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1 Introduction

1.1 Monge’s Original Formulation of Optimal Transport
Consider a measure µ, another measure ν, and x, y in the supports of µ and ν respectively, what is the optimal way of
moving x to y?

1. Pile and hole

• Pile and hole should have the same volume → normalize to 1.

• modern way of thinking about pile and hole: probability measure on some metric space X and Y re-
spectively, µ ∈ P(X), ν ∈ P(Y ). It could be point cloud: µ =

∑
i αiδxi ; or continuous densities:

µ(dx) = f(x)dx.

2. Transport pile to hole region: Transport described by a map T : X → Y . Notice that T may be discontinuous.
We need T to be measurable.

3. Transport Cost: c : X × Y → [0,∞) ∪ {∞}, where c(x, y) represents the cost of moving one unit of mass
from x to y (how it is transported does not matter). Implicit Assumption: cost only depends on initial and final.
Typical cost: c(x, y) = |x− y|; c(x, y) = |x− y|2; c(x, y) = 1

|x−y| .

4. Filling the hole completely: µ(T−1(B)) = ν(B) for every measurable B ⊆ Y .

Definition 1.1: Push-Forward Measure

Let µ ∈ X be a probability measure on X , T : X → Y be a measurable map between metric space
X,Y . Then push-forward (or image) measure of µ under T is the measure T#µ on Y defined by
µ(T−1(B)) = T#µ(B) for every B ⊆ Y measurable.

A little bit of functional analysis

• Cb(X) : the Banach space of bounded continuous function onX endowed with the norm ∥f∥∞:= supx∈X |f(x)|.

• C0(X) ⊆ Cb(X): closed subspace (w.r.t. ∥·∥∞), which is the space of continuous functions vanishing at ∞:
f ∈ C0(X) if f ∈ Cb(X) and for every ϵ > 0, there exists a compact set Kϵ ⊆ X , such that |f |< ϵ on X \Kϵ.

• M(X) : space of finite signed measures on X . λ ∈ M(X) if

(a) λ(A) ∈ R for any (Borel) measurable A ⊆ X .

(b) for every countable disjoint union A = ∪i∈NAi, Ai ∩Aj = ∅ for i ̸= j, these holds

–
∑

i∈N|λ(Ai)|<∞
–

∑
i∈N λ(Ai) = λ(A).

To every λ ∈ M(X), we can associate a unique non-negatable measure |λ|∈ M+(X) via |λ|(A) := sup{
∑

i∈N|λ(Ai)|:
A = ∪i∈NAi, Ai ∩Aj = ∅ for i ̸= j}, the total variation measure of λ. ∥λ∥:= |λ|(X) is a norm on M(X).

Theorem 1.2: Riesz Representation Theorem

Suppose X is separable, and locally compact. Then M(X) ∼= [C0(X)]∗ (the dual space of C0(X)). That is,
every continuous linear functional L : C0(X) → R is represented in a unique way by an element of M(X),
i.e., there exists a unique measure µL ∈ M(X) s.t. L(φ) =

∫
X
φdµL.

Remark. Consider a special case of T#µ = ν; assume that T is a C1-diffeomorphism between X,Y and X,Y ⊆ Rd

open, and that µ(dx) = f(x)dx, ν(dy) = g(y)dy. Then for any B ⊆ Rd measurable:

(T#µ)(B) = µ(T−1(B)) =

∫
Rd

1T−1(B)(x)f(x)dx =

∫
T−1(B)

f(x)dx.
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Write y = T (x), dy = |detDT (x)|dx, we can write

(T#µ)(B) = ν(B) =

∫
B

g(y)dy =

∫
T−1(B)

g(T (x))|detDT (x)|dx,

which implies f(x) = g(T (x))|detDT (x)| for almost every x ∈ X (technically remark: f ≥ α for some α > 0 on
X).

Reminder: T#µ = ν means:

1. (T#µ)(B) = µ(T−1(B)) = ν(B) for any measurable subset B ⊆ Y .

2.
∫
y
φd(T#µ) =

∫
X
φ ◦ Tdµ =

∫
y
φdν, ∀φ ∈ C0(y).

A quick remark on the change of variables formula:∫
y

φd(T#µ) =

∫
X

φ(T (x))µ(dx).

Definition 1.3: Monge’s Optimal Tranposrt Problem

Given µ ∈ P(X), ν ∈ P(Y ),

min I[T ] =

∫
X

c(x, T (x))µ(dx) (M)

over all transport maps T : X → Y (i.e., all measurable maps from X to Y such that T#µ = ν).

