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ABSTRACT

The Lovász theta function is a semidefinite programming (SDP) relaxation for the maximum weighted
stable set problem, which is tight for perfect graphs. However, even for perfect graphs, there is no
known rounding method guaranteed to extract an optimal stable set from the SDP solution. In this
paper, we develop a novel rounding scheme for the theta function that constructs a value function
approximation from the SDP solution and then constructs a stable set using dynamic programming.
Our method provably recovers an optimal stable set in several sub-classes of perfect graphs, including
generalized split graphs, which asymptotically cover almost all perfect graphs. To the best of our
knowledge, this is the only known rounding strategy for the theta function that recovers an optimal
stable set for large classes of perfect graphs. Our rounding scheme relies on simple linear algebra
computations; we only solve one SDP. In contrast, existing methods for computing an optimal stable
set in perfect graphs require solving multiple SDPs. Computational experiments show that our method
produces good solutions even on imperfect graphs.

Keywords stable set · Lovász theta function · value function approximation · semidefinite program ·
perfect graph.

1 Introduction

Semidefinite programming (SDP) relaxations provide a tractable approach for tackling hard combinatorial optimization
problems. Two of the most studied cases are SDP relaxations for the maximum stable set problem, known as the
Lovász theta function, and for the maximum cut problem. If the relaxation is tight and the optimal solution has rank
one, it is easy to recover a solution of the combinatorial problem from the SDP solution. However, if the optimal
solution has higher rank, a rounding procedure is needed, even if the upper bound from the relaxation is tight. Devising
good rounding procedures is hence of great importance both in theory and in practice. For example, Goemans and
Williamson [23] introduced a randomized rounding algorithm for the maximum cut SDP, which produces a solution
with an approximation factor of roughly 0.878. While some heuristic rounding strategies have been proposed for the
stable set problem using the theta function [2, 49], none of them have theoretical guarantees. In this paper, we introduce
a rounding scheme for this SDP that provably finds an optimal stable set in several important subclasses of perfect
graphs, which asymptotically include almost all perfect graphs. Moreover, our rounding scheme performs well in
practice even in imperfect graphs.

Given a simple graph G = (N,E) and a weight function w : N→ R++, the maximum weighted stable set problem seeks
the stable set S⊆ N that maximizes ∑i∈S wi; a set S is stable (or independent or a packing) if i j ̸∈ E for every pair of
vertices i, j ∈ S. The stability number α(G;w) is the optimal value of the problem; computing α(G;w) is NP-hard for
general graphs [20,30]. Lovász introduced a quantity ϑ(G;w), the theta function, which upper bounds α(G;w) and can
be efficiently computed by solving an SDP [24, 32]. Indeed, ϑ(G;w) is the optimal value of the following primal-dual
pair of SDPs [24–26]:
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max
x∈Rn,X∈Sn

w⊤x

s.t. Xii = xi,∀i ∈ N
Xi j = 0,∀i j ∈ E(

1 x⊤
x X

)
⪰ 0

(SDP-P)

min
t,q,Q

t

s.t. Qii =−2qi−wi,∀i ∈ N
Qi j = 0,∀i j /∈ E(

t q⊤
q Q

)
⪰ 0.

(SDP-D)

Our rounding method relies on an optimal solution of the primal-dual pair above.

The maximum stable set problem can be solved in polynomial time for an important class of graphs, the perfect
graphs; this follows because α(G;w) = ϑ(G;w) for these graphs [25]. Hence, in a perfect graph we can determine
whether a vertex i ∈ N belongs to an optimal stable set by checking if ϑ(G;w) = ϑ(G|N\i;w). We can thus extract a
maximum stable set in a perfect graph by solving O(n) SDPs [26]; see [49] for an improved scheme that uses only
min{α(G;w),n/3} SDPs. Alternatively, Alizadeh [2] considers a randomized algorithm that requires perturbing the
weight vector w up to O(log(1/ε)) times in order to guarantee that (SDP-P) has a unique rank-one optimal solution
with probability 1− ε . All previous polynomial-time methods for the maximum stable set problem in perfect graphs
require solving multiple SDPs. In addition, they do not rely on rounding an SDP solution, but instead either only use
the SDP optimal value or require an exact, rank-one optimal solution; in contrast, our rounding procedure requires
solving (SDP-D) once.

To describe the main idea behind our rounding method, let (x,X),(t,q,Q) be optimal solutions of (SDP-P), (SDP-D)
respectively. We consider the function VSDP : 2N → R+ defined as

VSDP(S) := q⊤S Q†
SqS, S ̸= /0; VSDP( /0) := 0, (1)

where qS and QS are respectively the sub-vector of q and principal sub-matrix of Q indexed by S, and Q†
S denotes

the Moore–Penrose pseudo-inverse of QS. VSDP can be computed either using an eigenvalue decomposition or using
equivalent characterizations we introduce in later sections. Our rounding algorithm evaluates the function VSDP at most
O(n3) times, and produces a stable set S ⊆ N for an arbitrary graph G. Notice that q and Q are fixed and given by
solving (SDP-D) once. The function VSDP is monotone and satisfies the following important property,

V (S)−V (S\ ({i}∪δi))≥ wi, ∀S⊆ N, i ∈ S, (2)
where δi denotes the set of neighbors of i in G. More generally, we call V : 2N → R+ a value function approximation
(VFA) for the maximum stable set problem if the function is monotone, V ( /0) = 0, and it satisfies (2). The term comes
from dynamic programming (DP), as the optimal value function V ∗(S) := α(G|S;w) satisfies the same conditions.

Our rounding procedure starts by discarding all vertices i with xi = 0. We then arbitrarily select a remaining vertex to
be included in the stable set and discard its neighbors. We keep discarding vertices with

VSDP(S)−VSDP(S\ ({i}∪δi))> wi

and selecting until no vertices are left, and then return the selected set of vertices. This process may sometimes lead to
choosing a vertex incorrectly, so we use a DP technique known as a one-step look-ahead to prevent this from occurring:
we simulate a vertex choice and check if it leads to a suboptimal stable set; if so, we backtrack and delete that vertex.
The output of our procedure is always a stable set; we show that it is indeed an optimal stable set for several important
subclasses of perfect graphs.

The analysis of our rounding scheme uses the clique linear programming (LP) relaxation for the maximum stable set
problem. Consider the primal-dual pair of LPs:

max w⊤x

s.t. ∑
i∈C

xi ≤ 1,∀C ∈ C (G),

x≥ 0,

(LP-P)

min ∑
C∈C (G)

µC

s.t. ∑
C∋i

µC ≥ wi,∀i ∈ N,

µC ≥ 0,

(LP-D)

where C (G) is the set of all cliques in G; this relaxation is tight and the primal polyhedron of (LP-P) is integral for
perfect graphs [25]. Given a solution of (LP-D), we can construct another VFA VLP : 2N →R+ and apply our algorithm
with VLP. We emphasize that our algorithm does not solve (LP-D), but we use it to analyze our rounding scheme with
(SDP-D).

Our main results are stated next.
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1.1 NOTATION

Theorem 1.1 (Informal). Our rounding algorithm based on either (LP-D) or (SDP-D) outputs an optimal stable set for
generalized split graphs, chordal graphs, and co-chordal graphs.

The precise statement of our main theorem is given in Section 2. Note that almost all perfect graphs are generalized
split graphs in an asymptotic sense [44]. To the best of our knowledge, our methods give the only known rounding
strategy for the Lovász theta function that provably works for large subclasses of perfect graphs.

The rest of the paper is organized as follows. Section 2 provides background, properties of a VFA, our algorithm
and the formal statement of the main results. Section 3 analyzes our algorithm with VLP, discusses its combinatorial
interpretation, and highlights the necessity of the look-ahead. Then Section 4 presents the analysis of our algorithm
with VSDP and proves the main results. Section 5 includes computational experiments.

1.1 Notation

We let R be the real numbers. For a finite set N, we denote the set of N×1 vectors, non-negative vectors and positive
vectors by RN , RN

+, RN
++ respectively; the sets of N×N symmetric matrices, positive semidefinite (PSD) matrices,

and positive definite matrices are SN , SN
+, and SN

++, respectively. For A,B ∈ SN , the partial order A ⪰ B is defined
by A−B ∈ SN

+, and similarly, A≻ B is defined by A−B ∈ SN
++. For N = [n] or when |N|= n, we sometimes use Rn

instead of RN for convenience, and the same applies to other sets with superscript N. For any q ∈ RN ,Q ∈ SN and
S⊆ N, we respectively let qS, QS denote the sub-vector and principal sub-matrix of q,Q indexed by S. Given a matrix
D ∈ Sn, let diag(D) = (D11, . . . ,Dnn) ∈ Rn be the vector consisting of its diagonal entries. Conversely, given d ∈ Rn,
let Diag(d) ∈ Sn be the diagonal matrix with d in its diagonal.

