., X))

L(Xrin, Xrin) = E[(Xpen — Xran)?]
= E[X7.,] +E[X22F+h] — 2 E[X7nXr)
——— —
Var(X:) E[X7in] E[X7n]=0
= E[X%-i-h] + E[X%-i-h]

which is minimzed by taking XTHL =0
There is nothing “wrong” with the forecast, but ideally would also be able to say that the
sequence appears to be random.




How can we quantify the uncertainty in forecasting?
The predictive distribution
XTJrh‘XT) s aXl

Excellent: Predictive intervals/sets
For some « € (0,1) find 7, such that

P(Xrip € 1| X7, ..., X1) = ala=0.95,e.9.)
often such intervals take the form
I, = (Xpon — 6, Xgn + 61)

Remark. 1. Estimiating predictive distributions leads one towards estimating the joint distribu-
tion of Xpyp, X, ..., X5 (ARMA,ARIMA etc).

2. It is important that we acknowledge that some things cannot be predicted!!!



1.3 Definition of Stationary

Given a time series X1, ..., Xp, we are frequently interested in estimating the joinr distribution of
Xrin, X,y .o, Xa

The joint distribution is a feature of the process { X };¢z

X1, Xp— {Xt}tEZ
infer

e Worst Case: X, ~ F}, where F; is a changing function of ¢. If so, it’s hard to pool the data
X1,..., X7 to estimate F;

e Serial Dependence: If the distribution of (X;, X;,,) depends strongly on ¢, we have a similar
problem in estimating. (e.g. cov(X;, Xi14))

Definition 4

We say that a time series { X7}z is strongly stationary or strictly stationary if Vk >
1,21,... 0, h € Z

D
(X, Xiy) = (X,

forall £ = 1,2,..., all time points iy, ...,%, and all h € Z In other words, shifting the
window on which you view the data does NOT change its distribution.

X

1+RY S0 ik+h)

This implies that if F; = CDF of X;, then
Fr=F.,=F

Definition 5

For a time series { X, }icz with F[X?] < 00,Vt € Z, we denote the mean function of the

series as
w=FE [Xt]

and the autovariance function of the series is

V(L 5) = BI(Xi = pu)(Xs = ps)] = cov(Xy, X)

Definition 6

We say that { X },c7 is weakly stationary if F[X;] = u, does not depend on ¢, and if

(t,s) = f(It = s])

i.e., v(t, s) is a function of |t — s

In this case, we usually write
v(h) = cov(Xy, Xiyn)

and we call the input h the ’lag” parameter.
Additional terminology:



e The property when E[X;]| = u does note depend on ¢ is oftern called "first order” stationary.

e The property when (¢, s) = (|t — s|) only depends on the lag |t — s| is called ”’second
order” stationary.

e For a second order stationary process

V() = cov(Xy, Xiin)
= cov(X;_n, Xy)
=(=h)

Normally, we only record v(h),h > 0



1.4 White Noise and Stationary Examples

Definition 7

We say {X;}icz is a strong white noise if F[X;] = 0 and the {X;} are independent and
identically distributed (iid).

Definition 8
We say { X}z is a weak white noise if £[X;] = 0, and

%, |s—t|=0

t,s) = cov(X;, Xy) =
1 8) = covXe, X) {o, [t — s|>0

Definition 9

We say { X}z is a Gaussian white noise if

Xt ’\C’l N(07 02)

Example

Suppose {W; }cz is a strong white noise. Then E[W;] = 0 (doesn’t depend on t).

012/117 ’t—S‘:O

t,s) = cov(W;, Wg) = E|{W,W,| =
(t,) = coo(IWi, Ws) = E[W,W] {0’ A

{W;}1ez weakly stationary (y only depends on |t — s|).
{Wi}iez is also strictly stationary. Let k > 1,4; < iy < ... < iy, k € Z.




Suppose {W; }cz is a strong white noise. Define
X, =W, +0W,_ 1,0 R
Then E[X,] = E[W, + 6W,_,] =0,

(1+ 6oy, [t—s/=0
Y(t, 8) = cov(Xy, Xs) = < 002, [t —s|=1
0, [t —s|>1

When |t — s|= 0,
E[(W, 4+ 0W,_1)?] = EIW2] + 0*E[W}2 ] + 2E[0W, W, 1] = (1 + 6*)02 + 0
Whent=s+1(ors=t+1)
E[(Wyiy + OW,) (W, + 0W,_)] = 0E[W?] = 02,

When |t — s|> 1, W, + 0W,_; is independent of W, + 0W,_,
Continued: {X;},cz is also strictly stationary. Suppose k > 1,iy,...,ix,h € Z, (i1 <
ce k),

P(X;, <ti,.... X, <tp) =PW;, +0W;,_y <tq,... , Wy, +0W,, 1 < ty)

W;
_pl| : |en
L Wzk
[ (Wi
—p|| : |enB
| \Wip+n

=P(Xi+n <t1,..., Xjptn < ty)

where B is a subset of R —#1+1

Definition 10

Suppose {&; }+cz is a strong white noise. Then if X; = g(e4,&;_1,. .., ) for some function:

g:R*” =R

, we say that { X, },c7 is a Bernoulli shift




If { X}z is a Bernoulli shift, then { X, };c7 is strictly stationary.

Remark. Nobert Wiener conjectured that every stationary sequence is a Bernoulli shift (The TRUTH
is almost every one is).

Suppose W, is strong white noise. Let

This is called a two-sided Random Walk. You can show that X, is firt-order stationary, but

not second-order stationary. (Consider the case when s, ¢t have different signs and the same
signs.)

10



1.5 Weak VS Strong Stationary

Sadly,
X strictly stationary - X, weakly stationary

Ex: Suppose X, ~ Cauchy Random Variables. i.e.

S
1

Then E[X;] doesn’t exist, and hence not weakly stationary. But it’s strongly stationary because it’s
a strong white noise.

If X, strictly stationary and E[X?] < oo = X is weakly stationary. Note that if X; is strictly
stationary, then

D
(X:)Xo = E[Xi] = E[X,](Not depend on t)

also,
Var(X;) = Var(Xy)

By Cauchy-Schwarz inequality,
(t, s) = cov( Xy, Xs) < Var(X;) < oo
and suppose t < s,
cov(Xy, Xs) = cov(Xo, Xs—t) = f(|t —s])
(X0 X0) = (Xeer Xoc)
== (Xo, Xo-)

Definition 11

{ X }ez is said to be a Gaussian Process (or Gaussian times series) if for each &k > 1,4; <
g < i,

(Xiys ooy Xip) ~ MultiNormal(p, (i, - . ., ix)s Zge (i1, - - -5 1)) = Nig(pt,, Sixr)
where
E[Xll]
M, = : » Tk = (cov( Xy, X, )1<jr<k)

If X, is weakly stationary and Gaussian, then X, is strictly stationary.




Proof. If X, weakly stationary, E[X;| = p, Vt, and

E[X;] 7 E[ X 1)

=
1
|
|
=
|

B[ X 4n)

=
=

Var(Xil, Ce 7Xlk> = CO’U(X,L'J. s Xir)léj,rgk]
CO’U(X(), Xir—ij)]
cov(Xo, X, 4h—(i;+h))]

= VCLT(Xi1+h, . ,Xik+h)
Using Gaussian assumption, we know

D D
(Xin cee 7X1k) = Nk(ﬁ’ Eka) = (Xi1+h ,,,,, Xik+h>

Hence, { X }c7 is stricly stationary. O

Exercise. Prove that if X, is not weak;y stationary in this sense then X, is not strictly stationary.
(Hint:either E[X;] depends on t or (X}, X) is not a function of |t — s|)

12



1.6 Theoretiacl (L?) framework for time series (optional)

o X; = limy,_, X}, In what sense does this limit exist?
e How close” are two random variables x, y

e Is there a random variable that achieves inf, ¢ d(y, 2)

Definition 12

Consider a probability space (2, F, P). The space L? is the set of random variables X :
Q0 — R (measurable) such that F[X?] < oo

Definition 13

We say that { X; };c7 is an L2-time series if X; € L* Vt € Z

Remark. L? is a Hilbert space when equipped with inner-product, x,y € L?
(X,Y) = E[XY]
where (%, *) is an inner product.
1. Linear: (ax + by, 2) = a (x, z) + b(y, 2)
2. (X, X)=E[X*)=0&z=0as.(ie. P(X=0)=1)
3. Symmetric: (X,Y) = (Y, X)

L? is also complete with this inner product i.e., whenever X,, € L? so that E[(X,, — X,,,)?] = 0 as
n,m = oo, then 3X € L? such that X,, — X i.e. E[(X,, — X)?] = o0
This follows from the “famous” Riesz-Fisher Theorem.



1.7 Useful tools for time series

1. Existence

Xin = Z Yier—j, {e:} is a strong WN

J=0

Since n > m,

E[(Xt,n - Xt,m)z] = E( Z 1/}1'575—3')2]

j=m+1
n
_ 2 2
= E 1/)j0'6 —0
J=m+1

asn,m — Oife.g. Z‘;’;O w? < 00, then there must exist a Random Variable X; such that
Xt = hmn_mo Xt,m = Zjio Q/Jjgt_j and Xt S L2.

