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Abstract

We study sequential interval scheduling when task start and end times are random. The set of tasks and their
weights are known in advance, while each task’s start and end times are drawn from known discrete distributions
and revealed only upon commitment; this also eliminates tasks that conflict with the committed task, and remaining
tasks are those that do not conflict. The objective is to maximize the expected weight of a conflict-free schedule. We
propose two models that differ in how conflicts are enforced, develop LP relaxations and bounds for each, and present
a computational study.

1 Introduction
The interval scheduling problem is classical in operations research, industrial engineering and computer science.

It considers a set of tasks N := [n] = {1, . . . ,n} and consecutive time slots M := [m]. Each task is represented by an
interval [si,ei] describing the time slots it occupies if scheduled. The maximum interval scheduling problem seeks a set
of pairwise nonoverlapping intervals (a schedule) of maximum total weight. When all tasks have the same weight, the
greedy rule that repeatedly selects the earliest-ending task and discards conflicts is optimal; the weighted version is also
solvable in Θ(n) time [5].

An interval graph is an undirected graph representing intervals on a line, where each vertex corresponds to an
interval and an edge connects two vertices if their intervals overlap. Thus a feasible schedule corresponds exactly to an
independent set of the associated interval graph. Since interval graphs are perfect, the maximum interval scheduling
problem can be represented by the clique LP pair of the interval graph G = (N,E),

max
x≥0

w⊤x

s.t. ∑
i∈C

xi ≤ 1,∀C ∈ C (G)
(LP-P)

min
µ≥0

∑
C∈C (G)

µC

s.t. ∑
C∋i

µC ≥ wi, ∀i ∈ N,
(LP-D)

where C (G) is the set of all maximal cliques of G. (LP-P) formulates the maximum independent set problem and
(LP-D) formulates the corresponding minimum clique cover problem. For arbitrary perfect graphs, (LP-P) and (LP-D)
are tight formulations, but not guaranteed to be solvable in polynomial time because there are possibly exponentially
many maximal cliques. In contrast, in interval graphs the number of maximal cliques is at most min{m,n}. Thus the
deterministic maximum interval scheduling problem can be solved efficiently either directly or via these LP relaxations.
Our goal is to extend this setting to incorporate uncertainty and sequential decisions while retaining tractable relaxations
and algorithms.

Several stochastic interval scheduling models have been studied. A classical one is online interval scheduling [7],
where intervals of fixed length are presented to the scheduler in the order of their start times and must be accepted or
rejected irrevocably. The objective is to maximize total weight while maintaining feasibility. Recent work includes
online interval scheduling with predictions of upcoming intervals [2] and models that allow overlaps but maximize a
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satisfaction objective [6]. Other variants include interval scheduling with random delays [3] and settings where tasks
may depart unexpectedly and service times are stochastic [9].

We study the setting where the set of tasks and their weights are known in advance but task start and end times are
random. The scheduler commits to tasks sequentially, learns realized intervals as tasks are committed, and seeks to
maximize the expected total weight.

2 Dynamic Scheduling with Random Start and End Times
We again let M = [m] be the set of slots, N = [n] the set of tasks, and w ∈ RN

+ the task weights. For each task i ∈ N,
let Ds

i ,D
e
i be the independent discrete distributions of i’s start and end times, and denote Si,Ei ⊆ M as their supports.

We assume maxSi ≤ minEi and define D := {D∗
i : ∗ ∈ {s,e}, i ∈ N}. When task i is scheduled, its start and end times

si,ei are realized according to Ds
i and De

i . For each remaining task j, we compute the probability pi j that it conflicts
with i based on si, ei, Ds

j and De
j, and draw Bi j ∼ Bernoulli(pi j). If Bi j = 1, task j is deleted; otherwise, it remains

available and its distributions are updated to condition on the slots occupied by i, [si,ei]. The goal is to schedule tasks
sequentially and maximize the expected total weight of scheduled tasks. We call this problem dynamic scheduling with
random start and end times (DSRSE).

DSRSE can be formulated as a dynamic program with the Bellman recursion

V ∗(N,M,w,D) := max
i
{wi +E[V ∗(N′,M′,w,D′)]},

where V ∗ is the optimal value function and N′,M′,w,D′ are the random variables representing the resulting state after
scheduling task i. Like many dynamic programming problems, this problem has exponentially many states and each
state has O(n) actions, so it is unreasonable to solve it directly; moreover, the problem is NP-hard.