Throughout the paper we assume that G = (N,E) is a simple undirected graph, where N is the set of vertices, E is
the set of edges, and n := |N|, m := |E|. We denote the complement of G by G, N \S by S, and let G|S be the induced
subgraph of G on S⊆ N. We let w : N→ R++ denote a weight function over N. For a vertex i ∈ N, we let δi denote the
set of its neighbors in G, and let δS denote the set of vertices j such that j ∈ S and j ∈ δi for some i ∈ S. A set S⊆ N
is stable in G if no two vertices in S are adjacent, and is a clique if every two vertices in S are adjacent. A stable set
(clique) S is a maximum weighted stable set (clique) if it maximizes ∑i∈S wi among all stable sets (cliques) in G. Given
a graph G with weight function w and any S⊆ N, let α(S) denote the weighted stability number of G|S, the weight of
the maximum stable set.

1.2 Brief Literature Review

Beyond the work mentioned above, there is a huge body of literature on the stable set problem. While it is NP-hard for
general graphs [20, 30], there are polynomial-time combinatorial algorithms for other classes of graphs besides perfect
graphs, including circular graphs and their complements [21], circular arc graphs and their complements [22,27], graphs
without long odd cycles [28], claw-free graphs and ℓ-claw-free graphs [16, 17], and graphs without two disjoint odd
cycles [14]. For graphs without holes of length at least five, the results in [1] imply an nO(k) algorithm, where k is an
upper bound for the treewidth. Recently, [46] gave a fixed-parameter-tractable algorithm which depends exponentially
on g := (d +1)−α , where d,α are respectively the degeneracy and unweighted stability number.

There are also exact approaches for the problem based on integer programming techniques. These include branch-
and-bound [4, 5, 8, 9, 12, 34, 40, 42], which often derive bounds from clique covers, and cutting-plane algorithms,
e.g. [7, 39, 40]. There are also highly effective heuristic and meta-heuristic methods for the stable set problem, such as
tabu search [18]. The algorithm proposed in [11] is particularly relevant for us, as it uses (SDP-P); despite having no
theoretical guarantees, it performs quite well in our computational experiments. For further study on relevant algorithms,
we refer the reader to [35, 47] and the references therein.

2 Preliminaries and Algorithm

In this section, we detail necessary background, then introduce our algorithms and some properties of the VFA. Finally,
we introduce the VFAs based on LP and SDP, and state the main results.

2.1 Perfect Graphs and Convex Relaxations

A graph G is perfect if the chromatic number χ(G′) equals the clique number ω(G′) for every induced subgraph G′
of G. Equivalently, G is perfect if and only if it does not contain a chordless odd cycle (an odd hole) or its complement
(an odd anti-hole) as an induced subgraph [13].
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2.2 RETRIEVING A STABLE SET FROM A VFA

The (weighted) maximum stable set problem can be formulated as an LP over the stable set polytope,

STAB(G) := conv{x ∈ {0,1}N : x is an incidence vector of a stable set in G}.
Let CLQ(G)⊆ RN be the feasible set of (LP-P), and let TH(G)⊆ RN be the projection of the feasible set of (SDP-P)
onto the x variables; TH(G) is known as the theta body of G [33]. The following relations hold [24–26]:

STAB(G)⊆ TH(G)⊆ CLQ(G); STAB(G) = TH(G) = CLQ(G), if G is perfect. (3)

Thus, the problems (LP-P) and (SDP-P) are convex relaxations of the maximum stable set problem, and both relaxations
are tight for perfect graphs.

Problem (SDP-P) can be solved in polynomial time using interior point methods [41]. Interior point methods return a
point in the relative interior of the optimal face of (SDP-P); see, e.g., [3, Theorem 3.7]. We call such a point a relative
interior solution. This property of interior point methods contrasts with methods such as simplex, which return extreme
points of the optimal face.

2.2 Retrieving a Stable Set from a VFA

Let G = (N,E) be a simple undirected graph and w : N → R++ be a weight function over N. For a set of vertices
I ⊆ N, we let α(I) denote the (weighted) stability number of the induced subgraph G|I . Interpreted as a set function
α : 2N → R+, this is the value function of the maximum stable set problem. A VFA is a function V : 2N → R+ with:

(i) V ( /0) = 0.
(ii) V is monotone, V (I)≤ V (J) for I ⊆ J.

(iii) V satisfies (2).

We say that a VFA is tight if V (N) = α(N). We now show that a VFA upper bounds the value function.
Lemma 2.1. Given a VFA V , V (I)≥ α(I) for all I ⊆ N. In particular, V ({i})≥ wi for i ∈ N.

Proof. For I = {1, . . . ,s,s+1, . . . , |I|}, without loss of generality, assume S∗ = {1, . . . ,s} is a maximum stable set of
G|I . Then by applying (2) repeatedly,

V (I)≥ w1 +V (I \ (δ1∪{1}))≥ ·· · ≥ ∑
i∈S∗

wi +V (I \ (δS∗ ∪S∗)) = α(I)+V (I \ (δS∗ ∪S∗)) = α(I).

The last inequality follows because S∗ is a maximum stable set of G|I , and thus I ⊆ (δS∗ ∪S∗).

The following are sufficient conditions for a set function to be a VFA.
Lemma 2.2. Let V : 2N → R+ satisfy (i) V ( /0) = 0, (ii) V is monotone, (iii) V ({i}) ≥ wi for i ∈ N, and (iv)
V (I∪ J) = V (J)+V (I) for all disjoint I,J ⊆ N with no edge between them. Then V is a VFA.

Proof. Suppose all the conditions above hold. Since there is no edge between i and J := I \ ({i}∪δi), by (iv) we have
that V (i∪ J) = V (i)+V (J). Using (ii) and (iii) we get that

V (I)≥ V (i∪ J) = V (i)+V (J)≥ wi +V (J).

Hence, V is a VFA.

Algorithm 1 constructs a stable set from any VFA. The algorithm maintains a stable set S ⊆ N and a set I ⊆ N of
vertices yet to be processed. When a vertex i is selected to be in S, it is discarded from I together with its neighbors.
Algorithm 1 is designed to work with a tight VFA; our main theoretical contribution is the analysis of Algorithm 1 on
several classes of perfect graphs, where we can construct tight VFAs because of (3).
Definition 2.3. During each iteration of Phase II of Algorithm 1, if the set of selected vertices S is a subset of a
maximum stable set of G, we say we are on an optimal trajectory. If an iteration starts with the remaining set of vertices
I and S∪{i} is a subset of a maximum stable set of G for some i ∈ I, then we say i is an optimal choice of this iteration
or i is on an optimal trajectory, otherwise, we say i is suboptimal or not on an optimal trajectory.

After making a copy I′ of I and tentatively selecting a vertex i in an iteration of Phase II, Algorithm 1 tentatively
discards vertices that are not in any maximum stable set of the current graph G|I′ . It then checks if i is indeed an optimal
choice: if not, Algorithm 1 returns to I, deletes i, and continues; otherwise, Algorithm 1 adds i to S, updates I as I′ and
continues. The following lemma justifies these claims.
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2.2 RETRIEVING A STABLE SET FROM A VFA

Algorithm 1 Retrieving a stable set from a tight VFA with one-step look ahead
1: Input: G = (N,E), a weight function w, optimal x∗ ∈ STAB(G), and a tight VFA V .

Phase I:
2: S← /0 ▷ Start with the empty stable set.
3: I←{i ∈ N : x∗i > 0} ▷ Discard vertices not in any maximum stable set.

Phase II:
4: while I ̸= /0 do
5: I′← I
6: I′← I′ \ ({i}∪δi) for an arbitrary i ∈ I′ ▷ Tentatively select i and discard δi.
7: while ∃ j ∈ I′ with V (I′)−V (I′ \ ({ j}∪δ j))> w j do
8: I′← I′ \{ j} ▷ Discard vertices that cannot be in an optimal set with i.
9: if V (I)> V (I′)+wi then ▷ Check if i is a suboptimal choice.