Remark. • I is a highly nonlinear functional of T subject to the nonlinear constraint T#µ = ν.

• Functional relatively simple: depends only locally on T (or its pointwise values)

– no coupling between different values of T .

– without constraint could just minimize pointwise, i.e. find minimum ymin(x) of y 7→ c(x, y) for each x
and get T (x) = ymin(x).

• constraint complicated: nonlocal, couples values of T . If we could restrict to smooth diffeomorphisms, problem
requires solving highly nonlinear PDE. Also, it is not even clear whether T such that T#µ = ν exists for given
µ, ν.

1.2 The Kantorovich Optimal Transport Problem
Comparing to Monge’s OT problem, Kantorovich OT problem allows measure splitting, so we are looking for proba-
bility measure on X × Y .

• Pile and hole: µ ∈ P(X), ν ∈ P(Y ).

• Transport: probability measure γ ∈ P(X × Y ) (transport plan).

γ(A×B) =

∫
A×B

γ(dxdy)

is the amount of mass moved from measurable A ⊆ X to measurable B ⊆ Y . All the mass of µ has to be
transported somewhere, hence, γ(A× Y ) = µ(A) for all A ⊆ X measurable.

• Transport cost: Let c(x, y) be the cost of moving one unit of mass from x to y, then the total cost is∫
X×Y

c(x, y)γ(dxdy) = c[γ].
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• Filling hole completely: γ(X ×B) = ν(B) for all B ⊆ Y measurable. That is, the amount of mass transported
to B has to be the volume of the hole in region B.

Remark. Note that, from above, γ(X × Y ) = µ(X) = ν(Y ) = 1, so γ ∈ P(X × Y ), and γ(A × Y ), γ(X × B)
defined marginals.

Definition 1.4: Marginals

Let γ ∈ P(X × Y ).

• Marginal w.r.t. X: MXγ ∈ P(X) defined via

(MXγ)(A) = γ(A× Y ) =

∫
A×Y

γ(dxdy), ∀ measurable A ⊆ X,

• Marginal w.r.t. Y : MY γ ∈ P(Y ) defined via

(MY γ)(B) = γ(X ×B) =

∫
X×B

γ(dxdy), ∀ measurable B ⊆ Y.

Remark. Transport plans are probability measures on X × Y with marginals MXγ = µ, MY γ = ν, γ is a coupling
of the probability measure µ and ν.

Let Π(µ, ν) be the set of all couplings between µ and ν.

Lemma 1.5

Let φ ∈ L1(X,µ) and ψ ∈ L1(Y, ν). Then for any coupling γ ∈ Π(µ, ν). These hold

(M1)
∫
X×Y

φ(x)γ(dxdy) =
∫
X
φ(x)(MXγ)(dx) =

∫
X
φ(x)µ(dx).

(M2)
∫
X×Y

ψ(y)γ(dxdy) =
∫
Y
ψ(y)(MY γ)(dy) =

∫
Y
ψ(y)ν(dy).

Proof sketch. Any function φ ∈ L1(X,µ) can be approximated by simple functions: φ = limn→∞
∑n

j=1 αj1Aj , for
Aj ⊆ X measurable.∫

X×Y

φ(x)γ(dxdy) = lim
n→∞

n∑
j=1

αj

∫
Aj×Y

γ(dxdy) = lim
n→∞

n∑
j=1

αjµ(Aj)

= lim
n→∞

∫
X

n∑
j=1

αj1Aj (x)µ(dx) =

∫
X

φ(x)µ(dx).

Definition 1.6: Couplings

Let µ ∈ P(X), ν ∈ P(Y ). A probability measure γ ∈ P(X × Y ) is called coupling of µ and ν if MXγ = µ,
MY γ = ν. The set of all couplings between µ and ν is called Π(µ, ν).

Definition 1.7: Kantorovich Optimal Transport Problem

Given µ ∈ P(X), ν ∈ P(Y ),

min C[γ] =

∫
X×Y

c(x, y)γ(dxdy) (K)

over all couplings γ ∈ Π(µ, ν).
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Structure of (K):

(1) γ 7→ C[γ] linear function.

(2) MXγ = µ, MY γ = ν linear constraints.

(3) Π(µ, ν) is a convex set: if γ1, γ2 ∈ Π(µ, ν), λ ∈ (0, 1), then

(a) λγ1+(1−λ)γ2 ∈ P(X×Y ), since λγ1(X×Y )+(1−λ)γ2(X×Y ) = 1, and λγ1(Z)+(1−λ)γ2(Z) ≥ 0
for any Z ⊆ X × Y measurable.