Proposition 2.1. DSRSE is NP-hard.

Proof. Suppose there are n+1 tasks and 2n slots. Let 0 be a task taking positions 1, . . . ,n with probability 1, and task i
taking position i with probability pi and n+ i with probability (1− pi). Then this problem is equivalent to the dynamic
maximum stable set problem over a star graph, where 0 is the center; this problem is NP-hard [8].

Example 2.2. Consider an instance with N = [2],M = [3], and unit weights, where Ds
1 = 1{1},De

1 = 1{2}, Ds
2 =

U({2,3}),De
2 = 1{3}. If the scheduler commits to task 1 first, then task 1 occupies [1,2]. If task 1 is scheduled, task 2

has a probability of 1/2 of conflicting and 1/2 of remaining. If it remains, task 2’s distributions are updated to condition
on the fact that it does not conflict with task 1: Ds

2 = 1{3},De
2 = 1{3}. On the other hand, if task 2 is scheduled first and

its start time realizes to 2, task 1 is deleted; if it realizes to 3, task 1 remains.

When si,ei are deterministic for every task, DSRSE reduces to the maximum independent set problem of the
corresponding interval graph. As discussed above, it can be represented by (LP-P) and (LP-D), so the deterministic
problem can be solved efficiently via these LP relaxations. For an interval graph, maximal cliques are elements of M,
so the constraint ∑i∈C xi ≤ 1,∀C ∈ C (G) in (LP-P) simply enforces that each slot is occupied by at most one task. We
consider analogous constraints for DSRSE.

2.1 Relaxations
For DSRSE, consider Ps,Pe,Po ∈ Rn×m, where Ps

ik,P
e
ik,P

o
ik are the probabilities that task i starts at, ends at, and

occupies slot k, respectively. Let T = [min{m,n}] be the stages of the dynamic program. For any policy, let xts
ik,x

te
ik ,x

to
ik

be the probabilities that i is scheduled and starts at, ends at, or occupies slot k at stage t, respectively. Let xt
i = ∑

m
k=1 xts

ik =

∑
m
k=1 xte

ik be the probability of scheduling i at stage t. The objective can then be written as max∑t ∑i wi xt
i . Analogous to

the deterministic case, we impose that the probability a slot is occupied is at most 1. We relax DSRSE to

max ∑
t

∑
i

wi xt
i

xt
i =

m

∑
k=1

xts
ik =

m

∑
k=1

xte
ik ,∀i,∀t ∈ T

xts
ik = 0,∀t ∈ T,∀k /∈ Si

xte
ik = 0,∀t ∈ T,∀k /∈ Ei
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∑
t

∑
i

xto
ik ≤ 1,∀k ∈ M

∑
t

xts
ik ≤ Ps

ik, ∑
t

xte
ik ≤ Pe

ik ∀i ∈ N,∀k ∈ M

0 ≤ xt
i ,x

ts
ik,x

te
ik ,x

to
ik ,

where xs
ik := ∑t xts

ik ≤ Ps
ik indicates that the probability of i being scheduled and starting at k is at most the marginal

probability Ps
ik, and similarly for xe

ik := ∑t xte
ik ≤ Pe

ik. For each k ∈ M, we can rewrite ∑t ∑i xto
ik ≤ 1 as

∑
t

∑
i

xto
ik

=∑
t

(
∑

i,ai≤k≤bi

xto
ik + ∑

i,ci≤k≤di

xto
ik + ∑

i,bi<k<ci

xto
ik

)

=∑
t

(
∑

i,ai≤k≤bi−1

k

∑
ℓ=ai

xts
iℓ+ ∑

i,ci+1≤k≤di

di

∑
ℓ=k

xte
iℓ + ∑

i,bi≤k≤ci

xt
i

)