10: I← I \{i}
11: else
12: I← I′, S← S∪{i} ▷ Confirm choice of i and continue.
13: Output: Return S, a stable set of G.

Lemma 2.4. Let I ⊆ N, i ∈ I. A VFA V has the following properties:

(i) If V (I) = α(I) and V (I)−V (I \ ({i}∪δi))> wi, then i is not in any maximum stable set of G|I .

(ii) If V (I) = α(I) and either V (I)−V (I \ ({i}∪δi))> wi or α(I) = α(I \{i}), then V (I \{i}) = α(I \{i}).

(iii) Suppose V is tight. At the beginning of any iteration of Phase II of Algorithm 1, if S is on an optimal trajectory,
then V (I) = α(I) and for any maximum stable set SI of G|I , S∪SI is a maximum stable set of G.

Proof.

(i) For contradiction, suppose i is in a maximum stable set S∗ of G|I . Without loss of generality, suppose i = 1; by
the inequality (2),

V (I)> w1 +V (I \ (δ1∪{1}))≥ . . .≥ ∑
i∈S∗

wi +V (I \ (δS∗ ∪S∗)) = ∑
i∈S∗

wi +0 = α(I),

which contradicts V (I) = α(I).

(ii) By the first property of this lemma and Lemma 2.1, V (I) = α(I) = α(I \ {i}) ≤ V (I \ {i}). Since V is
monotone, α(I \{i}) = V (I) = V (I \{i}).

(iii) We proceed by induction; the base case follows from the tightness assumption. For the inductive step, assume
at the beginning of the current iteration that the set of selected vertices S is a subset of a maximum stable set of
G, and the remaining set of vertices I satisfies V (I) = α(I). Suppose i ∈ I is selected in the current iteration
and S∪{i} is a subset of a maximum stable set of G, then we show the statement holds for the next iteration.

We claim that i belongs to a maximum stable set of G|I . Suppose not; then

α(I)> α(I \ ({i}∪δi))+wi, α(N)> ∑
j∈S∪{i}

w j +α(I \ ({i}∪δi)),

so S∪{i} is not a subset of a maximum stable set of G, a contradiction. Set I′← I \ ({i}∪δi) and let SI be a
maximum stable set of G|I containing i. Then SI \{i} is a maximum stable set of I′ and

V (I′) = V (I \ ({i}∪δi)) = V (I)−wi = α(I)−wi = α(I′).

After discarding all vertices j with V (I′)−V (I′ \ ({ j}∪δ j))> w j and updating I′, by the second property of
this lemma, V (I \ ({i}∪δi)) = V (I′), which implies V (I′) = α(I \ ({i}∪δi)). Again by the first property of
this lemma, α(I \ ({i}∪δi)) = α(I′), hence V (I′) = α(I′). By the induction assumption and the tightness of
V ,

V (N) = ∑
j∈S

w j +V (I) = ∑
j∈S

w j +wi +α(I \ ({i}∪δi)) = ∑
j∈S

w j +wi +α(I′) = α(N).

Thus, for any maximum stable set SI′ of G|I′ , SI′ ∪ (S∪{i}) is a maximum stable set of G.
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2.3 VFAS FROM LP/SDP RELAXATIONS

Corollary 2.5. Suppose a VFA V is tight. At the beginning of any iteration of Phase II of Algorithm 1, if S is a subset
of a maximum stable set of G, then ∑i∈S wi +V (I) = α(N).

Lemma 2.4 provides important properties of our algorithm. First, given V (I) = α(I), discarding vertices with
V (I)−V (I \ ({i}∪δi))> wi preserves all maximum stable sets of G|I . When we discard a vertex that is not in any
maximum stable set, the VFA remains equal to the stability number. Also, if our algorithm is following an optimal
trajectory at every iteration, V (I) preserves the stability number of G|I , and Algorithm 1 outputs a maximum stable set
when it terminates. Hence, with any VFA, our goal is to stay on an optimal trajectory.

2.3 VFAs from LP/SDP Relaxations

Consider the primal-dual pair of LP relaxations (LP-P), (LP-D). Given a feasible µ for (LP-D), we define a VFA

VLP(S) := ∑
C∈C (G),C∩S ̸= /0

µC, S⊆ N; VLP( /0) := 0 (4)

The following lemmas verify that VLP, VSDP are VFAs, and that they are tight when the graph is perfect.

Lemma 2.6. If µ is feasible for (LP-D), VLP satisfies the conditions from Lemma 2.2, and hence is a VFA. If µ is
optimal for (LP-D) and G is perfect, VLP is a tight VFA.

Proof. We verify the four conditions from Lemma 2.2.

(i) Follows from the definition.

(ii) Follows from the definition and the fact that µ ≥ 0.

(iii) VLP(i) = ∑C∋i µC, which is greater than or equal to wi since µ is feasible to (LP-D).

(iv) If I,J share no edges, a clique C ∈ C (G) can intersect at most one of I,J. Then VLP(I∪ J) = VLP(I)+VLP(J)
by definition.

The tightness for perfect graphs follows from (3) and the optimality of µ .

For the primal-dual pair of SDP relaxations (SDP-P), (SDP-D), given a feasible (t,q,Q) for (SDP-D), consider VSDP
from (1). The following lemma provides some alternative forms of VSDP, which are useful for analysis and computation.

Lemma 2.7. Let q ∈ RN ,Q ∈ SN
+, and define VSDP with (1). For /0 ̸= S⊆ N,

VSDP(S) := q⊤S Q†
S qS = min

t∈R

{
t :
(

t q⊤S
qS QS

)
⪰ 0
}

= −min
y∈RS

(y⊤QSy−2q⊤S y).

Proof. We first consider the SDP formulation. By taking the Schur complement, the PSD constraint is equivalent to
QS ⪰ 0, tQS ⪰ qSq⊤S . Therefore, the SDP is feasible if and only if QS ⪰ 0 and qS is in the range of QS by Lemma A.1
in the Appendix. Assume that this is the case, and we show t∗ := q⊤S Q†

SqS is feasible, i.e., t∗QS ⪰ qSq⊤S . By applying
singular value decomposition and changing the basis, we may assume QS = Diag(a1, . . . ,ar,0, . . . ,0) with ai > 0 and
qS = (b1, . . . ,br,0, . . . ,0) with bi ≥ 0, so qS lies in the range of QS. Then Q†

S = Diag(a−1
1 , . . . ,a−1

r ,0, . . . ,0). For any
vector x ∈ Rn, we have,

x⊤(t∗QS−qSq⊤S )x = (q⊤S Q†
SqS)(x⊤QSx)− (q⊤S x)2 =

(
r

∑
i=1

b2
i a−1

i

)(
r

∑
i=1

x2
i ai

)
−

(
r

∑
i=1

bixi

)2

≥ 0,

where we apply the Cauchy-Schwarz inequality at the last step. Hence, t∗ is feasible. Moreover, when x = Q†
SqS, the

above inequality becomes equality, so t∗ is the optimum. Hence, q⊤S Q†
SqS = mint∈R

{
t :
(

t q⊤S
qS QS

)
⪰ 0
}
.

For the other equivalence, since QS is PSD, the optimum is obtained at y for QSy = qS, which is satisfied when y = Q†
SqS,

as we show above. Then y⊤QSy−2q⊤S y =−q⊤S Q†qS, which implies −miny(y⊤QSy−2q⊤S y) = q⊤S Q†
SqS.

We proceed to show that VSDP is a VFA.
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2.4 STATEMENT OF MAIN RESULTS

Lemma 2.8. If (t,q,Q) is feasible for (SDP-D) then VSDP satisfies the conditions from Lemma 2.2, and hence is a VFA.
If (t,q,Q) is optimal for (SDP-D) and G is perfect, VSDP is a tight VFA.

Proof. We proceed to verify the four conditions from Lemma 2.2.

(i) Follows from the definition of VSDP.

(ii) Let I ⊆ J and let tJ = VSDP(J). By the previous lemma, we have that
(

tJ q⊤J
qJ QJ

)
⪰ 0. Since a principal

sub-matrix of a PSD matrix is also PSD, we have
(

tJ q⊤I
qI QI

)
⪰ 0, and hence VSDP(I) ≤ tJ = VSDP(J) by

Lemma 2.7.

(iii) Suppose there is no edge between I,J; then the matrix QI∪J is a block diagonal matrix, i.e. QI∪J =Diag(QI ,QJ).
Then its pseudo-inverse is also block diagonal, Q†

I∪J = Diag(Q†
I ,Q

†
J). Hence,

VSDP(I∪ J) = q⊤I∪JQ†
I∪JqI∪J = q⊤I Q†

I qI +q⊤J Q†
JqJ = VSDP(I)+VSDP(J).