2. Projection Theorem and Forecasting
Forecasting can often be cast as finding a random variable y among a collection of possible
forecast M (e.g. M = span{Xr, ..., X1}), such that

y = arginf ¢ vip(xp,,—2)7)

when M is a closed linear subspace of L?, the projection theorem gaurantees that such a y
exists, and it must satisfy

<XT+h - yvz> = O,VZ e M

14



1.8 Signal+Noise Models

“Ideally”, a time series that we are considering was generated from a stationary process. If so, we
can pool data to estimate the process underlying structure (e.g. its marginal distribution, and serial
dependence structure).

Most time series are evidently not stationary

Th Crease

[ \/Wn'a)h'/v'y, ales  appeoes

to  fh(remte

Signal+Noise Model: X; = S; + ¢;

e 5, is the deterministic ”’signal” or "trends of the series.

e ¢, is the “noise” added to the signal satisfying Ee;] = 0.
There exists a (strong) white noise WW; such that

ey = g(Wy, Wy_1,...) [Stationary Noise]
e = go(Wy, Wi_1,...) [non-Stationary Noise]

The terms {WW;} are often called the “innovation” or shock” driving the random behaviour
of X t

et = ¢(Wy, Wy_1,...) might be g, = Z;:o W; (Random Walk), ¢, = o(t)W; (changing
variance models)
Goal: Estimate S;, and infer the structure of ¢, = g(W;, W;_1,...)

Goal: Estimate S;, and infer the structure of &, = g(W;, W;_1,...)
For the temperature data example, we may posit that

Sy = By + Pi|Linear Trend]

The trend may be estimated by ordinary least success (OLS). We choose to 3, 5, minimize

T

> (X = [Bo + Bit])’

i=1

15



,note fy = ZEDUCD 3 — 5 — BT

Definition 14

Detrending a time series constitutes computing residuals based on an estimate for the sig-
nal/trend. A detrended time series is a time series of such residuals.

1. Estimate S; — S’t

2. Detrend series: X; — S’t = 1. 14 1S the “detrended” series.

If the trend is now 0 (only noise left), there appears to be substantial serial dependence remain-
ing in the series.

detrended
TL trend iy
] - ;-] new zev 0
= "“"1 rH thare Q‘Dr-'cor)
:"T:HI ;
£ & " h p | +6 b‘c
i i ‘ﬂ‘ , i Qub.‘."‘qw“""—]
5 b 2 S-QV'IQ\
J_n.'alwwb‘l‘
b i TfM&lV\'V'b;
2 (N "’LL Sevils |
ISIBC' 1900 1‘3‘2' 1940 19'.'3 918 2000

Figure: Residuals of OLS fit. A “Detrended” Time Series... Maybe not

16



1.9 Time Series Differencing

Signal+Noise Models: X; = S; + £t )
Hopefully, upon estimating S; with S;, we find X; — S; = &; (Detrended Series) looks reasonably
stationary.

If so, we might proceed in estimating the structure of {&;},—; _r as if it were stationary.

.....

detrended

03
)

1 Does et

02
D
—to
)
—
————
=

0.1

v
part thl),

g o
] o
£
S S*G"I OMV}
~N
-
«
?
T T ' T
1880 1900 1920 1940 1960 1980 200
Tere

Figure: Residuals of OLS fit. A “Detrended” Time Series... Maybe not

Posit a random walk with drift model:
Xy =04 X4_1 + ¢4, € ~ Strong White Noise
Note here the o is a drift term, constant

Xt:U+Xt_1+€t
=0+o0+ X ot te

t

=t*xo+ Xo —+ E 6j

S—— —
linear J=1

Random Walk noise

Notice that under the Random Walk Model

Xt—Xt_1:VXt:0'+€t

17



so if X, follows a random walk model, then the series Y; = VX, should have behave like a white
noise shifted by o.

Definition 15

Differencing a time series constitutes computing the difference between successive terms.
A diffrenced time series is a time series of such differences.
The first differenced series is denoted

VXt - Xt - Xt—l

and is the series Xo — X7, X3 — Xo,..., Xp — Xp_1 (length T" — 1).
Higher order differences are calculated recursively, so

\VAD'®
——

dth order difference

= VIV X(VX; = X))

Detrending and Differencing are both ways of reducing a (potentially non-staionary) time series to
an approximately stationary series.
Differencing VS Detrending:

e Pros

— Differencing does not require parameter estimation (Don’t estimate S;)

— Higher order differencing can reduce even very “trendy” series to look more like noise.
e Cons

— Differencing can “wash away” features of time series, and introduce more complicated
structures.

— The trend is often of interest, and good estimates of the trend lead to improved long-
range forecasts.

Example 2: Differencing Complicate Series

X; = W, where W; ~ Strong White Noise :

VX =W, =W =Y,

o2, h=0

=(h) = X, X, = w’
Yz (h) = cov( Xy, Xeyn) {0, h>1
202, h=0
Yy (h) = cov(Yy, Yign) = § —o2, h=1
0, h>2

18



1.10 Autocorrelation and Empirical Autocorrelation:

Usually through either detrending or differencing, we arrive at a series X; that we may consider as
stationary.
Given such a series, we wish to estimate g, so that

Xt = g(Wt, Wt—17 .. )

where {W;} is an “innovation” sequence (strong white noise)
Definition 16

A time series {X;}cz is said to be a linear process, if there exists a strong white noise
{Wi}tez, and coefficients {1;}iez,¢r € R, such that > ,° _||< oo, and X; =
Zcf’oo Y W,_[It’s a well-defined as a limit in L2, and it might depend on the future.]

Definition 17

{Xi}1ez is a causal linear process, if

It only depends on W’s in the “past”.

Remark. Linear processes are strictly stationary (Bernoulli Shift)

Example 3

Xy = Wy 4 W1, W, ~ Strong White Noise. X, is a linear process.

h=20
vx(h) = < 002 h=1
h>2

WV

Note: When h = 0, yx(h) is always non-zero. When h = 1, vyx(h) is non-zero if ¢
("lagged” term coefficients) in the linear process are non-zero.
Suggests a way of slewthing out what g(W;, W;_q,...) = > ;7 ¢, W,;_; must look like.




Definition 18

Suppose X, is weakly stationary. The autocorrelation function of X7 (Abbrev: ACF) is

Note since v(0) = Var(X;) = Var(X,)m

|v(h)|= |cov( Xy, Xen)|< \/Var(Xt)Var(XHh) = Var(Xy)
by stationary, Var(X;) = Var(Xi) = Var(Xo). Also,

p(h)I< 1= -1<p(h) <1

Esitimating y(h) and p(h):

v(h) = cov(Xy, Xegn) = E[(Xy = p)(Xegn — )], p = EIXY]

Hence a sensible estimator is

T
1 ~ . .
= T E X; = X (Sample mean/Time series avg.)

~
La
~

—h

4(0) = 7 > (X=X = X S > (% = X)X = )
T

Example 4

X; = W,, W, ~ Strong White Noise Var(W;) = 03, < 0o

0
0, > 1
— px(h) = {(1) Zi 1 < p(0) =~(0)/7(0) =0

20



1.11 Modes of Convergence of Random Variables

4(h) is an estimator of y(h), and we want to discuss the asymptotic properties of this estimator.
Introduce(Review):

1. Stochastic Boundedness(Op and op notation)
2. Convergence in Probability

3. Convergence in Distribution

Definition 19

Suppose {X,},>1 is a sequence of random variable, we say that X, is
bounded in probability by Y,, if Ve > 0,3M, N € R such that Vn > N,

P(|X,/Y,|> M) <e

Shorthand: X,, = Op(Y,,) = "X, is on the order of Y,,”/

Definition 20

We say X, converges in probability to X if Ve > 0,

lim P(|X, — X|>¢)=0

n—oo

If a,, is a sequence of scalars, we abbriviate X, /a,, converges in probability to zero as

X, = op(a,) <= P(|X,/an|>¢) = 0, asn — 0,VYe >0

Hence, X,, converges to zero in probability denoted as
X, =op(1)

We also write X, L X to denote X, converges to X in probability.
Definition 21

We say that sequence of scalar random variable X,, with respective CDF’s F},(z) converges
in distribution to X with CDF F(z) if for all continuity y of F,

Jim [F,(y) = F(y)[=0

Remark. When F'(z) is the CDF of a continuous random variable (e.g. a normal CDF), then

lim [F,(y) — F(y)|=0,Vy € R

n—oo



Useful Tool: Chebyshev’s Inequality: If E[Y?] < oo, then

Y21 yismr + Y21 1y <u]

E[Y? = E|
Y21 yioar] + E[Y?1 yi<u]
[

=K
E

= M*P([Y]> M)

which give us the Chebyshev’s Inequality:

E[Y?]
M2

P(Y|= M) <

Generally when E[|Y|*] < oo, P(|Y|> M) < E[J‘\ﬁk}

22



Example 5

Suppose X, is a strong white noise in L(E[X?] < 00), and let X7 = & >"/_, X, then

L |X7|=op(1)
Fore > 0,

T T
1
(Z Z E[X: X s]) the expectation is non-zero only then t = s

T2
t=1 t=1
1 I
= EZE[XE]
t=1
T 2
1 2 g 2 2
= 5 Y B = % (07 = BIXE)
t=1

Hence we will have,

as ' — oo.
Hence, X1 = op(1)

Var (1/7\/%) =Var(VTX7y) =T« Var(Xr) = o2

so by Chebyshev’s, for M > 0,

— Var(VTX o?
P(|\/TXT|>M)<#:W%O, as M — oo
Note: if we look at the definition, we should know the equation above shall work for
any 7' large enough, so if we keep 7" in the equation, it cannot work.