(b) (λγ1 + (1 − λ)γ2)(A × Y ) = λγ1(A × Y ) + (1 − λ)γ2(A × Y ) = λµ(A) + (1 − λ)µ(A) = µ(A);
analogously, (λγ1 + (1− λ)γ2)(X ×B) = ν(B), for any A ⊆ X,B ⊆ Y measurable.

=⇒ (K) is a linear programming problem. But: it is in inifinte dimensions.

(4) Existence of couplings is trivial: independent coupling (product measure) γ = µ ⊗ ν defined via γ(A × B) =
µ(A)ν(B) for every measurable A ⊆ X,B ⊆ Y , is a coupling of µ and ν.

(5) (K) is higher-dimensional than (M) in the following sense: consider transport plan given by a density γ̃ :
R2d → R. Discretize Rd by ℓ gridpoints then γ̃ corresponds to ℓ2 real numbers. Transport T : Rd → Rd

however only corresponds to ℓd real numbers. e.g. ℓ = number of pixels in a 2D picture, say ℓ = 500 × 500,
then ℓd = 500000, but ℓ2 = 62.59.

1.3 Monge VS Kantorovich
Kantorovish problem is a relaxation of Monge Problem in the following sense: Monge = restriction of Kantorovish to
sparse plan.

γT (dxdy) = δT (x)(dy)µ(dx)

for T : X → Y measurable such that T#µ = ν. For any φ ∈ C0(X × Y ),∫
X×Y

φdγT =

∫
X×Y

φ(x, y)γT (dx× dy) =

∫
X×Y

φ(x, y)δT (x)(dy)µ(dx) =

∫
X

φ(x, T (x))µ(dx)

=

∫
X

φ((id, T )(x))µ(dx) =

∫
X

φ ◦ (id, t)dµ =

∫
X×Y

φ(x, y)[(id, T )#µ](dx× dy).

In other words, Monge measures that

supp γ = {(x, y) ∈ X × Y : γ(Bϵ(x, y)) > 0 for every ϵ > 0}
= ∩{Z ⊆ X × Y closed : γ(Z) = 1}
⊆ graphT = {(x, T (x)) ∈ X × Y : x ∈ X}

Lemma 1.8

Let T : X → Y be measurable such that T#µ = ν. Then

(i) C[γT ] = I[T ].

(ii) γT ∈ Π(µ, ν)

(iii) (K) ≤ (M).

Proof. (i) C[γT ] =
∫
X×Y

c(x, y)γT (dx × dy) =
∫
X×Y

c(x, y)((id, T )#µ)(dxdy) =
∫
X
c(x, T (x))µ(dx) =

I[T ].
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(ii) Let A ⊆ X , B ⊆ Y measurable. Then

(MXγT )(A) = γT (A× Y ) =

∫
A×Y

dγT =

∫
X

1A×Y (x, y) γT (dx× dy)︸ ︷︷ ︸
((id,T )#µ)(dxdy)

=

∫
X

1A×Y (x, T (x)︸ ︷︷ ︸
1A(x)

µ(dx)

=

∫
A

dµ = µ(A)

(MY γT )(B) =

∫
X

1X×B(x, T (x)︸ ︷︷ ︸
1B(x)

µ(dx) =

∫
Y

1B(y)(T#µ)(dy)

=

∫
A

dν = µ(A)

(iii) By (i) and (ii),

(M) = inf
T :X→Y measurable,T#µ=ν

I[T ] = inf
T :X→Y measurable,T#µ=ν

C[γT ] ≥ inf
γ∈Π(µ,ν)

C[γ] = (K),

by γT ∈ Π(µ, ν).

1.4 Basic questions and examples
1. Existence Do optimal plans/maps exist? For optimal plans, yes, under reasonable assumptions on c, inf in (K)

is min. For optimal maps:

Example 1.1. Let X = Y = Rd, µ = δa, a ∈ Rd, ν = 1
2 (δb + δC) for b ̸= c ∈ Rd. Let T : Rd → RD be

measurable for all A ⊆ Rd open.

(T#δa)(A) = δa(T 1(A)) =

{
1 if a ∈ T−1(A)

0 otherwise

}
= δT (a)(A).

i.e. T#δa = δT (a), so I cannot map the mass to two different points so T#µ = ν is only possible if b = c.

The class of all transport plans Π(µ, ν) consist of a single measure

Π(µ, ν) =

{
µ⊗ ν =

1

2
(δa ⊗ δb + δa ⊗ δc)

}
.