=∑
t

∑
i,bi≤k≤ci

xt
i +∑

t

(
∑

i,ai≤k≤bi−1

k

∑
ℓ=ai

xts
iℓ+ ∑

i,ci+1≤k≤di

di

∑
ℓ=k

xte
iℓ

)
≤1, (1)

where ai := min{k : k ∈ Si},bi := max{k : k ∈ Si},ci := min{k : k ∈ Ei},di := max{k : k ∈ Ei}. The first equality
comes from the fact that the probability i occupies a slot k not in Si ∪Ei ∪ (bi,ci) is 0. For the second equality, by
definition, any k ∈ [bi,ci] is always occupied by i if it is scheduled, so xto

ik = xt
i ; for k ∈ [ai,bi), the probability of i being

scheduled and occupying k at t is equivalent to the probability of i being scheduled and starting at or before k at t,
and similarly for the ending slots. The third equality is derived by rearranging terms. Since ∑i,ai≤k≤bi−1 ∑

k
ℓ=ai

xts
iℓ =

∑i,ai≤k≤bi−1(xt
i −∑

bi
ℓ=k+1 xts

iℓ), and similarly for xte
iℓ , we have for every k ∈ M,

∑
t

(
∑

i,ai≤k≤di

xt
i − ∑

i,ai≤k≤bi

bi

∑
ℓ=k+1

xts
iℓ− ∑

i,ci≤k≤di

k−1

∑
ℓ=ci

xte
iℓ

)
≤ 1. (2)

Then we have the following primal-dual pair:

max
x≥0

∑
t

∑
i

wi xt
i

xt
i =

m

∑
k=1

xts
ik =

m

∑
k=1

xte
ik ,∀i ∈ N,∀t ∈ T

xts
ik = 0,∀t ∈ T,∀k /∈ [ai,bi]

xte
ik = 0,∀t ∈ T,∀k /∈ [ci,di]

∑
t

(
∑

i,ai≤k≤di

xt
i − ∑

i,ai≤k≤bi

bi

∑
ℓ=k+1

xts
iℓ− ∑

i,ci≤k≤di

k−1

∑
ℓ=ci

xte
iℓ

)
≤ 1, ∀k ∈ M

∑
t

xts
ik ≤ Ps

ik, ∑
t

xte
ik ≤ Pe

ik,∀i ∈ N,∀k ∈ M

(DLP-P)

min
µ,ν ,u≥0,y,z

m

∑
r=1

µr +
n

∑
i=1

∑
k∈Si

Ps
ik ν

s
ik +

n

∑
i=1

∑
k∈Ei

Pe
ik ν

e
ik +

n

∑
i=1

T

∑
t=1

uit

s.t. yit + zit +uit +
di

∑
r=ai

µr ≥ wi,∀ i ∈ N, ∀ t ∈ T,

− yit −
k−1

∑
r=ai

µr +ν
s
ik ≥ 0,∀ i ∈ N, ∀ t ∈ T, ∀k ∈ Si,

− zit −
di

∑
r=k+1

µr +ν
e
ik ≥ 0,∀ i ∈ N, ∀ t ∈ T, ∀k ∈ Ei.

(DLP-D)
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By setting y,z,u to 0, (DLP-D) is equivalent to,

min
µ,u≥0

m

∑
r=1

µr +
n

∑
i=1

∑
k∈Si

Ps
ik

k−1

∑
r=ai

µr +
n

∑
i=1

∑
k∈Ei

Pe
ik

di

∑
r=k+1

µr (LP-Dpes)

s.t.
di

∑
r=ai

µr ≥ wi, ∀ i ∈ N.

Consider the pessimistic interval graph Gpes, where each task i occupies [ai,di], the widest possible interval, and the
corresponding LP (LP-D) defined on Gpes; let µpes be its optimal solution, and αpes := α(Gpes) = ∑r[µpes]r its optimal
value. Since µ = µpes,y = z = u = 0 is feasible for (DLP-D), the optimal value of (DLP-D), α∗, is at most

αpes +
n

∑
i=1

∑
k∈Si

Ps
ik

k−1

∑
r=ai

[µpes]r +
n

∑
i=1

∑
k∈Ei

Pe
ik

di

∑
r=k+1

[µpes]r,

where
n

∑
i=1

∑
k∈Si

Ps
ik

k−1

∑
r=ai

[µpes]r =∑
r
[µpes]r ∑

i
∑

k,r∈Si,k>r
Ps

ik

=∑
r
[µpes]r ∑

i s.t. r∈Si

(1−Po
ir),

and
n

∑
i=1

∑
k∈Ei

Pe
ik

di

∑
r=k+1

[µpes]r = ∑
r
[µpes]r ∑

i s.t. r∈Ei

(1−Po
ir).