Hence, VT X1 = Op(1) = X = Op(ﬁ).

Alternatively, we can show this using the Central Limit Theorem by the CLT vTX 1 Z
N(0, 0?). Therefore, if I ~CDF of v/TX 1, ® ~CDF of N(0, 1) random variable.

|Fr(x) — ®(z/o)|— 0, asT — oo,Vz € R

23



For £ > 0, choose M such that ®(—%) = 1 — ®(M /o) < £. For this M, choose Ty, so T > Tp =
|Fr(—M) — ®(—M/o)|< e/4and |Fr(M) — ®(M/o)|< /4. Then,

P(WTXp > M) = Fr(—=M) + (1 — Fr(M))

=O(—M/o)+ (1 —-P(M/o))+ Fr(—M) + —d(—M /o) + ®(M/o) — Fr(M)
<ef/d+e/d+e/d+e/4
=
Remark. In general,
X,
- 2 Non-degenerate R.V. = X, = Op(ay)
Remark. Algebra of Op and op notation.
1. X,, =Op(a,),Y, = Op(b,) = X,, + Y, = Op(max{a,,b,})
2. X, =op(1),Y, =o0p(1), X, +Y, =op(1)

3. Xy =op(1),Y, = op(1), X, x Y, = op(1)

Example 6

Suppose W, is a strong white noise in L? with E[W}] < co. Let X; = W; + 0W,;_1,0 € R.
Show that 4(1) 5 002,

1t T eT

t=1 t=1 t=1 t=1

=
’?(1) = T (Xt - X)(XtJrl - X)
t=1
T-1 T—-1 T-1
1 T—1-— =1 —1
=7 XeXipr + ——X — XT X — Xf X1
t=1 t=1 t=1
=
=7 X Xopr + Rir+ Ror + Rap

1
72 KXo = (Wt 0Wiy) (Wi + W)

t=1 t=1

T
1
=7 Z OW? + Gir + Gor + Gar
=1
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ow, = Zthl oW} SLLY OE[W?] = 0o, We take a look at G .,

T T
1 1
Gir =) WiWi, B[Gir) =2 EW,Wiu]

t=1 t=1 -0

T T
1
Var(Grr) = E[GY 7] = 75 D ) EIWWen W]

t=1 s=1

~
<00;7#0 only if s=t

T

1

= 7 > E[WW2 ]
t=1

—0asT —

= Taow

By Chebyshev’s Inequality, G1 r = op(1) (Similar steps for Go r, G5 7). Then we can write

T
= % > oW+ op(1)
t=1

Hence we have
¥(1) — (90124/
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1.12 M-dependent CLT (Optional)

Suppose X; is a mean zero, strictly stationary time series (F[X? < oo]). Note we didn’t assume
X, are iid. We frequently faces with the problem:

1. What is the approximate distribution of
1L iXt — VT X s~ N(0,02)?
VTS o

2. If X, is a strong white noise. What’s the approximately distribution of

T—h

. 1
A(h) = T ; XiXiyn +op(1)

X Xyop := Y, is strictly stationary

When is the average of the possibly dependent variables generally normal?

I O T I T

Ul e \ Wingi2 - inlew YW

e Only way to understand how the { X, };cz, we have to observe replicates of the process.

e If process is suitably "weakly dependent”; then we can observe replicates of the process by
viewing on overlapping windows.

Definition 22

We say a time series { X, }c7 is m-dependent form € Z,,if forallt; < ty... <ty < $1 <
S9 < ...< 84, € Zsuchthatty, +m < s; and

(Xtys -+, Xy, ) is independe of (X, ..., X5, )
it means two windows separated by (at least) m units are independent.

Example 7

Xy = Wy 4+ 0W,_; where W}, is a strong white noise is 2-dependent.
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Theorem 2

Suppose X; is a strictly stationary, and m-dependent time series with E[X;] = 0, E[X?] <

0o. Then .
Sy = LT S X, = VIX B N(0,02)(T - )
t=1
where . .
o =Y v(h) =v(0)+2> ~(h)
h=—m h=1

This is a generalization of the standard CLT to m-dependence.

Definition 23

Preliminaries: We say {X;;,1 < j <

n;,1 < i < oo} forms a triangular array of mean
0, E[X?

zero L? random variables, if E[X; ] ;] < oo, for each i-fixed X1, ..., X;,, are
independent, and n; < n;11

Xl,la s 7X1,n1

Xi1,-.y...,Xon, ¢— Row-wise random variables are independent

Theorem 3: Lindeberg-Feller CLT for triangular array

et {Xi,j» 1 <j < mn,1 <i < oo} be a triangular array of mean zero L?-rvs. Define
of =31, Var(X; ;) and S; = - 377" X; ; (Row-wis sum standardized).
(Lindeberg’s Condition) If for e > 0,

1

2
g;

Z B[X; ;%1 (Xi,>e0}] = 0asi — o0

j=1

Then S; 2 N(0,1)

The indicator in the condition is looking for the variable that contributes a non-negligible
varaince. The whole summation is calculating the percentage of the variance that are con-
tributed by those variables with significant variance. Sometimes it’s called a uniform asymp-
totic negligible condition, it’s saying that all of the random variable are negligible in the
sense none of them contribute significantly to the variance.
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Proof. of M-dependent CLT
“Bernstein Blocking Argument”

5 b B b __J

ar m Qa1 m

ar = Big Block Size, m = little block size

AssumeaT—>ooasT—>oo L — ().

N = number of blocks = L J
m —+ ar

Bi={i:(j—1)(ar+m)+1<i<jar+(j —1)m}
bj={i:jar+ (G —1)m+1<i<jlar+m)}

Since ar "\ oo, for T" sufficiently large, ar > m and so by m-dependence, >, B, X, is indepen-
dentof ), 5 Xi(j # k). Similar for b;, by, j # k.

—T \/_ Z Z ;\/:1 Z -+Remainder

j=1teB; tebj

=Gir+Gor +Gsr

N
Var(Gyr) = ZE O X = E ZXt ]
teb; strict stationary t=1
m—1

SIRTIES S LTEIED ) SRISMIES SCSRUR
t=1 t=1 s=1 t=1 s=1 h=1-m
— Var(Gar) N * constant d /T * constant — 0 [ar — o]

ar = — = a o0

2T T ar +m T

Hence, as 1" — 0o, ar — 0o, we will have G5+ = op(1) by Chebyshev’s Inequality.

. 2ien; X 2ien; X . .
Notice G1r = % Zjvzl Doien, Xt = Z;VZI tif% ", and we let Yir = ti;% " (this variable
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forms a triangular array, imagining each row shares the same 7°)

Var(Gir) Z Var(Y;
Var(Y;r) = VaT(YLT)
1 “T i
-3 (3]
t=1
1 ar ar
LSS e
t=1 s=1
1 (lel
=5 Y (|
h:l—aT
1 h=m
=7 Z (ar — |h])y(h) if |h|> m, then v(h) = 0 by m-independence
h=—m
N m 1 m m
= Var(Gir) = 5 > (ar = [h])y(h) = o > (ar = [a)y(h) — > (k)
h=—m h=—m ——m
Hence we know the variance of G 7 is bounded.
Check Lindeberg’s Condition: 03, = Var(G1r) ~ const, so we must show:
Z E | Y71 1y, plseont
iid
=N+ E [Y711 (v, r>cony] — 0asT — o0
Aside E|[|Y|**] > EllY[*™1 {yse}] = °E[[Y )1 {y|>e}), s0 we have
E[[Y]**]
E[lY "1 gy)se] < =
248
It may be shown that F [|Y]2;5 °] < const (%) 7, s0
N ar 276
N E [Vl gy, gl>eon)] < (o) ot (?>
const Nap sar\ s
= — ) =0T —
(80’]\7)5 T ( T ) ( OO)

1,7

This implies —-* < N(O 1), and since 0%, — Y - ~(j), we have

GLT 2) N <O, i ’}/(h))
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Since, at the beginning, we’ve shown that G 7 = op(1), so we have

% S X, BN (0, > 7(h)>

h=—m

as required.
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1.13 2 + 5 Moment Calculation

‘We want to show that 248
=

E[|Y14*™°] < constant (%)
, where Y17 = % > Xy, and ar = Big Block Size — oo, (' — 00),% — 0. X, are
m-denpendent random variables. Want

249

E[|X;]*™] < 0o(6 > 0) < consta,?