(iv) We have Qii = −2qi−wi, by feasibility in (SDP-D). If Qii = 0, then again by feasibility, qi = 0, wi =
−2qi−Qii = 0, and VSDP(i) = 0≥ wi = 0. If Qii > 0, then by the definition of VSDP(i),

VSDP(i) := Q−1
ii q2

i =
1
4

Q−1
ii (Qii +wi)

2,

Qii(VSDP(i)−wi) =
1
4
(Qii +wi)

2−Qiiwi =
1
4
(Qii−wi)

2 ≥ 0,

which implies VSDP(i)≥ wi.

The tightness follows from (3) and the optimality of (t,q,Q).

2.4 Statement of main results

Our main contribution is to show that Algorithm 1, applied with either VLP or VSDP, finds an optimal stable set for
several important subclasses of perfect graphs. In Section 3, we provide a combinatorial interpretation of Algorithm 1
with VLP, to prove the optimality of the returned stable set. Subsequently, in Section 4 we analyze Algorithm 1 with
VSDP.
Definition 2.9. A graph G is unipolar if its vertex set N can be partitioned as N = A∪A, such that the graph G|A,
called the center, is complete, and the connected components of G|A, called clusters, are also complete. A graph is
co-unipolar if its complement is unipolar. A generalized split graph is a graph that is either unipolar or co-unipolar.

A graph is chordal if it does not contain induced cycles of length at least four. A graph is co-chordal if its complement is
chordal.

It was shown in [44] that almost all perfect graphs are generalized split graphs in an asymptotic sense. We now provide
the main theorems showing that Algorithm 1 returns a maximum stable set for the subclasses of perfect graphs in
Definition 2.9, while Phase II may need to be run twice only for co-unipolar graphs.
Theorem 2.10. Let x∗, µ∗ respectively be optimal solutions of (LP-P) and (LP-D), both in the relative interior of
the optimal face of their respective feasible regions, and let VLP be the VFA constructed from µ∗ via (4). Consider
Algorithm 1 executed with VLP.

(a) If G is unipolar, chordal, or co-chordal, then Algorithm 1 returns a maximum stable set.

(b) Assume that G is co-unipolar. Let i, j be any adjacent vertices remaining after Phase I. Then either Algorithm 1
returns a maximum stable set when Phase II starts by selecting i or it returns a maximum stable set when
Phase II starts by selecting j.

Theorem 2.11. Let (x∗,X∗), (t∗,q∗,Q∗) respectively be optimal solutions of (SDP-P) and (SDP-D), both in the relative
interior of the optimal face of their respective feasible regions, and let VSDP be the VFA constructed from (t∗,q∗,Q∗) via
(1). Then Algorithm 1 executed with VSDP returns a maximum stable set under the same assumptions as in Theorem 2.10.
Corollary 2.12. Algorithm 1 executes O(n3) VFA evaluations. Therefore, under the conditions of Theorem 2.11, it
returns an optimal stable set in polynomial time.
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Proof. In every iteration, O(n) VFA evaluations are required. In the worst case, each iteration requires a look-ahead,
and there can be at most n look-ahead steps, since each discards a vertex. So there are at most O(n2) iterations, and the
overall number of VFA evaluations is O(n3).

In the above, we account for the number of VFA evaluations, and distinguish this complexity from the SDP solve
time and the complexity of a single VFA evaluation, as the latter two depend on user choice. In particular, for
computing the VFA, Lemma 2.7 gives three equivalent forms for VSDP that result in different complexities. For example,
computing a pseudo-inverse requires O(n3) time. In practice, we observe that applying gradient descent to the quadratic
programming form is more efficient, but not as numerically stable.

The assumption that the optimal dual solution is in the relative interior of the optimal face cannot be relaxed; the
algorithm may return a suboptimal stable set otherwise. Furthermore, the look-ahead is also necessary to guarantee the
algorithm’s success. In Section 3, we discuss how Algorithm 1 may fail on the graph depicted in Figure 2a when either
of the assumptions fails.

3 Analysis via the LP VFA

In this section, we analyze Algorithm 1 with VLP. We first give a combinatorial interpretation, which provides intuition
about how and why a vertex is discarded. Then we discuss why the look-ahead is necessary, and provide an example.
After that, we prove Algorithm 1 with VLP returns a maximum stable set for generalized split, chordal, and co-chordal
graphs. Finally, we give another example showing that even with look-ahead, Algorithm 1 may fail to return an optimal
set on some perfect graphs.

In this section, for an iteration of Phase II, we let S denote the set of selected vertices, I denote the set of remaining
vertices at the beginning of the iteration, and I′ be the set of vertices before step 9.

3.1 Combinatorial Interpretation

Let G = (N,E) be a perfect graph. By (3), one can obtain the incidence vector of a maximum stable set by solving for
an optimal extreme point of (LP-P). The number of cliques in G may grow exponentially, so it is expensive to solve
such LPs directly. Nonetheless, we can still extract a useful combinatorial interpretation.

Let (x∗,µ∗) be a pair of strictly complementary optimal solutions of (LP-P) and (LP-D). Note that x∗ ∈ STAB(G) since
the graph is perfect. Furthermore, strict complementarity for LP is equivalent to being in the relative interior of the
optimal face. Therefore,

∑
C∋i

µ
∗
C > wi ⇐⇒ x∗i = 0 ⇐⇒ i is not in any maximum stable set of G

µ
∗
C > 0 ⇐⇒ ∑

i∈C
x∗i = 1 ⇐⇒ every maximum stable set of G contains a vertex in C.

Recall that Phase I discards all vertices i with x∗i = 0. By the first equivalence above, it preserves all maximum stable
sets, ensuring that each remaining vertex belongs to at least one maximum stable set.

The second equivalence motivates the following definition.

Definition 3.1. Given a graph G, let C (G) be the set of its cliques. For C ∈ C (G), if every maximum stable set of G
contains a vertex in C, we say C is an essential clique of G or C is essential. In addition, if every vertex in C belongs to
a maximum stable set of G, C is strictly essential.

Combining the two equivalences above, we provide a combinatorial interpretation of (2) in terms of essential cliques
and maximum stable sets. For I ⊆ N, we have

VLP(I)−VLP(I \ ({i}∪δi)) = [VLP(I \δi)−VLP(I \ ({i}∪δi))]+ [VLP(I)−VLP(I \δi)]

= ∑
C∋i

µ
∗
C + ∑

C⊆δi∪(N\I),C∩I∩δi ̸= /0
µ
∗
C ≥ wi +0.

Moreover,

VLP(I)−VLP(I \ ({i}∪δi)) = wi ⇐⇒ i belongs to some maximum stable set of G and
C is not essential ∀C ⊆ δi∪ (N \ I),C∩ I∩δi ̸= /0.
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3.2 ALGORITHM WITHOUT LOOK-AHEAD

Specifically, when I = N,

VLP(N)−VLP(N \ ({i}∪δi)) = wi ⇐⇒ i belongs to some maximum stable set of G and
C is not essential ∀C ⊆ δi.

Notice that the equivalences only provide direct links to the maximum stable sets of G but not necessary G|I . In
particular, there may exist i, I with VLP(I)−VLP(I \ ({i}∪δi)) = wi, but where i is not in any maximum stable set of
G|I .
Next, we characterize how essential cliques translate to induced subgraphs.
Lemma 3.2. Let I ⊊ N. Suppose Algorithm 1 is on an optimal trajectory and reaches G|I during some iteration. For
every essential clique C of G, C∩ I is an essential clique of G|I if it is non-empty.

In the lemma, it is necessary to assume we are on an optimal trajectory; otherwise, C∩ I might not contain any vertex in
a maximum stable set of G|I .

Proof. Let S be the set of selected vertices by Algorithm 1. Note that C∩S = /0, otherwise C∩ I = /0, a contradiction.
Since C is essential in G and S is on an optimal trajectory, every maximum stable set of G|I should contain a vertex in
C∩ I by the third property of Lemma 2.4.

Recall that after Phase I every vertex belongs to an optimal stable set. Hence, after Phase I,

VLP(I)−VLP(I \ ({i}∪δi))> wi ⇐⇒ ∃C essential,C ⊆ δi∪ (N \ I),C∩ I∩δi ̸= /0.