Indeed, note that

γ( R2d \ {(a, b), (a, c)}︸ ︷︷ ︸
=(Rd\{a}×Rd)∪(Rd×Rd\{b,c})

)

≤γ
((
Rd \ {a} × Rd

))
+ γ

((
Rd × Rd \ {b, c}

))
= µ(Rd \ {a}) + ν(Rd \ {b, c})

=δa(Rd \ {a}) + 1

2
(δb + δc)(Rd \ {b, c}) = 0.

For any γ ∈ Π(µ, ν),

=⇒ Any γ ∈ Π(µ, ν) is supported on the points (a, b) and (a, c).

=⇒ γ = λδ(a,b) + (1− λ)δ(a,c) = λδa ⊗ δb + (1− λ)δa ⊗ δc, for some λ ∈ [0, 1].

Since MY γ = λδb + (1− λ)δc, ν =MY γ implies that λ = 1
2 .

2. Monge VS Kantorovich: discussed above.
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3. Uniqueness Are minimizers unique? If not, can we characterize the set of minimizers?

Example 1.2. Consider X = Y = R2, a = (−1, 0), b = (1, 0), a′ = (0,−1), b′ = (0, 1); µ = 1
2 (δa + δb), ν =

1
2 (δa′ + δb′).

a) Consider Monge problem with quadratic distance cost

inf
T∈J (µ,ν)

∫
R2

|T (x)− x|2µ(dx),

where J (µ, ν) is the set of push-forward maps, has two minimizers, defined on the support of µ:

T (1)(a) = a′, T (1)(b) = b′; T (1)(a) = b′, T (1)(b) = a′.

Indeed, J (µ, ν) = {T (1), T (2)}, and∫
R2

|T (1)(x)− x|2µ(dx) = 1

2

(
|T (1)(a)− a|2+|T (1)(b)− b|2

)
=

1

2

(
|a′ − a|2+|b′ − b|2

)
=

1

2
(2 + 2) = 2.∫

R2

|T (2)(x)− x|2µ(dx) = 1

2

(
|T (2)(a)− a|2+|T (2)(b)− b|2

)
=

1

2

(
|b′ − a|2+|a′ − b|2

)
=

1

2
(2 + 2) = 2.

b) Non-uniqueness in Kantorovich is even bigger:

Π(µ, ν) =
{

convex combinations of γT (1) and γT (2)

}
=

{
1

2
[(1− λ)δa ⊗ δa′ + λδa ⊗ δb′ + λδb ⊗ δa′ + (1− λ)δb ⊗ δb′ ] : λ ∈ [0, 1]

}
4. Exact solutions

Example 1.3. Optimality of translation Let X = Y = Rd, µ be a compactly supported probability measure on
Rd, and ν = (τa)#µ, τa : Rd → Rd translation by a ∈ Rd, where τa(x) = x+ a. e.g., µ(dx) = f(x)dx, then
ν(dy) = g(y)dy with g(y) = f(y − a) for all y ∈ Rd.

min I[T ] =

∫
Rd

|T (x)− x|pµ(dx), 1 < p <∞

over J (µ, ν).

• Best to move each piece of mass by some distance?

• or better to move right side of pile to left side of hole (shorter distance) and make up for it by moving left
side of pile to right side of hole (longer distance)?

The answer lies in convexity of the cost in displacement T (x)− x.

Definition 1.9

Φ : Rd → R ∪ {∞} convex if

Φ((1− t)z + tz′) ≤ (1− t)Φ(z) + tΦ(z′)

for all z ̸= z′ ∈ Rd, t ∈ (0, 1). It is strictly convex if the inequality is always strict.
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Theorem 1.10: Jensen’s Inequality

Φ : Rd → R convex and continuout. If µ is a probability measure on Rd and v : Rd → Rd integrable
w.r.t. µ, then

Φ

(∫
Rd

udµ

)
≤

∫
Rd

Φ(u)dµ.

If Φ is strictly convex, inequality is strict, unless u(x) = ū ∈ Rd for µ-almost-everywhere x.

Let us prove (using convexity) that uniform transition, T = τa is the best:

Step 1 Introduce centers of mass of µ and ν,

Rµ =

∫
Rd

xµ(dx), Rν =

∫
Rd

yν(dy),

then Rν =
∫
Rd y((τa)#µ)dy =

∫
Rd τa(x)µ(dx) =

∫
Rd xµ(dx) +

∫
Rd aµ(dx) = Rµ + a.