Tools: Rosenthal’s Inequality. If X, ..., X,, are independent RV’s with E[|X;|**°] < co(§ > 0),
then

B[ X < e’y BIIX[]*
i=1 =1

In particular, if Xy, ..., X, are iid, then

EHZ Xi‘2+6] < Cpn(2+6)/2EHX1H2+6

i=1

For proof: see Petrov, Limit theorems of probability theory, P59.
Tool: For arbitrary RV’s X;,..., X,

EHZ Xi‘2+6] < n0+2)—1 ZEHXiHZJrJ
i=1 =1

proof: By Jensen’s Inequality, for all real numbers a4, ..., a,

1 & 1 &
’_2 :ai|2+6< _§ :’ai‘%—é
n “ n <

=1 =1

n

n
— ’Zai‘2+6< n(2+6)71 Z’ai‘Zﬂi

i=1 =1

Replace a; with X, take expectation.

Proof.

ar m
E Xt - E E Xt
t=1 7=0 Vk mod m=j,t=k+1
1<t<ar

SO > Wk mod m=j,t=k+1 X¢, variables in this sum separated by at least m-time steps, and are hence
1<t<ar
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iid. So we got,

246
E

ar
> X
t=1

246

> o

Vk mod m=j,t=k+1
1<t<ar

m 2448
2
< (m+ 1)y ( ar 1)

m
J=0 *

m

<(m+ 1N E

J=0

e B Xa ]

249
2

)

_ ar
= (m+ 1)y
( ) m+1
= const * aT¥
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1.14 Linear Process CLT
If X; ~ m-dependent, strictly stationary, F[X;] = 0, F[X?] < oo, then

% S x 2 N0, S )

h=—m

EX:X; = Y7 W, whhere {w; };c7 is a strong White noise in L?.
A general linear process

Xp = Wiy
=0

is not m-dependent, because it depends on the white noise arbitrarily back to the past.

Theorem 4: Basic Approximation Theorem BAT

Suppose X, is a sequence of random variables so that there exists an array {Y,,, ,, m,n > 1},
D
1. For each fixed m, Y,,,,, = Y;,, as n — oo.

D .
2. Y, =Y, as m — oo for some random variable Y

3. limy, o limsup,, ,  P(|X,, — Yiun|>€) =0,Ve >0

TheangYasn% 0.
Normally, Y, ,, is often an “m-dependent approximation to X,,. Proof is in Shumway and
Stoffer.

Theorem 5: Linear Process CLT

Suppose
X = Z YW
1=0

is a causal linear process with >,°|¢;|< 00, {W;}1ez is a strong white noise in L?. Then
. . 1 T
if Sy = VT 21 Xt

Sr 3 N(0, N AT = o)

l=—

,where the variance of the S is the ”long-run variance” of X;
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X, 1s strictly (and weakly) stationary.

y(h) = E[X, Xisn] = E

(g WVH) (i ¢th+h_j> ]

Fubin’s Theorem = Z Z Y EIW, W]
S~—_—— —

=0 j=0 £0, if j=l-+h
= ¢l¢l+h0'12/l/
1=0
)= >0 D o | < il Y [enlot, < oo
h=—00 h=—o0 | =0 =0 h=—00
s0 Y po_~y(h) is well-defined.
1 I
ESr|=F| — X | =0(F[X) =0
1] <ﬁ2 ) (BLX,] = 0)
1 LT =
Var(S) =) > BIXiX) == > (T—|h)y(h)
t=1 s=1 h=1-T
T-1
I
- > (1-F)w
h=1-T
— h
by Dominated Convergence hz_oo 7(h)

Note: (1 - %) v(h) < w

summable
Proof. Define X, ,, = Z;io YiWi_i, Srm = % Zthl Xt m (m-dependent approximation to S)
1. By the m-dependent CLT

St = N(0, Y 7(h) = Sh Yn(h) = Bl Xt Xt nam]

h=—m

2. By Dominated Convergence > ;" ~,,(h) — > ;- _ ~(h), and hence
m—ro0
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E[(ST,m - ST)Q] = %E (Z(Xt - Xt,m))

t=1

N

T-1 |]’L| 00
> (1-%) = et

h=1-T l=m+1
<y w( >, |wh|> oy — 0, m = 00
I=m+1 h=—00
so condition (3) of the BAT is satisfied using Chebyshev’s Inequality. Hence

o0

1 <. »
ST:ﬁ;Xt—MV(O, > y(n)

h=—o0
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1.15 Aymptotic Properties of Empirical ACF

If Xy,..., Xy 1s an observed time series that we think was generated by a stationary process,
Cov(Xy, X¢41,) Does not depend on .

T—h
§(0) = 2 3 (X~ X) (Xeen — X)
o ) 3
p(h) = Corr(X, X1 u) +(0) ,p(h) 4(0)

Questions:
1. Are % and p consistent?

2. What is the approximate distribution of 4(h) and p(h)?

Answer:

1. Consistency: By adding and subtracting p in the difinition of 4(h), we may assume WLOG
that £[X,] = 0.
Suppose { X, }cz is strictly stationary, and

Xt = g(Wt7Wt—17 e '7)

which is a Bernoulli shift.
Then
_ 1 p
X == ; X, —0
by the ergodic theorem (X} is Ergodic).
Further more

T
. 1 -
Y(h) = TZ(Xt X) (X — X)
t=1
T—h ~— T—h — T
1 X X T —h-—
= TZXtXH-h_ TZXt_ TZXt—i-h“‘TX
\tzl J\t:ll\tzl N—_——
Domin‘a:ltterm :P;O ;Pro —I:O
Note: E[X; Xiin] = v(h), XeXirn = 9o(Wien, Wipn—-1, ..., ) (Still Ergodic). Again by the

Ergodic Theorem:
T—h

1
T Z X Xitn i ’V(h)

t=1

which gives us




under strict stationarity and E[X?] < oo.

. Distribution of 4(h): Consider simple (but perhaps most important) case: X, is a strong
white noise. F[X}!] < oo
Finite 4" moment assumption is not really needed here but I will explain why it is classically
assumed.

A(h) 2 0in this case by strong white noise

Similarly as before

T—h
R 1
Y(h) = T Z X X¢on +smaller terms

t=1

Hence,

T—hT—h
= ?[XtXt+thXs+hl

~
#0t=s

Therefore,

T—o0

If X; is a strong white noise with E[X}'] < oo,

The convergence can be obtained by M(h+1)-dependent CLT and Martingale CLT.

It follows that
VT4(h) 3 N(0,0%)

Since 4(0) & o2, by Slutsky’s Theorem,

ﬁzigi = VTp(h) B N(0,1)
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Useful Tool: If X, is a strong white noise, (— Z\j%z, Z\j%z) is a (1 — «) Prediction Interval for p(h)

for all h (T large), where ®(Z,) = 1 — a. Hence (—%, %) is an approximate 95% prediction
interval for p(h) assuming the data is generated by a strong white noise process.

Hence, if the data is a strong white noise, for the most of time the ACF should lie in this interval.
Also, since our empirical autocorrelation is consistent, we know if the true autocorrelation is non-
zero, for 1" large enough, the empirical autocorrelation will be outside of this interval.

Example 8

Series diff(gtemp)
e 4
© _
o
o | J_néicu*we.
o
of
u S m.',é
< Szrlgl cwrc'q}lm
S at ’a& |
=
o
N
S 4
[
T I I I T
0 5 10 15 20
Lag
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1.16 Interpreting the ACF

We have an excellent understanding of how j(h) behaves when X1, ..., X7 is a strong white noise
<\ P o\ D 1 :
p(h) = 0(h>1) p(h) =~ N |0, T (T is large)

What happens when we calculate the Empirical ACF for non-stationary data?

Example 9

Xy =t+ W, (W, ~ SW.N.), we can see that X, has a linear trend.

1T(T+1) —
TT—FW—T—FW

o
Il
el
[~
-
=
Il

K
;_,_.

N |
(]

T+1 T+1 —
t—I—Wt—L—W> t+h+Wt+h—T+—W)

T+1 T+1
(t + ) ( + h— %) -+ smaller terms

T+1
t— 5 ) T Z h (t — —) -+ smaller terms

’ﬂl
TIMT I
> = > =

! I
(]

t=1
B —gfmﬁ (T —h)(T—h+1) (T+1)(T—h)
TT& T 2 2
~ O(T?) +0(T)
~——
Dominated

It follows in this case that

(Z> — Const for all i (1" — o0)
Hence, ,
) (/T p
h) = - — 1,Vh
0 =30)/7

Moral: If X, has a trend that is not properly remove, p(h) is likely to be large!!!

mmmmmmmmm
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1.17 Moving Average Processes

Suppose X, is stationary. Identify serial dependence using ACF p(h)

o 4___. 5“5'9“4' SﬂWCLl J"""’"“C'\C&.

e — — c— — - — — —

Posit X = g(W;, Wi_y),...) = X2 ¥iW;—; [Linear Process].
Not feasible to estimate infinitely many parameters {1, }7°,
Assume coefficients arise from a parsomonious linear model for X;

Definition 24

Suppose {W; }cz is a strong white noise with Var(W;)o3, < oo. We say X, is a Mov-
ing Average Process of order ¢ (Abbrev. M A(q)) if there exists coefficient 6,,....6, €
R, 8, # 0, so that

q
X =W+ 0 Wi+ +0,Wg=> W, (0h=1)
=0

which is a truncated linear process for order ¢

Definition 25
The Backshift operator, B, is defined by

BX; =X,
B is assumed further to be linear in the sense that for a,b € R,

(aB? + bB") X, = aB X;bB* X, = aX;_; + bX;