For any such C, if one is on an optimal trajectory, C∩ I ⊆ δi∩ I is an essential clique of G|I by Lemma 3.2, which implies
that i does not belong to any maximum stable set of G|I and should be discarded. With this interpretation, Algorithm 1
with VLP is motivated by essential cliques. After Phase I, by selecting and discarding vertices, the algorithm “shrinks”
essential cliques and possibly allows one to discard more vertices containing essential cliques in its neighbor.

3.2 Algorithm without Look-Ahead

In this subsection, we specify a graph sub-structure that can cause the algorithm to fail without a look-ahead, and
provide an example. We start with some preliminary results.
Lemma 3.3. Consider an iteration of Algorithm 1 that starts with S and I, where S is on an optimal trajectory. With i
being selected, if V (I)> V (I′)+wi at step 9, i is not in any maximum stable set of G|I .

Proof. Since S is on an optimal trajectory and i was not previously discarded, by Lemma 2.4 we have

α(I) = V (I) = V (I \ ({i}∪δi))+wi > V (I′)+wi ≥ α(I′)+wi.

If α(I) > α(I \ ({i} ∪ δi)) +wi, i is not in any maximum stable set of G|I . Otherwise, α(I \ ({i} ∪ δi)) +wi =
α(I) = V (I \ ({i}∪ δi))+wi, and then by the first and second property of Lemma 2.4, V (I \ ({i}∪ δi)) = V (I′), a
contradiction.

The following proposition provides a necessary and sufficient condition for Algorithm 1 to return a maximum stable set
for any graph G.
Proposition 3.4. Let G be a graph and V be a tight VFA. Algorithm 1 returns a maximum stable set of G if and only if
at the end of every iteration of Phase II in which we select a vertex i, we have V (I) = V (I′)+wi.

Proof. (⇐= ) For every iteration, if S is on an optimal trajectory, Lemma 3.3 ensures that the look-ahead only discards
suboptimal vertices; we can assume Algorithm 1 terminates after K iterations of Phase II without applying the look-
ahead. Let It be the set of available vertices at the beginning of iteration t, where I1 = N, and without loss of generality,
let t be the vertex selected during iteration t. Then

α(N) = V (I1) = V (I2)+w1 = V (I3)+w2 +w1 = . . .= V (IK)+wK−1 + . . .+w1 = V ( /0)+wK + . . .+w1.

Since {1, . . . ,K} is a stable set, it is a maximum stable set of G.
( =⇒ ) If V (It)> V (It+1)+wt for some t, then

α(N)> V ( /0)+wK + . . .+w1,

which implies {1, . . . ,K} is not a maximum stable set of G.
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3.2 ALGORITHM WITHOUT LOOK-AHEAD

We emphasize that Proposition 3.4 requires the equality to hold for every iteration in which we add a vertex to S. Thus,
for Algorithm 1 to fail, V (I)> V (I′)+wi in some iteration; we call such i ∈ I a bad choice of this iteration or of I.
Indeed, there may be an iteration where V (I) = V (I′)+wi, but α(I)> α(I′)+wi, which means i is not an optimal
choice but the algorithm cannot detect it. The proposition only guarantees that at some iteration later in the process, all
remaining vertices will be bad choices; at that point we realize we made a suboptimal choice, but we will not know
which vertex it was.

With respect to VLP, a bad choice i is equivalent to VLP(I)> VLP(I′)+wi = VLP(I′∪{i}). By the definition of VLP, we
have

VLP(I)−VLP(I′∪{i}) = ∑
C∈C (G),C∩(I′∪{i})= /0,C∩I ̸= /0

µ
∗
C > 0.

In other words, there is an essential clique C ∈ C (G) with C∩ (I′ ∪{i}) = /0 and C∩ I ̸= /0. If one is on an optimal
trajectory, this implies that C ∩ I is an essential clique of G|I that would be discarded by selecting i. However,
C∩ I ̸⊆ δi∩ I (otherwise the algorithm would discard i in the previous iteration). We conclude that for the algorithm to
fail, after selecting i and discarding δi, every vertex of C∩ I \ ({i}∪δi) ̸= /0 contains an essential clique in its neighbor
set (checked in step 7), so the essential clique is completely discarded. Next we discuss a necessary sub-structure for
such a bad choice to exist within Algorithm 1.
Definition 3.5. A graph G = (N,E) is a house if N = [2k]∪{v}, where G|[2k] is an even hole and there exist i, j ∈ [2n]
such that G|{i, j,v} is a triangle. We call v the top of the house G.

Proposition 3.6. Consider any perfect graph G = (N,E) and VLP constructed from a strictly complementary solution
of (LP-D). If in some iteration of Algorithm 1 there is a bad choice i ∈ I, G|I contains a house as an induced subgraph.

Proof. At the beginning of some iteration, let S be the selected set of vertices, I be the set of remaining vertices.
For the sake of contradiction, suppose that v∗ ∈ I is a bad choice of this iteration. Let I′ be the set of vertices after
selecting v∗ and step 7 of Algorithm 1. As discussed above, VLP(I)> VLP(I′)+wv∗ means there is some C ∈C (G) with
C∩ (I′∪{v∗}) = /0,C∩ I ̸= /0. Applying Lemma 3.2, without loss of generality we restrict all the cliques we discuss
onto I; that is, we assume C =C∩ I.

First, we see that C is not contained in the neighbor set of v∗; otherwise, v∗ would be discarded in a previous iteration.
Also, the vertices in C are discarded sequentially, so at some point in steps 6-7, there is only one vertex i ∈C remaining
and there is an essential clique V1 contained in the neighbor set of i. However, V1 is itself not an essential clique of
G|I , otherwise i would have been discarded before choosing v∗. That is, there exists an essential clique V ′1 of G|I with
V1 ⊊ V ′1, and all vertices in V ′1 \V1 have been discarded. Let z1 ∈ V ′1 \V1. The same argument can be applied to z1;
some essential clique V2 is contained in its neighbor set, and V ′2 can be found in the same way. This argument applies
repeatedly until we reach some Vk+1 :=C1 \δv∗ ̸= /0, where C1 is an essential clique of G|I with C1∩δv∗ ̸= /0. Define
SV :=C1∩δv∗ . This constitutes a chain with alternating discarded vertices and essential cliques,

Pi := i→V1→ z1→V2→ ··· → zk→Vk+1→ SV .

Intuitively, when v∗ is selected, δv∗ is discarded from I, so Vk+1 becomes an essential clique of I \ (v∗ ∪ δv∗). Then,
vertices like zk, which contain Vk+1 in their neighbor sets, are discarded; smaller cliques become essential, and the
process repeats until i is discarded.

Moreover, i by itself is not an essential clique of G|I (otherwise we would discard all of its neighbors and select it).
Therefore, there is some j ∈C \{i}; suppose this is the second-to-last vertex in C that is discarded. That is, before
we discard j, {i, j} is an essential clique. Also, without loss of generality, we assume that before j is discarded, all
other vertices in the remaining graph except for i and j do not contain an essential clique in their neighbor set, as the
argument depends on the induced subgraph discussed below. The same argument for i can be applied to j to find another
alternating chain of discarded vertices and essential cliques,

Pj := j→U1→ y1→U2→ ··· → yh→Uh+1→ SU ,

where Uh+1 :=C2 \δv∗ ̸= /0 and C2 is an essential clique of G|I with C2∩δv∗ ̸= /0. Unlike Pi, which has length at least
one, Pj may have length 0, that is, j ∈ SU is possible; see Example 3.8 below.

Consider picking a vertex from each of Vℓ,Ug; then Pi,Pj are even paths, paths with an odd number of edges. Similarly,
for any ℓ≥ 1, i→V1→ z1→ . . .→Vℓ is an odd path and i→V1→ z1→ . . .→ zℓ is an even path. The same argument
applies to j; see Figure 1 for an example. For convenience, let z0 := i, y0 := j.

Claim. There is no edge between V1 and j (respectively, U1 and i).

Proof. Since {i, j} is essential, u ∈V1 being adjacent to j implies that {i, j} ⊆ δu, so u would be discarded before. A
similar argument applies to U1 and i.
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3.2 ALGORITHM WITHOUT LOOK-AHEAD

Claim. For every pair yg,zℓ with max{g, ℓ} ≥ 1, we may assume without loss of generality that there is no edge between
them. The same applies to any ug ∈Ug,vℓ ∈Vℓ.