Thus,

∑
r
[µpes]r ≤α

∗ ≤ ∑
r
[µpes]r

(
1+ ∑

i s.t. r∈Si

(1−Po
ir)+ ∑

i s.t. r∈Ei

(1−Po
ir)

)
.

The bound is tight when the problem is deterministic because for every r ∈ M, ∑i s.t. r∈Si(1−Po
ir) = ∑i s.t. r∈Ei(1−Po

ir) =
0.

We conclude this section by considering the special case where tasks only occupy one slot, si = ei.

Proposition 2.3. If each task always occupies only a single slot, a greedy policy is optimal.

Proof. We use an adversarial argument. Consider an adversary that places tasks N into [m] positions in advance
according to their distributions Ds

i ,D
e
i for each i ∈ N. Since the length of each task is 1, if the positions of the tasks are

known, it is optimal to pick the largest weighted task of each position. Without loss of generality, assume the weights
of the largest weighted task of each position to be w1 ≥ w2 ≥ . . .wm ≥ 0. Without knowing the positions, the greedy
policy would pick w1,w2, . . . ,wm which is equivalent to the case where positions are known. Thus, for any realization,
the greedy policy returns the set of non-conflicting tasks with the maximum weights.

3 Conservative DSRSE
In this section, we consider another version of DSRSE, where a task is deleted whenever it possibly conflicts with

the committed tasks.
We have M,N,w,D, like in DSRSE. Once si,ei of a committed task are determined, for any remaining task j, instead

of flipping a coin, we delete j if any slot in its support is occupied by committed tasks; otherwise, keep j. The goal
remains to schedule tasks sequentially and maximize the expected total weight of scheduled tasks. We call this problem
conservative dynamic scheduling with random start and end times (CDSRSE).

Example 3.1. Consider an instance with N = [2],M = [3], and unit weights, where Ds
1 = 1{1},De

1 = 1{2}, Ds
2 =

U({2,3}),De
2 = 1{3}. If we commit to task 1 first, then task 1 occupies [1,2]. For CDSRSE, task 2 is always deleted,

since position 2 is in its support, which is now occupied by task 1.

Theorem 3.2. CDSRSE is also NP-hard.

4



Proof. As in the previous proof, consider the instance with n+1 tasks and 2n slots. Task 0 occupies slots 1, . . . ,n with
probability 1, and task i occupies slot i with probability pi and n+ i with probability qi := 1− pi. As in [8], any solution
for this problem is determined by when to select task 0, and what is selected before trying to select task 0. Then the
problem can be formulated as

max
S⊆N

{
∑
i∈S

wi +(1−∏
i∈S

qi)∑
j/∈S

w j +∏
i∈S

qiwo

}
. (Conserv-JS)

By rearranging, we get

max
S⊆N

{
∑
i∈N

wi +∏
i∈S

qi(w0 − ∑
j/∈S

w j)

}
,

and by dropping constant terms and applying the natural logarithm, we get

max
S⊆N

{
∑
i∈S

lnqi + ln(w0 − ∑
j/∈S

w j)

}
.

Given a set of numbers N with positive weights ai , i ∈ N , the partitioning problem asks for a subset S ⊆ N such that
∑i∈S ai = ∑ j/∈S a j; without loss of generality, we assume that ∑i∈N ai = 2. By setting parameters of the problem above
as qi = e−ai , pi = 1− e−ai , wi = ai,and w0 = ∑i∈N ai,

max
S⊆N

{
−∑

i∈S
ai + ln(∑

i∈S
ai).

}
Proceeding similarly to [1], there is a set S ⊆ N with ∑i∈S ai = 1 if and only if the optimum of this problem is −1.

Unlike DSRSE, in CDSRSE the distributions Ds
i ,D

e
i are not updated for remaining tasks. Thus, Ds

i ,D
e
i are

independent of the stage t when i is scheduled; xts
ik can always be expressed as xts

ik = Ps
ikxt

i , and similarly for xte
ik ,x

to
ik .

Therefore, we can express the constraint Pr[k occupied by any i]≤ 1 as ∑
n
i=1 Po

ikxi ≤ 1. Consider the LP relaxation and
its dual,

max
n

∑
i=1

wixi

n

∑
i=1

Po
ikxi ≤ 1

x ≥ 0,

(CDLP-P)

min
m

∑
r=1

µr

m

∑
r=1

Po
irµr ≥ wi, ∀i ∈ N

µ ≥ 0.