Example

VX, = first diff. of X; = (1 — B)X;




Definition 26

We sat §(z) = 1+ 612 + ...,6,X?is the Moving Average Polynomial. If X; ~ M A(q),

Xt Wt + 91Wt 1 + ...+ qutfq - H(B)Wt

which is succinct expression defining M A(q)

Properties of M A(q) Processes:
1. M A(q) process= Strong White Noise.
2. If X; ~ MA(q), then

[ q
E[X,=FE ZHZWH] =0

Var(X,) = E (Ze,wt l) = efasv

| l ) )

Zq % |9 9]+h0W7 0<h
0, h>q

7( ) COU(Xt; Xt+h

Zq |h “90+h
h ==,
() = 1) _ j=00;

0<h
0 h>q

VoA
—I— //\

2
—~

Note: By choose 64, .. ., , appropriately, we can get any ACF we want, p(h),1 < h < ¢

3. Xy ~MA(q) = X, is g-dependent
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white noise
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1.0
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1.18 Autoregressive Processes

Definition 27

Suppose {W, }icz is a strong white noise with Var(W;) < oo. We say X, is an Autoregres-
sive Process of order 1 (Abbrv. AR(1)) if there exists a constant ¢ so that

Xt = ¢Xt,1 + Wt,t € Z
Using Backshift operator, this may also be expressed as

(1—¢B)X; =W,

Interpretation:

e Prediction: Form a linear model (Regression) for predicting X; as X; = ¢.X;_; + W;, where
X, is the dependent variable and X,_; is the covariate/independent variable.

e Markovian Property:
Xt‘Xt—la Xt—27 cee = Xt’Xt—l

Question: Does there exist a stationary process X, satisfying
Xi=oXi1 + W,

Xt = Qﬁthl -+ Wt,Z - 7
= (¢ Xso + W) + W, = P’ Xio+ Wiy + W,

K-1
= ¢kXt—k + Z ¢th—j
=0

So ,if |¢|> 1, X, blows-up. Suppose |¢|< 1,, we have

o0
L? sense ; .
— 0+ E ¢’ W;_; < Causal Linear Process
Jj=0

Moreover, if X; = Z;‘io gbth_j, X, 1s strictly stationary, and

X = Z ¢th—j = Zﬁb’iwt—j + W
§=0 j=1

=) ¢TWiy + W,
j=1

= ¢Z¢th—1—j + Wi
=0
= ¢Xi1 + Wi
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X, satisfies AR(1) equation

If |¢|< 1, then there exists a strictly stationary and Causal Linear Process X so that

X=Xy + W,y

What if |¢|> 1?2 If X = ¢ X, 1 + Wit € Z

Xy = Xt+1/¢ - Wt+1/¢

k
Wiy,
= Xppn/0F =) Tﬂ

j=1

12-sense Z Wt+ j

J=1

This sequence is strictly stationary! (Bernoulli-Shift). It depends on the future. Normally we try
to avoid this.

What if |¢|= 1?

In this case there is no stationary process X; so that

X =0 Xo 1 + W,

Proof. ¢ =1.1f Xy = X;_; + W,, then suppose it’s stationary

t
Xi= 3 Wi+ X
j=1

t
= X, - Xo=)_ W,

Var(X; — Xo) = Var(Xy) + Var(Xy) — 2cov(Xy, Xo) < 4Var(Xy)
¢
Var(z W;) = togy, — 00,ast — oo
j=1

Contradiction. O

Properties of Causal AR(1) [|¢|< 1].

1. The span of dependence of X; is "infinite”

= Z ¢1Wt—l
1=0
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2. ACF.

[e.9]

Var(X;) = F (Z ¢1Wt—l) = Z ooy = oy /(1 — ¢°)
1=0

=0

V(h) = cov(Xy, Xeyn)

() (G
= =
= ; olo! oy
N
_ 1 - )
Hence
p(h) = % =¢"h>0

[Note: this decays geometrically in the lag parameter]

Definition 28

We say X, follows an autoregressive process of order p (Abbrv. AR(p)) if there exists
coefficients ¢y, ..., ¢, € R (¢, # 0) so that

Xt == leXt—l + ...+ prXt_p + Wt

We define
o) =1—rx—...— ppa?

to be the Autoregressive Polynomial. X; ~ AR(p), if

o(B) Xy =W,
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-02

autoregression, phi=.5

~ o
T T T T T T T
[ 20 40 60 80 100 120
Time
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Figure: Corresponding ACF plots
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1.19 Autoregressive Moving Average Processes

Moving Average Poly.
O(z) =146+ ...+ 0,7 (6,#0)

Autoregressive Poly.
o) =1— 1z —...— ¢ppa?f (¢p #0)
If W; ~Strong white noise,
(B) X = W; (Xy ~ AR(p))

Why not combine the two!!!

Definition 29

Given a strong white noise sequence W, we say that X; is an Autoregressive Moving Aver-
age Process of orders p&q (Abbrv, ARM A(p, q)), if

where
dx)=1—¢rx—...— ¢ppa? (¢, #0)
O(z) =1+ 60z +...+0,z", (6,#0)
This implies the model

Xt = ¢1Xt—1 +...+ ¢pXt—p + I/Vt + 91Wt_1 + ...+ qut—q

Using ARMA models to model Autocorrelation:
M A(q):ACF may be specified atlags 1, ..., ¢
AR(p): ACF has geometric decay/oscillations
ARM A combine the two

Remark. Parameter Redundancy Consider X; = W, (X; ~ M A(0)), then 0.5X; ;1 = 0.5W;_;
— Xt — 0.5Xt71 = Wt — 0.5Wt,1 — Xt ~ ARM(l, 1)
where
#(z) =1—0.52 = zeroof ¢pis zp =2
0(z) =1—0.52 = zeroof O is zyp = 2

Note if we observe the ARM A above, we know we can degrade it to a M A(0) model as above.
Parameter redundancy manifests as shared zeros in the ¢&6. We always assume models are re-
duced” by factoring and dividing away common zeros in ¢(z) and (z).
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Definition 30

We say an ARM A(p, q) model is causal if there exists X, satisfying ¢(B)X; = 6(B)W,,
and

Xp = Wiy
=0

which is a Causal Linear Process Solution

Definition 31
We say an ARM A(p, q) model is invertible if there exists X; satisfying ¢(B)X; = 6(B)W,,
and -
W, = Z mXi
1=0

W, can be expressed as a linear function of X,

Causality+Invertibility = Information in { X };<r is the same as Information in {W; };,<r

Theorem 8: Causality

By the fundamental theorem of algebra, the autoregressive polynomial ¢(z) has p roots, say
21,...,%y € C(Complex Plane).

If p = min;<;<,|2;|> 1, then there exists a stationary and causal X, to the ARM A equa-
tions: ¢(B) X, = 0(B)W,, Xy = >0, Wi

The coefficients {1, }7°, satisfy >, |1;|< oo [In fact: |¢);|< ﬁ + Geometric Decay]. And

S 0(z)
W(z) = 2 = lzI< 1
2=y s
In essence, X; = %Wt = > 2o BIW;
Key: @ =Y sovi?, |21 (% has a convergent power series representation |z|< 1.)




Theorem 9: Invertibility

If Zy, ..., Z, are the zeros of 6(z), and min;<;<,|z;|> 1, then X, is invertible,

o0

W, = Z m X

=0

Coefficients {m; }°, satisfy

m(z) = Zmzl = %, |z|< 1
1=0

which is a convergent power series.
Moral: When we look for coefficients ¢4, ..., ¢,,01,...,0,, we want to do so in such a way
that

¢(2),0(2) # 0, [2< 1

So the zeros of §(z), ¢(z) are not in the unit circle.

49



1.20 Proof of Causality&Stationaryity condition for ARMA Processes
Suppose ¥(z) = >_;2, 2!, where Y% || < oo. Define ¢(B)X; = > 720 i Xi.

If { X;}cz is a stationary (in any sense) process in L?, then

= Z Ui X = P(B)X,
1=0

is stationary (in the same sense).