Proof. Suppose not; then we replace j by yg and i by zℓ or by ug,vℓ respectively, until no such pair exists. That is, Pi,Pj
become

Pi = zℓ→Vℓ+1→ ··· → zk→Vk+1→ SV

Pj = yg→Ug+1→ ·· · → yh→Uh+1→ SU

or,

Pi = vℓ→ zℓ→ ··· → zk→Vk+1→ SV

Pj = ug→ yg→ ··· → yh→Uh+1→ SU

respectively. So the paths Pi,Pj are either both odd or even. Then the closed walk v∗→ SV → vk+1→ ·· ·zℓ→ yg→
·· ·uh+1→ SU → v∗ is odd. For the rest of the proof, all we need is that no such adjacent pair exists except for zℓ, yg; it
is not required that zℓ,yg are essential.

Claim. Without loss of generality, we can assume that yg /∈Vℓ for any g, ℓ≥ 1. The same applies for zℓ,Ug.

Proof. Assume yg ∈Vℓ. Then yg is adjancent to zℓ−1, so the previous claim applies.

If for some g, ℓ≥ 0, yg = zℓ or Ug∩Vℓ ̸= /0, or there is an edge between yg and Vℓ, or between zℓ and Ug, then we call
such a pair (yg,zℓ), (Ug,Vℓ), (yg,Vℓ),(zℓ,Ug) a knot. We call the knot with min{g, ℓ} minimized the first knot.

Claim. Applying the claims above, G|I either contains a house as an induced subgraph or does not have a knot.

Proof. Suppose there is a knot; then there is a first knot. We consider three cases for the first knot:

1. The first knot (yg,zℓ) with yg = zℓ has min{g, ℓ} ≥ 1; then

y0→ u1→ y1→ . . .→ yg = zℓ→ vℓ→ zℓ−1→ vℓ−1→ . . .→ v1→ z0→ y0

has 2g+2ℓ+1 edges and forms an odd hole; or

vℓ→ zℓ = yg→ ug→ vℓ

forms a triangle when i, j are replaced by vℓ,ug. Since the graph is perfect, there is no odd hole, so we consider
the second case.

Consider zℓ−1,yg−1, suppose there is no edge between zℓ−1, ug and between yg−1,vℓ. Then if {zℓ−1,yg−1} ∈ E,
G|{zℓ−1,vℓ,zℓ=yg,ug,yg−1} is an induced house. If not, consider vℓ−1 ∈ Vℓ−1,ug−2 ∈ Ug−2. Suppose they are
adjacent, if there is no edge between vℓ−1,yg−1 or between ug−1,zℓ−1, G|{vℓ−1,zℓ−1,vℓ,zℓ=yg,ug,yg−1,ug−1} is an
induced house; or we find a triangle and apply the above argument again. Suppose there is no edge between
Vℓ−1 and Ug−1; consider zℓ−2,ug−2 and apply the same argument, until we either find an induced house or
reach i, j. Then since there is no edge between i,U1 and between j,V1, {i, . . . ,vℓ−1,yg,ug, . . . , j} is an induced
subgraph.

If such edges exist, say {zℓ−1,ug} ∈ E, then if {zℓ−1,yg−1} ∈ E, {zℓ−1,ug,yg−1} forms a triangle, apply
the above argument to this triangle; otherwise, consider {ug,yg−1,ug−1,vℓ−1,zℓ−1} for some vℓ−1 ∈ Vℓ1 ,
ug−1 ∈ Ug−1. If {vℓ−1,ug−1} ∈ E, then to avoid odd holes, either {zℓ−1,ug−1} ∈ E or {vℓ−1,yg−1} ∈ E;
without loss of generality, consider the first case: then {zℓ−1,ug−1,vℓ−1} forms a triangle, and the same
argument above applies. If {vℓ−1,ug−1} /∈ E, then consider zℓ−2,ug−2 and apply the same argument until
reaching {i, j} ∈ E; then {i, . . . ,zℓ−1,ug,ug−1, . . . , j} is an odd hole, contradiction.

2. The first knot (Ug,Vℓ) has u∗ ∈Ug∩Vℓ. Then the same argument from the previous case applies by replacing
zℓ = yg by u∗.

3. The first knot is (yg,Vℓ) or (zℓ,Ug). Then the same argument from the first case applies by replacing zℓ = yg by
yg (or zℓ respectively).
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3.2 ALGORITHM WITHOUT LOOK-AHEAD

Now suppose G|I does not have a knot. Consider
H := v∗→ SV →Vk+1→ zk . . .→ z0→ y0→ . . .→ yh→Uh+1→ SU → v∗,

an odd cycle with at least five edges; since the graph is perfect, this cycle has a chord. Chords separate the odd cycle
into induced odd holes, triangles, and even holes. However, since there is no edge between V1, j and between U1, i, there
is always a hole in H . Since the graph is perfect, it is an even hole. And since H is odd, there is always an induced
triangle. That is, there is always an induced subgraph of H which is a house.

V1
V2

z1

z2

i
Vk+1

zk
SV

U1U2

j

y1y2yh

Uh+1SU

v∗

C1

C2

Figure 1: Paths from i, j to v∗.

Proposition 3.6 implies that Algorithm 1 with VLP returns an optimal stable set on house-free perfect graphs without
applying the look-ahead. And Proposition 3.4 provides a necessary condition for the algorithm to possibly fail: in some
iteration, V (I)> V (I′)+wi. As we indicate above, VLP(I)> VLP(I′)+wi is equivalent to discarding all vertices of an
essential clique. A house like the one in Figure 1 is required for that to happen.
Corollary 3.7. Consider a triangle-free perfect graph (i.e. a bipartite graph) G = (N,E), and VLP constructed from a
strictly complementary solution of (LP-D). Algorithm 1 returns a maximum stable set of G without the look-ahead.

More generally, in the proof of Proposition 3.6, the only perfect graph property we use is the fact that it does not contain
an odd hole. Therefore, Algorithm 1 is guaranteed to return an optimal stable set if VLP is tight and the graph does not
contain a house or an odd hole as induced sub-graphs.

For house-free graphs, since there is no bad choice for each iteration, Algorithm 1 returns a maximum stable set without
the look-ahead. However, without the look-ahead, Algorithm 1 can indeed fail to produce an optimal stable set if a
perfect graph contains a house; the following example discusses this in more detail. However, we do not currently know
whether the look-ahead is in fact necessary for generalized split, chordal or co-chordal graphs, as the instance in the
example is not in any of these families.
Example 3.8. Consider the perfect graph G in Figure 2a with a cardinality objective, where the yellow cliques with
µ∗C = 1 are the essential cliques determined by a strictly complementary solution of (LP-D); in this case, µ∗ is an
extreme point and the unique dual optimal solution. We show that this graph is perfect but not generalized split, chordal
or co-chordal at the end of this section in Proposition 3.11. Assume Algorithm 1 omits the look-ahead (steps 9-12).
Suppose vertex 10 is selected; then its neighbors 9,11 are discarded (see Figure 2b). Then vertex 8 becomes essential,
so 7 is discarded and {3,4} becomes essential. The resulting graph is shown in Figure 2c, where the essential clique
{1,2} is not strictly essential. Without the look-ahead, the algorithm can’t discard any remaining vertex; suppose 2 is
selected and its neighbors 1,3,6 are discarded. Vertices 4,5 become essential and are also each others’ neighbors; see
Figure 2d. One of the vertices must be discarded; if 5 is discarded, the algorithm returns the stable set S = {2,4,8,10}.
However, α = 5; there are 5 essential cliques in G, but S does not contain a vertex from {5,6}.
Next, suppose we use the look-ahead; for the iteration starting at Figure 2c, I = {1, . . . ,6}, 2 is selected, and I′ = {4},
as in Figure 2d. Then we have 3 = VLP(I)> VLP(I′)+w2 = 2, so Algorithm 1 goes back to I and discards 2, as shown
in Figure 2e; Algorithm 1 can select an arbitrary vertex, say 3, and return a maximum stable set {1,3,5,8,10}, as
shown in Figure 2f.

In this example, the sub-graph induced by {1, . . . ,6} is a house, and 2 is a bad choice. In particular, 2 and 10 cannot
be in the same maximum stable set, so 2 must be discarded once 10 is selected. In the next section, we show that
Algorithm 1 with VSDP can discard any vertex that the algorithm discards with VLP while on an optimal trajectory;
therefore, a bad house is also necessary for it to fail. Indeed, Algorithm 1 using VSDP without the look-ahead can also
fail on this instance, by selecting 2 after 10.