Step 2 Average displacement of any T ∈ J (µ, ν)∫
Rd

(T (x)− x)µ(dx) =

∫
Rd

T (x)µdx︸ ︷︷ ︸∫
Rd yd(T#µ)(y)=Rν

−
∫
Rd

xµ(dx)︸ ︷︷ ︸
Rµ

= Rν −Rµ = a

Step 3 Strict convexity of Φp : Rd → R, z → |z|p for 1 < p <∞. By Jensen’s inequality:

I[T ] =

∫
Rd

|T (x)− x|pµ(dx) =
∫
Rd

Φp(T (x)− x)µ(dx)

≥Φ

(∫
Rd

(T (x)− x)µ(dx)

)
︸ ︷︷ ︸

a

= Φp(a) = |a|p

for every T ∈ J (µ, ν).

• T = τa achieves equality by τa(x)− x = x+ a− x = a, so I[τa] =
∫
Rd |a|pµ(dx) = |a|p.

• Φp is strictly convex for p > 1: so equality holds if and only if T (x) − x is a constant µ-a.e., which
implies that T = τa is a unique minimizer.

Example 1.4 (Book Shifting (Gangbo-McCann 1996)). Consider µ(dx) = 4
31[0, 34 ]

(x)dx and ν(dx) = 4
31[ 14 ,1]

(y)dy.
Consider the problem

inf

∫
[0,1]

|T (x)− x|µ(dx)

where define Φ1(x) := |x|. Since Φ1 is convex, a solution is given by T1(x) = x + 1
4 for x ∈ [0, 3/4], which is

minimal. Its transportation cost is 3
4 ∗ 4

3 ∗ 1
4 = 1

4 . Consider another shift:

T2(x) =

{
x+ 3

4 , if x ∈ [0, 14 ]

x, otherwise.

The transport cost is 4
3

∫
[0, 14 ]

3
4dx+ 4

3

∫
[ 14 ,

3
4 ]
0 = 1

4 , so T2 is also minimal. Notce Φ1 is convex but not strictly.

Example 1.5 (A dam and two ditches). We now consider a problem where Monge’s problem has an optimal value but
the inf is not attained.
Let X = Y = R2, and let µ(dx) = dx2|x1=0,x2∈[0,1], ν(dy) = 1

2dy2|y1=−1,y2∈[0,1]+
1
2dy2|y1=1,y2∈[0,1]. The goal is

min I[T ] =

∫
R2

|T (x)− x|2µ(dx) among all T ∈ J (µ, ν).
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• |T (x) − x|≥ d(suppµ, supp ν) = 1 for all x ∈ suppµ and for all T ∈ J (µ, ν)., which implies that I[T ] ≥∫
R2 1µ(dx) = 1.

• Now we show infT∈J (µ,ν) I[T ] = 1. Split up the dam into even number of segments of length ϵ > 0 and
consider the transport map T2 depicted on the left. The maximal displacement of any point in the support is ϵ.
Hence

|Tϵ(x)− x|≤
√
1 + ϵ2 =⇒ I(Tϵ) =

∫
R2

|Tϵ(x)− x|2µ(dx) ≤ 1 + ϵ2.

Since ϵ can be chosen arbitrarily, inf I = 1.

Claim. No T ∈ J (µ, ν) achieves I[T ] = 1.

Proof. Assume there exists T ∈ J (µ, ν) such that I(T ) = 1. This means T (x) ∈ supp ν for µ-a.e. x;
|T (x) − x|= 1 for µ-a.e. x. Hence, T (0, x2) = (±1, x2) for every Lesbegue-a.e. x2 ∈ [0, 1]. Set Ω+ :=
{x2 ∈ [0, 1] : [T (0, x2)]1 = 1} and Ω− := {x2 ∈ [0, 1] : [T (0, x2)]1 = −1} . Then

T#µ = dx2|x1=−1,x2∈Ω−+dx2|x1=1,x2∈Ω+ ̸=ν

so T /∈ J (µ, ν). Hence infT∈⪯,⪰ I[T ] is not attained.

Everything holds if change |T (x)− x|2 to |T (x)− x|p, p > 0.
Problem: minimizing sequence Tϵ exhibits faster and faster oscillations as ϵ ↓ 0. Hence, Tϵ converges weakly,
but not strongly in any Lp(R2;µ),

Tϵ(0, xk)
ϵ↓0−→
Lp
T0(0, x2) =

(
0
x2

)
, ∀p > 1, but T0 /∈ J (µ, ν).

• Corresponding Kantororvich ProblemL

inf
γ∈Π(µ,ν)

∫
R2×R2

|y − x|2γ(dxdy)

has simple explicit solution. Let γ(dxdy) = δ0(x1)1[0,1](x2)dx2 · δ1(y1)+δ−1(y1)
2 δx2(y2), which splits half of

the mass to the left ditch and another half to the right one. It is not hard to see that the objective value of this γ
is 1.
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