Proof. 1t Y, is well-defined, stationarity follows easily. Since if X, is strictly stationary — Y}
strictly stationary. (Bernoulli shift of X).
If X, is weakly stationary. (Assume E[X;] = 0,

(Z P Xy l) (i ¢kXt+h—k>] = io: i Vibeyx (h — k +1)

=0 k=0

E[Y;Yin) =

which doesn’t depend on ¢.
Y; is well-defined as a limit on L?; By Cauchy-Schwarz, vx(h) < Var(X,). So if Y,,, =
> o Y1 Xy, then for n > m,

E[(Yin — Yim)?] = (Z i X l> = > Y dwex(k—1) <Var(Xo) > > [vulll

l=m+1 l=m+1 k=m+1 l=m+1 k=m+1

< Var(Xo) ( > il

l=m+1

— 0 Since Z|¢l|< 00
1=0

Therefore, Y; = lim,,_,+ Y} ,, is well defined in L? L]

Notice then that if X; is stationary, a(z) = > ;o a2, B(z) = D12, Biz', with > |ay|<
00, Y | Bi|< o0o. Then

Y, = a(B)B(B)X; = Z (Z ;B J) Xt
=0 7=0

Where Zé:o ;B is the coefficient of 2! in the power series a(z)3(z)

Moral:Iteratively applying Backshift operations has the same ”Algebra” as power series multi-
plication.
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Proof. Causality Theorem. Suppose ¢(Z)=Autoregressive Polynomial has zeros zi,...,z, € C
so that min; ;<,|2;|> ¢

Then there must exist ¢ > 0 so that

min |z;|> 1+ €
1<i<p

Hence the function £(z) = ﬁ is Holomorphic (Analytic) on the set {z € C : |z|< 14 5}. Hence,

£(z) must have a power series representation converging on |z[< 1+ §
o0
!
€)= &z
1=0
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Since ;% (14 5)" < oo, the sequence |§[(1+5)" < k for some k € R. Hence |§|< k(1+5)7,
and hence »_,° || < oo.
Define X; = £(B)6(B)W,, then

¢(B)X, = ¢(B)E(B)0(B)W: = 6(b)W,
Hence X; = £(B)0(B)W; =: %Wt solves the ARMA equations. O
Remark. If ¢(z) = 0, |z|< 1 (zeros inside the unit circle), then

L
#z)

In this case, X; = {(B)0(B)W, = >_,°__ Wi, (Two sided Linear process, Not Causal, future
dependent).
If ¢(z) = 0 for some |z|= 1m there is no stationary solution [Unit Root Time Series].

Z&zl,l—e< |Z|<1+¢€
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1.21 ARMA Processes: Example
Consider a ARM A(2, 2) model,

1 1 5 1
X = ZXt—l + gXt—1 + W — BWt—l + EVVt—Q

Is there a stationary and Causal Solution X,? Is it invertible? Is there parameter redundancy?

1 1

AR poly: gb(z)zl—zz—gzz
> 1
MA poly: 6(z) =1 — 67 + 622
2+V4+14
Roots of ¢ : ; "8 13- 49

Roots of 6 : 2,3

() = %(z FA)(2—2), 0(z) = %(z _9)(:—3)

and they share a common zero, shows parameters are redundant.
X, satisfies an ARM A(1, 1) with

8(2) = —5(= +4), 6() = 5(= ~ 3)

Since the roots of ¢ and # are outside of the unit circle in . X, is stationary causal and invertible.
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Example 10

Suppose X; = —3X; 1 + Wy — sW,_y, then X; ~ ARMA(1,1). ¢(2) =1+ 12 =
Root is —4. So X is stationary and Causal, and can be represented as a linear process:

Xp =Y Wy
1=0
We know
_ S _ 0(2)
00 =3 et = G
= (2)¢(z) = 0(z) = Calculate v, by matching coefficients
Note:
:1+lz 9(,2):1—12
4) =1+ :
b(2)9(2) = 0(2)
— ZO . wo =1
= 213%4'1@1_—% = ¢1=—1—72
= z2z%+w2:0 = 1y _4_78

7 1 -1
l. wl—l

Where % + 1y is called a finite linear difference equation and it must be solved. It is
automated in the ARM AtoM A function in R.

If X, is a stationary and Causal solution to the ARM A(p, ¢) model

Xp =Y Wi,
=0

Yx(h) = E[XtXt+h] =E

(o) (G

= oy Z ViVjth

j=0

Coefficients 1/; can be solved for as in the previous example by solving a finite difference equation.
Automated in the ARM Aacf function in R.
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1.22 L2 Stationary Process Forecasting

Suppose we observe a time series
Xi,..., Xr

that we believe has been generated by an underlying stationary process. We would like to produce
an h-step ahead forecast

Xryn = Xpinr = f( Xz, .., X1)

to forecast X7, . Ideally XT+h would minimize the prediction error

L(Xgin, Xryn) = mfin L( X7y, f(X7,...,X1))

where L is a Loss function.
Frequently, the loss function is taken to be Mean-Squared Error (MSE)

L(Xrin, XT+h) =L [(XTJrh - XT+h) 1
when using MSE, it is natural to consider
L? = {Random variable X : F[X?] < oo}
L? is a Hilbert space when equipped with the inner product
(z,y) = Elzy]

Hilbert spaces are generalizations of Euclidean space (R?) in which the geometry and notion of
projection are preserved

proj(z — y) = (z,y) y

Theorem 12: Projection Theorem

We say M < L2 is a closed linear subspace, if

e Linearity: x,y € M,a,f € Riax + Sy e M
e Closed: If X,, = X (E[(X,, — X)?] = 0),and X,, € M ,then X € M

If M is a closed linear subspace in L? and = € L?, then exists a unique & € M so that

E [(x — i)Q} = inf F [(x - y)ﬂ

yeM

Moreover, Z satisfies
e Prediction Equations/Normal Equations: z — & € M+ = E[(x —2)h| =0,YVy € M

In MES forecasting, we want to choose X’TM satisfying
E [(xrsn — dr4n)’] = JQJEE [(@rsn —)?]
where M is a closed linear subspace based on the available data.
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l. M =M, ={z2:2z= f(xp,...,X1), fisany Borel Measurable function} In this case,

Tryn = Elwrn|or, ... 2]

which is the ideal situation. Unfortunately, //; is enormous and complicated! (you have lots
of functions to consider)

2. M = My =3span{l,zr,...,z1} ={y :y = ap + Z;p:lozjmj} where aq, ..., ar € R so
they are the linear functions of x4, ..., zp.
Ty, 18 called the Best Linear Predictor (BLP)
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1.23 Best Linear Prediction

Suppose X is a (weakly) stationary time series. Best linear prediction entails finding Z7,, so that
El(rin — &ren)?] = inf E[(zrn —y)?]
yeEM>
where

My =span{l,xp,...,x1} ={y 1y = o+ Z@jxj}

T 18 the best predictor among all linear functions of xp, ..., x;.

Definition 32

If = satisfies
El(x—%)’] = inf E 2
((z = 2)] = jnf Blz —y)]
we say 7 is the projection of x onto M. Write

& = proj(z|M)

BLP 1.y = proj(xzryn|span{l, xy, ..., x1})

Consider the case when h = 1. The BLP is of the form
T T
Trir = o+ Z ¢r,jT; = oo+ Z orj(x; — p)
j=1 j=0

where © = Elx;). &7, must satisfy the prediction equations, which is
El(zr41 — 2711)y]l = 0,Vy € span{l,zr, ..., 21}
In particular,
El(xrs1 — &r41) * 1] =
El(zri — Tr41) * 3] =
Since E[z; — pu] = 0, we have
0=FElxry —Trp] =p—¢ro+0 = oro=p
Before proceeding, note that this implies
El(xrs1 — Zri1)as] = El(@ri — p— (T4 — ) (x5 — )]

so we may assume WLOG =0 = E[z;z;] = v(j — 1)
Therefore, (expand the last equation above and notice ¢r = 0

0 = El(wrs1 — &)z = Y(T + 1 — Z¢m J—k)1<k<T

= Y or G — k) =v(T+1-k)

J=1
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which is a linear system of equations of ¢ ..., ¢r 1

If
(T)
= F | eRN =00 - k), 1<)k <T] e R
(1)
and o7 = (¢r1,...,9rr)" € RT, this linea system may be expressed as

The BLP is then of the form

Try = Q;XT = (03'7,)" Xy, where

XT = (xlw"al‘T)T

If v(0) > 0, and v(h) — 0 as h — oo, then I} is non-singular.
Takeaway: Most stationary processes (those whose serial dependence decays over time)
have non-singular '

Note that 72 1= 1;F;1XTX§F;11T
- E[@QTH] = Z;FFZT

also, since Elrr 1 Xy =7, = Elrrpirg] = Z;F;ZT
It follows that the Mean-Squared prediction error is

Pi ) = El(xr41 — 2r1)?] = Elafy, — 2000800 + 37

= 7(0) = 29,07 v, + 9,070y, = 9(0) — 1Ty,

The mean squared prediction error has a simple, computable form depending on y(h),1 < h < T.
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1.24 Partial Autocorrelation
If X; ~ ARM A(p, q), we might be able to identify p, ¢ by looking at the ACF.

X; ~ AR(p) = ACF has geometric decay
X¢ ~ MA(p) = ACF is non-zero at first ¢ lags, then zero beyond.

ACF if an ARM A(p, q¢) model can be calculated by calculating the linear process coefficients

{3
Automated in R using ARM A, function.