(CDLP-D)

Let p∗ := min{Po
ir : Po

ir > 0, i ∈ N,r ∈ M}. As above, consider the pessimistic interval graph Gpes and the corresponding
optimal solution µpes of (LP-D) defined on Gpes. Let µ̂ := µpes/p∗; then for each i ∈ N,

∑
r

Po
ir µ̂r ≥ ∑

r∈[ai,di]

[µpes]r ≥ wi.

Thus µ̂ is feasible to (CDLP-D) and ∑r µ̂r =
1
p∗ αpes. We have αpes ≤ OPT ≤ 1

p∗ αpes. However, this bound is weak
when p∗ is small.

Remark 3.3. We emphasize that ∑
n
i=1 Po

ikxi ≤ 1 is not a valid inequality for the original DSRSE because the distribution
of start and end times of i depends on the stage at which it is committed. Consider Example 2.2 and a policy that always
schedules task 1 first and then task 2 if possible. Under this policy, the probability that slot 2 is occupied is 1 · x1 = 1,
but Po

12x1 +Po
22x2 = 1 · x1 +

1
2 x2 = 1+ 1

4 > 1. For Example 3.1, after task 1 is scheduled, the probability of scheduling
task 2 is 0, so Po

12x1 +Po
22x2 = 1.

4 Uniform Weights
In this section, we consider the case where task weights are uniform, wi = 1 for i ∈ N. Let αpes be the optimal value

of the pessimistic interval graph; for Gpes, because of the cardinality objective there is a minimum clique cover, a set
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J ⊆ M with |J |= αpes such that each task intersects with exactly one element in J ; this clique clique cover can
be derived from (LP-D). Specifically, for each task i there exists exactly one k ∈ J such that k ∈ [ai,di]. Let x be an
optimal solution of (DLP-P), and α be its optimal value; by (2), we have for each k ∈ J ,

α = ∑
t

∑
i

xt
i ≤1+∑

t
∑

i,Po
ik=0

xt
i +∑

t

(
∑

i,ai≤k≤bi

bi

∑
ℓ=k+1

xts
iℓ+ ∑

i,ci≤k≤di

k−1

∑
ℓ=ci

xte
iℓ

)

=1+ ∑
i,ai≤k≤bi

bi

∑
ℓ=k+1

xs
iℓ+ ∑

i,ci≤k≤di

k−1

∑
ℓ=ci

xe
iℓ+ ∑

i,Po
ik=0

xi.

Let ki be the unique element in J covering i ∈ [n]. Summing both sides over J , we get

α ∗αpes ≤αpes + ∑
k∈J

(
∑

i,ai≤k≤bi

bi

∑
ℓ=k+1

xs
iℓ+ ∑

i,ci≤k≤di

k−1

∑
ℓ=ci

xe
iℓ

)
+(αpes −1)∑

i
xi

⇐⇒ α ≤ αpes + ∑
k∈J

(
∑

i,ai≤k≤bi

bi

∑
ℓ=k+1

xs
iℓ+ ∑

i,ci≤k≤di

k−1

∑
ℓ=ci

xe
iℓ

)

= αpes +∑
i

bi

∑
ℓ=ki+1

xs
iℓ+

ki−1

∑
ℓ=ci

xe
iℓ

≤ αpes +∑
i
(1−Po

iki
),

where the first inequality and the equality are from the fact that i is not covered by J \ {ki}, whose cardinality is
αpes −1. The equivalence between inequalities is derived from the uniform weights, i.e. ∑i xi = α . The last line is from
the constraint ∑t xts

iℓ ≤ Ps
iℓ, and the analogous constraint for xe

iℓ.
For CDSRSE, we have xs

iℓ = xiPs
iℓ and xe

iℓ = xiPe
iℓ. Thus we have,

α ≤ αpes +∑
i

b[i]

∑
ℓ=ki+1

xs
iℓ+

ki−1

∑
ℓ=c[i]

xe
iℓ =αpes +∑

i
(1−Po

iki
)xi ≤ αpes +α ∗ (1−Po

i∗k[i∗]),

where Po
i∗k[i∗] = mini{Po

iki
}> 0, so α ≤ 1

Po
i∗k[i∗ ]

αpes.