The example also highlights the importance of using a solution from the relative interior of the optimal face to construct
VLP. The three cliques identified in Figure 2c are indeed essential for the sub-graph induced by {1, . . . ,6}, but they
aren’t the only essential cliques. The optimal dual solution that assigns unit weight to each of those cliques is optimal
for this sub-graph, but it is an extreme point of (LP-D) and not in the relative interior of the optimal face.
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(a) (b)

(c) (d)

(e) (f)

As indicated in Example 3.8, Lemma 3.3 and the proof of Proposition 3.4, when α(I) > α(I′)+wi, i is not on an
optimal trajectory and should be discarded. In the following subsection we show that, for generalized split, chordal and
co-chordal graphs, Algorithm 1 can detect and discard any such bad choice.

3.3 Look-Ahead

We next prove Theorem 2.10, which guarantees the algorithm’s performance on generalized split, chordal and co-
chordal graphs. For co-unipolar graphs, Theorem 2.10 requires the algorithm to be run at most twice, starting from two
neighbors. Intuitively, this ensures that at least one run of the algorithm starts from a member of one of the graph’s
clusters (and not its center). This ensures we obtain an optimal stable set, because after selecting this vertex, the
remaining graph is bipartite, and we apply Proposition 3.6.

Proof of Theorem 2.10(b). Consider G after Phase I, which is still co-unipolar, as we simply reduce the center and each
cluster. For a co-unipolar graph G, we can separate G into a center A and clusters B1, . . . ,Bk. Let S = {v1, . . . ,vt} be the
returned stable set and vi be the i-th selected vertex. Without loss of generality, suppose v1 ∈ B1; then all B2, . . . ,Bk and
some vertices in A are discarded, so G|N\(v1∪δv1 )

is a bipartite graph and S is a maximum stable set by Proposition 3.6.

Now suppose v1 ∈ A; without loss of generality, assume it has at least one neighbor u, which is in B1∪ . . .∪Bk. If S is a
maximum stable set, we are done; otherwise, we run Phase II again, and select u ∈ B1∪ . . .∪Bk in the first iteration.
Then we are back in the previous case.

For unipolar graphs, we apply the next lemma, which shows that in every iteration of Phase II of Algorithm 1, we can
stay on an optimal trajectory.

Lemma 3.9. Let G be a unipolar graph. For each iteration of Phase II of Algorithm 1 starting with the set of vertices I,
there exists a vertex u ∈ I such that

VLP(I) = VLP(I′)+wu,

where I′ is the set of remaining vertices after selecting u and step 7.
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Proof. Consider G after Phase I; every vertex in G belongs to a maximum stable set and VLP is constructed from a
strictly complementary optimal solution, so the first iteration of Phase II does not use the look-ahead. Let AN be the
center and B1

N , . . . ,B
k
N be the clusters of G. If in every iteration of Phase II we have VLP(N) = α(N) = VLP(I)+∑i∈S wi,

then the algorithm returns a maximum stable set.

For the sake of contradiction, suppose that in some iteration starting with vertex set I, we have VLP(I)> VLP(I′)+wu
for every u ∈ I, where I′ is the set of vertices remaining after u is selected and vertices are discarded in step 7. Let
AI ⊆ AN ,B1

I ⊆ B1
N ,B

2
I ,⊆ B2

N , . . . ,B
k
I ⊆ Bk

N be the center and clusters of G|I .

Claim. If u ∈ AI , then VLP(I) = VLP(I′)+wu.

Proof. Suppose there is some u∈ AI with VLP(I)> VLP(I′)+wu. Since u has not been discarded, VLP(I) = VLP(I \(u∪
δu))+wu. In other words, VLP(I \ (u∪δu))> VLP(I′), which implies that some essential clique of I in I \ (u∪δu∪ I′)
is discarded. That is, after u is selected and δu is discarded, there are two disjoint essential cliques, where each is
contained in the other’s neighbor set, and the algorithm discards one.

Let C1,C2 be these two essential cliques with C1∩C2 = /0. Since u ∈ AI , C1,C2 are not in AI and they belong to the
same cluster, say B1

I . Neither is an essential clique of G|I nor an essential clique of G contained in B1
N , otherwise,

the other would have been previously discarded. That is, there are two strict essential cliques K1,K2 of G such that
C1 ⊊ K1,C2 ⊊ K2 and u /∈ K1∪K2.

Suppose u is selected in the first iteration from N, and δu is discarded. Then consider C′1 := (B1
N \ δu)∩K1,C′2 :=

(B1
N \δu)∩K2. Without loss of generality, assume that vertices not in C′1∪C′2 with an essential clique in their neighbor

sets have been discarded. If C′1∩C′2 = /0, these two essential cliques are each contained in the other’s neighbor set, so
α(N)> α(N \ (u∪δu))+wu, which implies u is not an optimal choice, and contradicts the assumption that u belongs to
a maximum stable set. Hence, we assume there exists v ∈C′1∩C′2, which also implies v /∈ δu. However, v /∈C1∩C2 = /0.
If v ∈C1, since {v}∪C2 ⊆ K2, {v}∪C2 is an essential clique instead of C2 and we have a contradiction, so v /∈C1;
similarly, v /∈C2.

Hence, before C1,C2 become essential, v is discarded, implying its neighbor set contains an essential clique C. Assume
v is discarded in the iteration starting with J, where J ⊇ I. We consider three cases:

Case 1: C ⊆ AJ: since u ∈ AJ , either u ∈ C or C ⊆ δu. For the latter case, u is discarded in iteration J, so u /∈ I, a
contradiction. If u ∈C, then since C ⊆ δv, we know v ∈ δu, a contradiction.

Case 2: C ⊆ AJ ∪B1
J with C∩AJ ,C∩B1

J ̸= /0 : there exists a strictly essential clique K in AN ∪B1
N such that K ⊇C

and v /∈ K. Then K \ δu ̸= /0, otherwise u is not in any maximum stable set. Also, u /∈ K; otherwise, since
u /∈C ⊆ δv, C ⊆ K \{u} ⊆ δu, so either C is discarded when u is selected from I then v is not discarded, or u
is discarded together with v during iteration starting with J, a contradiction. Let C′ := (B1

N \δu)∩K ⊆ δv by
v ∈ B1

N . By the properties we have above, C′ ̸= /0 and C′ is an essential clique after u is selected in the first
iteration, so v is discarded.

Case 3: C ⊆ B1
J : there exists a strictly essential clique K in AN ∪B1

N such that K ⊇C, v /∈ K. If K∩AN ̸= /0, then this
case is equivalent to the previous one. Suppose K ⊆ B1

N ; then since v ∈ B1
N , we have K ⊆ δv, v would be

discarded in Phase I, and v /∈C′1∪C′2, a contradiction.

By the three cases above, v is discarded before C′1, C′2 are each contained in the other’s neighbor set. Since v ∈C′1∩C′2
is an arbitrary vertex, we can assume C′1∩C′2 = /0. Hence, VLP(N)> VLP(N \ (u∪δu))+wu and u is not an optimal
choice, a contradiction.

If every vertex u in I has VLP(I)> VLP(I′)+wu, the claim implies AI = /0. That is, for u ∈ Bi
I ̸= /0, we have VLP(I)>

VLP(I′) +wu. However, since AI = /0, I′ = I \ (δu ∪ u) = I \Bi
I . Since u was not previously discarded, VLP(I) =

VLP(I \ (δu ∪ u))+wu = VLP(I′)+wu, a contradiction. Hence, for each iteration, there is always a vertex u with
VLP(I) = VLP(I′)+wu.

For chordal graphs, we can again apply the proof of Proposition 3.6 to conclude that in such graphs we do not encounter
a house. Finally, for a co-chordal graph, we use the perfect elimination ordering [19, page 851] of its complement to
show that the algorithm returns an optimal stable set.
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3.4 LOOK-AHEAD MAY FAIL IN SOME PERFECT GRAPHS

Proof of Theorem 2.10(a). Consider first the case that G is unipolar. Suppose we are on an optimal trajectory and reach
I. If u ∈ I gives VLP(I)> VLP(I′)+wu, then u is not optimal and the look-ahead discards this vertex. If a vertex u is not
optimal and not discarded by the look-ahead, then α(I) = VLP(I) = VLP(I′)+wu > α(I′)+wu. For any later iteration,
suppose we have vertex set J remaining. If there exists v ∈ J with VLP(J) = VLP(J′)+wv, select it. Because u is a
suboptimal choice, in some iteration every vertex v ∈ J will have VLP(J)> VLP(J′)+wv, which contradicts Lemma 3.9.
Hence, if a suboptimal vertex is selected, the look-ahead always detects and discards it, so Algorithm 1 always returns a
maximum stable set for G by Proposition 3.4.