5 4 ARMAL))
& /laOl’-& like %LOMJ'N(, Je,caal
‘ Yé« +u clu‘thuiSL\ #r«w
S 2 Jl |
< Simply ap AL melal

lag

Figure: ARMA(1,1): x¢ = .9x¢—1 + w; + .5wy_1. It is hard to tell the
difference between this and an AR(p) ACF

Definition 33

The partial autocorrelation function of a stationary process { X}z is

¢h,h = Corr (XtJrh — PTOj(XtJrh‘XtJrh,l, Ce ,Xt+1), Xt — PT'Oj(Xt|Xt+h,1, C ’Xt+1)>

Interpretation: Autocorrelation between X; and X, after removing the linear dependence on
the intervening variable X; ., 1,..., X; 11

Remark. If X; ~ AR(p), which is causal, then ¢, = 0for h > p+ 1
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Proof.
) P
Xi~AR(p) = Xyp = Z Oj Xith—j + Wign

j=1
h—1
PTO](Xt+h|Xt+h—1» . 7Xt+1) = Z BrXtth—k
k=1

and minimizes

h—1 2 P h—1 2
E <Xt+h - Z 5kXt+hk> =F (Wt+h + Z O Xeyn—j — Z 5kXt+hk>
k=1

k=1 j=1
P h—1 2
i+ E (z IS mxﬁhg
j=1 k=1

where the second term can be minimized by setting 3; = ¢;,1 < j <p,5; =0,h =>p+1
Hence,
Xiyn — PTOj(Xt+h|Xt+h—17 e 7Xt+1> =Wiin (h = p+ 1)

= ¢pp = Corr(Wign, Xy — Proj(Xy| Xegn—1,- .., Xe41)) =0

we get it is 0 by causality, because X; — Proj(X;|Xyin_1,--.,X¢11) is a term that only depends

on something before ¢ + h but not W, itself.

Remark. It can be shown that if X; ~ M A(q), which is invertible, then

Onn 70, |onnl= 00", 0<r <1
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Estimating the PACF: Using the BLP theory

where
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1.25 Casual and Invertible ARMA Process Forecasting

Suppose X; follows a stationary and invertible ARM A(p, q) model so that ¢(B)X; = 0(B)X;.
Havin observed X7, ..., X;, we wish to predict Xy,

XT-‘rh - Pr0j<XT+h|Span{1v XT7 cee aXl}) ~ E[XT+h|XT7 s qu]

because by the Causality and Invertibility, X, ~ linear function of W}

Further, 7., = Trin = Elxin| X1, ..., T1, 20, . . .] because Geometric decay of the dependence
on past values.

Since x; is causal and invertible, then

oo o0
Ty = szwH, Wy = Zﬂ'lxtfl (7TO =1y = 1)
1=0 1=0
Note: 1;’s and 7;’s are computable by solving homogeneous linear difference equations.
These representations imply
Information in (X7, X7_1,...,) = Information in (Wp, Wr_q,...)
So jT—i—h = E[$T+h|l’T, TT—_1y.- ] = E[ZL’T+h|U}T, Wr—1, .. ]

1.

o0
Tryn = E[Z YT h—iwr, wr-1, . . ]
1=0

h—1 0o
= E[Z Viwrpn—i|wr, ... + E[Z Yrwrip—i|lwr, .. ]
1=0 I=h

Notice one term is independent of the given information, so it’s just the mean which is 0, the
second term is a function of the given information, so the equation is

o0
E @/)leJrh—l
I=h

Also, using invertibility

o0
0 = Elwrin| Xp, Xpo1,...] = E] E T Xrn—t| X, Xr_1, .. ]
=0
h—1 00
= Tryp + E T 4h—1 + E TXT+h—1
To=
0 =1 I=h
so we have
h—1 0
= Ip4p = — E LT 4h—1 — E LT 4 h—1
=1 I=h
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Truncated ARAM Prediction:

h—1 T+h—1
LT+h = — E TjXT+h—j — E MjTT+h—j
j=1 j=h

notice that we truncated the last term to the observed information.
Residuals:
’UA]t - ¢(B).§3t - 91’UA)t71 I (92?1A)t,q

Mean Initialization:
’uAJt:O,téO,t2T, i:tzo,téO,i't:xt,lgth

: 2 .22 _ 1 NT a2
Estimator for oy, : 04 = 7 D, W;
Mean Squared Prediction Error:

. A ~ o
Since 7y & D52, Viwi— s

T
Jan
S

h—1
Pl = El(wrsn — dr40)°] = B[O wjwi)*) = o3 > 0
=0

.
Il
o

Estimated Mean Square Prediction Error:

Construction of Prediction Intervals:
Since T, ~ E[:L‘T+h|l'T, TT—1, .. .], then

El&7ryn — xryp) = 0, Tower Property
E[(&14n — zr40)?] = Pl

Hence,
Tr4h — TT4h

v Pron

is an approximately mean zero and unit variance Random Variable.
Suppose c,, is the a-critical value of the Random Variable. Then

- T
Tryp Ca/2 PT+h

is an approximate 1 — « prediction interval for xp_ .
Choices for c¢,:

1. z, which is the standard normal critical value
Motivation: If w; is Gaussian, then z; = Zio WYrwy_; is Gaussian.

63



2. Empirical Critical Value of Residuals (standardized)
L1t T
ow
3. t-distribution, Pareto, or skewed distribution fit to standardized Residuals.
Long Range Behaviour of ARAMA forecasts: Suppose Y; = S; + X; X; ~ ARM A(p, q),
Viin = Srin + Xrin = Sron + Z ViWrinj
j=h

The last term goes to 0 geometrically when h increases.
Y7, is converging fast to Sy p: Better get the trend for long Range Forecasts!

h—1 [e%s)
Pl =ow Y U = o > U7 =7(0)
=0 =0

In the long run, the MSE is the variance of X}
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1.26 ARMA Forecasting: Example

’DL

Model

where

X

Cardiovascular Mortality

120 130
| |

110
|

Mods |
‘Trew) 23

?OIJD‘QMIQ. l
+ Seasona. |

100
|

80
|

70
|

1970 1972 1974 1976 1978 1980

yJu.U\} dota : Tz So38

Figure: Weekly cardiovascular mortality, LA County.

X = Cardiovascular Mortality Series

X, = S, + Y;, Y; ~ ARMA(p, q) process

Sy = Seasonal + Polynomial trend

=bo+ Pt + Bot? + Bgt +ﬁ4 sin (2—75) + (5 cos (2—75) —1—66 sin (Z—t) + (37 cos (2—75

02 52 26 26

Flucuations.

)

J/

Polynomlal
Yearly Cycle Half—Yearly Cycle

Decided on this trend using AIC (later)
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Figure: Forecasts with 95% prediction intervals

71



1.27 Estimating ARM A(p, q) Parameters: AR Case
Suppose we observe a time series X7, ..., X7 ~ ARM A(p, q)

P(z) =1—rz—--Pp2P, 0(z) =1+6b1z2+4---0,27

Goal: Estimate ¢1,...,¢,; 01,...,0, ; oz

w
~—~

AR parameters MA parameters Wwhite noise variance

o AR(1)case: X; = ¢X; | +w;, FEw?=o?

w

Idea: use ordinary least squares(OLS).

T
¢ = argmin Z(Xt — 0X1)%
|pl<1 =9
This leads to (upon some calculus):
T .
b= Tl XX A1) 1)
T Xima X7 7(0) Teo

0l = ﬁZ?:Q(Xt — ¢X;_1)®> <— Sample Variance of Residuals.
——

estimated w¢

e AR(p) Case: X, =1 Xi1t — -+, Xip, +wy
OLS: ¢ = (¢1, ..., pp)T €RP

. T 2
= argmin XL (X=Xt — o — dpXiy)
Q:X tadmits a staionary
and Casual Solution

[

Solve using calculus (Take first order partial derivatives, set equal to zero).

This leads to a system of p linear equations of the form

A~

T, . D,= (3 —k),1 <j,k <p)cRP?

-

|

P

2 T

= (1), 3(p))

The resulting OLS estimator takes the approximate form:



e Similar approach: use Method of Moments (Set parameters so that empirical moments
match theoretical moments induced by the model)
If X; ~ AR(p), then for 1 < h < p,

Y(h) = EXi Xon = EXi(1 Xepn1 + -+ 0pXignp + Wegn)]
=oy(h =1+ ¢y(h =2)+ -+ oy —p)+ O

Xelweip
This implies the linear system: 7, = 'y v, = (y(1), - ,v(p))t € Rexp
L,=[(—k);1<jk<p R
e Note that X; = ) °  ywiy, o = land wy = Xy — 01Xy — -+ 9 Xy
= 0y, = B[Xow] = B[Xy(Xy — 1. Xe1 — -~ K1)

=7(0) — d1v(1) — - — &Y (p) Yule-Walker Equations
v, = 1o

= Yule-Walker Estimators: ¢ = ﬁ_lfy 62 =4(0) — 'Any_lfAy

Theorem 14

If X, ““" AR(p), then

OLS,i
(bA T Pe] asT — o0

Oy wi

OLS and YW estimates are asymptotically equivalent. The 7 here means the 7 th autoregres-
sive process coefficients.

Theorem 15

\/T(Q% ) 2, Np( 0,020t

—Yw — T—oo \7wpl )

Optimal Variance among all possible (asymptotically)
unbrasedestimators.[E f ficient]

Result can be used to obtain confidence interval for ¢.

73



1.28 ARMA Parameter Estimation:MLE

Ordinary least squares and Yule Walker Equation estimators are effective in estimating the AR(p)
parameters, but are difficult to apply to fitting M A(q) and general ARM A(p, q) models since the
white noises w; are observable, and YW equations are not linear in the MA parameters.