5 Computational Experiments
In this section, we test the bounds derived above. We use the following (n,m) combinations: (8,12), (10,15),

(14,21), (16,24), (18,27), (19,29), (20,30), (40,60), (80,120). For each (n,m), we generate 30 instances and report
average results.

For each task i, we first sample x,y uniformly and independently from [m], and let ai = min{x,y},di = max{x,y}.
Similarly, sample u,v uniformly and independently from [ai,di], and set bi = min{u,v},ci = max{u,v}. The starting
and ending times follow uniform distributions on [ai,bi], [ci,di], respectively. Finally, we sample task weights uniformly
from [0,1]

We conducted all of our computational experiments on a laptop computer with an Apple M1 Pro CPU and 16 GB of
RAM, solving LPs using HiGHS [4] and performing other computations using Julia.

Since computing the optimal values of DSRSE and CSDRSE is impractical, we estimate the expected maximum-
weight schedule E[α(G)] by repeatedly sampling the start and end times of each task and solving the (deterministic)
maximum independent set 1,000 times; this expected value is an upper bound for the optimal values of DSRSE and
CDSRSE. We compare it with the optimal values of (DLP-P), (CDLP-P), and with αpes. Due to the poor performance
of the bounds ∑r[µpes]r

(
1+∑i s.t. r∈Si(1−Po

ir)+∑i s.t. r∈Ei(1−Po
ir)
)

and αpes/p∗, we do not include them in the plots.
On the primal side, we consider the heuristic that picks the remaining task with the largest ratio wi/E[length of i] =

wi/∑r Po
ir, which can be interpreted as the weight gained per expected occupied position; we call this heuristic (C)DSRSE

ratio. Also, we consider the heuristic that, in stage t, maximizes wi −∑available j ̸=i Pr[ j deleted by i|i selected at t]w j.
That is, we maximize the net gained weight, accounting for potential lost weight from conflicts; we call this heuristic
(C)DSRSE weight. For each instance, we run 1,000 simulations per policy to estimate expected performance.

We test four sets of instances for each (n,m) pair. We first generate n instances and treat this as a long, dense
instance. Then we consider a sparser instance where we only keep the first n/2 of the generated tasks. We also double
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the expected length of each task by doubling [bi,ci] from its midpoint first and then doubling [ai,bi] and [ci,di] from
new bi and ci; [m] is extended if necessary to accommodate all tasks. For this case, we also consider both dense and
sparse instances of n and n/2 tasks, respectively.

(a) DSRSE: intervals with uniform start and end times, long expected length and are densely packed across the slots. (b) DSRSE: intervals with uniform start and end times, short expected length and are densely packed across the slots.

(c) DSRSE: intervals with uniform start and end times, long expected length and are sparsely packed across the slots. (d) DSRSE: intervals with uniform start and end times, short expected length and are sparsely packed across the slots.

Figure 1: DSRSE

In Figure 1, we present the value of each bound and heuristic on DSRSE instances after being normalized by
the expected stability number. DLP-P denotes the optimal value of (DLP-P), DSRSE-weight is the expected value
of the greedy policy that schedules the largest-gained-weight task, and DSRSE-ratio is the expected value of the
greedy policy that schedules the largest wi/E[length of i]; αpes denotes the optimal value of the pessimistic realization
and expected_stab denotes the expected stability number. The (DLP-P) bound is slightly looser than the expected
stability number for these instances, with performance gradually worsening as the instance size increases; on average,
it is roughly 7% above. We observe similar behavior for both heuristics; in addition, DSRSE-weight consistently
outperforms DSRSE-ratio. On average, the former’s gap is 4.5% and the latter’s is 8.9%. The pessimistic stability
number, αpes, has an average gap with the expected stability number of almost 16%.

Figure 2 presents analogous results for CDSRSE. In this case, the bound (CDLP-P) is uniformly better than the
expected stability number, with values 5% lower on average. The heuristics do not perform as well because conflicts are
enforced more conservatively in this model. DSRSE-weight is still usually superior to DSRSE-ratio, but the latter does
better for the largest dense instances. The heuristics’ average gaps with respect to (CDLP-P) are now 9% and 14.7%.
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