Latent variables (e.g. variables associated with the noise w;) = MLE is best.

e Suppose X; ~ AR(1)
X, =0Xi1 ., wy ~ N(0,02) (Gaussian Distributional Assumption on Noise)

o0

Then X; = E gblwt_, is Gaussian
1=0

L?-limits of Gaussian RV’s are Gaussian (MGF or characteristic Function)

e Moreover, X1, ..., X are jointly Gaussian, since

oy X+ +arXr = Z gbl(alwl_l + ...+ aTwT—l)
1=0

MLE: L( ,0'12”) = f(XT7 XT—17 Xl, ,0'121))
and L(¢, o2) is likelihood of ¢, a2, f is joint density of X, ..., X; evaluated at the observed
data (Gaussian Density).

e Key idea in Time Series: To evaluate the likelihood, condition on the path/past!

f(Xr, ... X1) = f(Xp|Xp_1, .. X0) f(Xro1, .0, X0)
= f(XT|XT_1, . Xl)f(XT—llXT—% Xl)f(X2|X1)f(X1)
=TI, f(Xi| X, ... X))

According to HWZ: X;|X; 1,.. X, ~ N(¢X; 1,02) by X; ~ AR(1)

1, %
e Thus
1 (Xi—¢Xi_1)
L(¢,02) = 1T, e o - f(X)
\/27mo?,

2 T—1 —

= (wmoL)” 2 e T L f(Xy0,00)
Maximizing L(¢, 02) in this case leads to a similar estimator as OLS/YW.

e General ARMA(p,q) Case: Again X7, ..., X; are jointly Gaussian if w; ~ Gaussian

L(¢17 sy ¢p7 017 [ERE) 9q7 J’?u) - Hz;lf(XZ|XZ—17 “'7X1)

XilXifb ceey X1 ~ N(E(XZ‘XZ,M '-'7X1)7 MSE) ~ N(Xz‘ifl(Q), le—l(Q))

This likelihood can be maximized using numerical optimization.(Newton-Raphson Algo-
rithm conjugate gradient). Note 6 is the vector (¢1, ..., ¢p, 61, ...,0,,02)
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Theorem 16: chapter 8 of Brockwell and Davis, Hannan(1980)

The MLE’s of ¢y, ..., ¢, 01, ...0,, 02 are /T consistent and asymptotically Normal, with

9~ w
asymptotic covariance equal to the inverse of the information Matrix. In the sense they are

asymptotically optimal.

Take away message:
1. MLE estimation reduces to OLS, YW equation estimation for AR(p) models.

2. For general ARMA estimation MLE is thought to be optimal in most situaions.(used as a
default/benchmark)
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1.29 Selecting the Orders of ARM A(p, q) Model

Using Maximum Likelihood Estimation, we can fit an ARMA(p, q) model to an observed series
X1, .0, X,

Question: How do we select the orders p and q of the model? Usual Methods

1. Examine ACF and PACF.

2. Model Diagnostics/Goodness-of-Fit tests:
Examine the Residuals of the ARMA(p, q) model to check for the plausibility of the
white noise assumption.

3. Model Selection Methods:
Information Criteria, Cross-Validation

Model Diagnostics: If the ARMA(p, q) model fits the data well, then the estimated residuals

should behave like white noise.

Xt | t—1 ~ truncated predictor of X; based on X;_y,..., X;.
P/7! ~ estimated MSE.

This can be investigated by considering py; (h), the emprirical ACF of /I/I71, cee Wr.

As a measure of how “white” the residuals are, it is common to evaluate the cumulative signif-
icance of py(h) 1 < h < H by applying a ”white noise test”.

Suppose W1, ..., Wy is a strong White Noise, and py (h) is the empirical ACF of this series.

We know: \/Tﬁw(h)QN(O, 1) for each fixed h. Also, for j # h,

T T
Cov(VTAw (h), VTAw (4)) = TE[Y  WiWen] > WilWey]
t=1 s=1
T
=T > EWWu,WWey; =0

t=1 s=1

Always zero!

Box-Ljung-Pierce Test (White Noise test for ARMA(p, q) models)
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If X; ~ ARM A(p, q) model, and W, are the model residuals with empirical ACF py, (h), then
the test statistics is

Q(T,H) = T(T + 2) T h ~TY pw(h)
h=1 h=1
_ Db
Q(T, H) = T—oo  x*( H—(p+q) )
—————

Lose p + q degrees of freedom for fitting model

The BLP test p-value is then computed as Pgrp = P(X*(H — (p +q)) > Q(T, H)).

Remark. If X; ~ ARMA(p,q), and Wt are calculated based on an ARMA(p’, q°) model where
p’ <porq < q(Modelis under specified), then

Q(T,H) 1_3>ooa5T—>oo.

Interpretation: If BLP — p-values are small, the model is ill-fitting or under specified.
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1.30 Model Selection: Information Criteria

Model Selection: Information Criteria

Suppose we are trying to select the orders p and q of an ARMA(p, q) model to fitto Xy, ..., Xr.
¢ = AR parameters o, = white noise variance.
0 = M A parameters.

L(Xy,..., Xp; qAﬁ, 5, o2 ) < Natural idea: Maximize the likelihood of the data

Maximum likelihood Estimators

as a function of p,q.

Problem: The likelihood is (monotonically) increasing as a function of p, q. Maximizing
would lead to overfitting. Solution: Maximize the likelihood subject to a penalty term on the
number of parameters (complexity) of the Model.

Let the number of parameters in the ARMA(p, q) model be denoted by k = p + ¢ + 1.

P
—2 log(L(le"'7XT7 ¢7970w))+ p(T7 k)
TV
Minimize, decreasing function of k Increasing function of k.

Optimal p and q Balance model fit with the penalty for complexity. Common Penalty Term Choices:

AIC(p,q) = —2log(L(X,,. .., X1 9,0,52) 4 24T

comes from estimating the KullbackLeibler distance from the fitted model to the “’true”” model.

BIC(p,q) = —2log(L(X,, ..., X1;6,0,52) + 242

comes from approximating and maximizing the posterior distribution of the model given the
data.

Interpretation: Smaller AIC/BIC = Better model. Information Criteria are also use in trend

fitting:
Suppose

trend we fit
7\

N

T =5+ Yy = fi( B )
N

vector of parameters in R,

Estimate 3 with 3 using ordinary least squares.
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T

RSSt = Z(If - ft(g))2

t=1

Information Ceriteria typically calculated assuming Y; is Gaussian White Noise and are of the
form

RSST + p(T, k)

N——
use AIC or BIC penalty.

Remarks:

1. In trend fitting, the assumption of Gaussian white noise residuals is often in doubt.
2. AIC/BIC are not perfect! They are lout one of many tools useful in model selection.

e Strengths:

(a) easy to compute
(b) Facilitates comparing many models quickly.

e Weakness:

(a) Likelihood must be specified.
(b) There is a degree of ”Arbitrariness” to the choice of penalty.

3. It can be shown that minimizing the AIC is related to minimizing the 1-step forecast MSE,
and so when the application is forecasting, AIC is more common.
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1.31 ARIMA Models:

We have seen that many time series appear stationary after differencing.

Definition 34

We say a time series X, is integrated to order d if V¢X, is stationary, but V/X,, 1 < j < d
is not stationary.

Motivation:
If vy, is stationary, and X; = Z;Zl y;, then X, is integrated to order 1; Z; = 2521 X, 1s integrated
to order 2, etc

Definition 35

We say X; follows an Autoregressive Integrated Moving Average Process of orders p, d, ¢
(Abbrv. X; ~ ARIM A(p, d, q)), if

¢(B)  (1-B)YX,  =0(B)W,
N
VX, follows an ARIM A(p,q)

and X is integrated to order d.

Forecasting ARIM A(p, d, q) processes:

1. y; = VX, follows and ARM A(p,q) model, and so can be forecasted using truncated
ARIMA prediction.

2. Forecasts yr 47 can be used to forecast X7, by reversing the differencing. For example,
say d = 1, then yr 11 = X741 — X7, 80 X7y = X + grqayr. This can be iterated to
produce longer Horizon forecasts.

Prediction MSE is approximately of the form

n—1
T ~ 2 2
Pri, =0y, E %,*

j=1
where zpj%* is the coefficient of 27 in the power series expansion (centered of zeros) of
—, |2|< 1

S0

Idea: X, ~ %Wt
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Example 11

X, ~ ARIMA(0, 1,0), then
t
Xt_Xt—l = (1—B)Xt:Wt — Xt:Xt—1+Wt E Xt:ZVVJ
j=1

If y = VX4, Yrinr = 0 (Forecasting IW;’s), implies that

XT+1|T = Xr +Yrqr = Xr

Similarly, R
Xrynr = Xr

Best Predictor of Random Walk is the last know location.

Prediction MSE:

0(z) 1 —
T e BL
— wj,* = 17 vj
n—1
— P7T+h =02 Z@D%* = no?,
§=0

Note: E[(Xrsnir — Xrin)?] = E[(Z] 27, Wy)’] = hor,

J=T+1
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How to decide in practice an degree of differencing d:
1. Eye-ball test (look when the differencing looks stationary)
2. Formal Stationary Tests (Dicky-Fuller, KPSS test)

3. Cross-Validation
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