Suppose next that G is a chordal graph. By definition, it does not contain a house, since it cannot contain an induced
cycle of length four or more. Then the proof of Proposition 3.6 implies that Algorithm 1 has VLP(I) = VLP(I′)+wu for
every iteration and every valid choice u. Hence it returns a maximum stable set.

Finally, suppose G is a co-chordal graph. For the sake of contradiction, assume Algorithm 1 fails on G. That is, during
some iteration starting with I, u is selected and

α(I) = VLP(I) = VLP(I′)+wu > α(I′)+wu.

As in the proof of Lemma 3.9, we can assume Algorithm 1 keeps picking vertices satisfying VLP(I) = VLP(I′)+wu until
we reach an I where every u ∈ I has VLP(I)> VLP(I′)+wu. Consider the perfect elimination ordering of the chordal
graph G|I [19, page 851], and let v be the first vertex in the ordering. For G|I , consider I′ = I \ (δv∪{v}); by the perfect
elimination ordering, G|I′ is a clique and hence G|I′ is a stable set. Hence, no neighbors of a vertex in I′ contain an
essential clique of G|I′ . Algorithm 1 does not discard any vertex after δv is deleted from I and VLP(I) = VLP(I′)+wv, a
contradiction.

Although Theorem 2.10 only applies to certain subclasses of perfect graphs, Algorithm 1 does not require any knowledge
about the input graph beyond its perfectness, and it can be applied to any perfect graph. Moreover, in Section 5 we
introduce a variant of Algorithm 1 that can be applied to arbitrary, possibly imperfect graphs.

3.4 Look-Ahead May Fail in Some Perfect Graphs

Theorem 2.10 shows that Algorithm 1 returns a maximum stable set for generalized split, chordal and co-chordal graphs.
It is natural to wonder whether Algorithm 1 works for arbitrary perfect graphs. Unfortunately, the answer is negative, as
illustrated in the following example.
Example 3.10. Consider the perfect graph in Figure 3. Proposition 3.11 below shows that it is perfect but not
generalized split, chordal or co-chordal. As before, the yellow cliques represent the essential cliques given by a strictly
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Figure 3: Look-ahead counter-example.

complementary solution of (LP-D). A maximum stable set of this graph has size 9. As in Example 3.8, suppose 2,7,12
are selected; we then obtain the graph in Figure 4. It is not hard to see that any remaining vertex is a bad choice for the
same reason from Example 3.8. Thus, even with look-ahead, Algorithm 1 fails on this graph, and Algorithm 1 with
VSDP and look-ahead also fails to obtain an optimal stable set.

By generalizing Example 3.10 with longer paths, Algorithm 1 with a constant number of look-ahead steps can also be
made to fail on perfect graphs: In the example, after picking 2 and 7, 12 is a suboptimal choice. By adding steps to
the look ahead, we can detect that 14 is suboptimal choice and hence also 12 (after choosing 2 and 7). However, by
extending the paths 1−5, 6−10 and 11−15 to paths with length 2k and picking vertices incident to the leaves, we
need (k+1) steps in the look-ahead to detect a suboptimal choice.
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Figure 4: Look-ahead counter-example after selecting nodes 2,7,12.

The next proposition verifies that this graph and the one used in Example 3.8 are both perfect but not in the families
covered by our results.

Proposition 3.11. The graphs in Examples 3.8 and 3.10 are perfect but not generalized split, chordal, or co-chordal

Proof. Consider the graph G in Example 3.8. We first prove the perfectness. It is clear that G is 3-colorable by coloring
{1,4,6,8,10}, {2,5,7,9,11} and {3} differently, and the clique number of G is 3. Then, except for G, the components
of any other induced subgraph of G are made of isolated vertices, paths, even holes or containing a triangle, so their
chromatic numbers are 1,2,3 respectively. That is, the clique number of any subgraph of G equals to its chromatic
number, which implies the perfectness of G.

It is not hard to see that any induced subgraph of a generalized split graph is also generalized split. Let
S = {2,3,6,7,8,9,10,11} and G|S. G|S is shown to be not generalized split in [15]. Thus, G is not generalized
split.

Since G|{3,4,5,6} is an even hole, G is not chordal. Similarly, Ḡ|{1,2,10,11} is an even hole, so Ḡ is not chordal. Thus, G is
not chordal or co-chordal.

Now consider G in Example 3.10. It is 3-colorable by coloring {1,3,4,19,21}, {2,4,7,9,11,13,15,17,20},
{6,8,10,12,14,16,18} differently. Similar arguments as above apply; the clique number of all induced subgraphs of G
equal to its chromatic number, so G is perfect.

Notice that graph in Example 3.8 is an induced subgraph of G, so G is not generalized split. Similarly, it is not chordal
or co-chordal.

4 Rounding via SDP VFA

In the previous sections, we show that Algorithm 1 with VLP returns a maximum stable set for generalized split graphs,
chordal graphs, and co-chordal graphs. However, constructing VLP requires a strictly complementary solution of (LP-D),
which generally takes exponential time since there is a variable for each clique in G. In this section we show that
Algorithm 1 with VSDP inherits the performance guarantees we obtain for VLP. In particular, Algorithm 1 with VSDP
generates a maximum stable set for generalized split graphs, chordal graphs, and co-chordal graphs.

Throughout this section, G = (N,E) is a perfect graph; let (x∗,µ∗) denote a fixed pair of strictly complementary
solutions of (LP-P), (LP-D), let (x̄, X̄ , q̄, Q̄) be a fixed tuple of optimal solutions of (SDP-P), (SDP-D) in the relative
interior of the optimal face, and let t∗ be the optimal value these problems. Finally, let VLP and VSDP be the VFAs
constructed from these solutions.

Theorem 4.1. Let G = (N,E) be a perfect graph and let VLP and VSDP be as defined above. If Algorithm 1 with VLP
returns a maximum stable set of G, irrespective of which choices of valid arbitrary vertices are made in line 6, then
Algorithm 1 with VSDP also returns a maximum stable set.

Our main result, namely Theorem 2.11, is a consequence of Theorems 2.10 and 4.1. The key idea behind the proof of
Theorem 4.1 is to show that if S is on an optimal trajectory and I ⊆ N is the set of remaining vertices, then

VLP(I)−VLP(I\({i}∪δi)> wi,∀i ∈ I =⇒ VSDP(I)−VSDP(I\({i}∪δi)> wi,∀i ∈ I. (5)
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4.1 PROOF OF THEOREM 4.1

In particular, (5) shows that VSDP discards every vertex discarded by VLP and possibly more. By the first property of
Lemma 2.4, VSDP might discard some suboptimal vertices that VLP does not.

Roughly, the argument to prove (5) proceeds as follows; we provide the details below. When S is on an optimal
trajectory and VLP(I)−VLP(I \ ({i}∪δi) > wi, there is an essential clique C of G|I in δi∩ I; this C is a subset of an
essential clique C̃ of G. Given the LP solution µ∗, we construct an optimal solution (t∗,qLP,QLP) for (SDP-D), and
a vector pC̃ ∈ Rn with pC̃ ∈ Range(QLP). Since (q̄, Q̄) is in the relative interior, pC̃ ∈ Range(QLP) ⊆ Range(Q̄). By
analyzing the structure of (q̄, Q̄), we show that pC̃ ∈ Range(Q̄) implies VSDP(I)−VSDP(I \ ({i}∪δi))> wi.

4.1 Proof of Theorem 4.1

We first analyze Phase I of Algorithm 1 with VSDP.
Lemma 4.2. For any i ∈V , x̄i > 0 if and only if i is in a maximum stable set of G.

Proof. ( =⇒ ) Since G is a perfect graph, by (3) and the optimality of x̄, there exists a maximum stable set of G
including i. (⇐= ) For the sake of contradiction, suppose x̄i = 0. By (3), there exists an optimal solution (x∗,X∗) such
that x∗i = 1. Then, for any λ ∈ R, (x̄, X̄)+λ (x∗− x̄,X∗− X̄) is in the affine hull of the optimal face of (SDP-D). By
(x̄, X̄) being in the relative interior of the optimal face, (x̃, X̃) = (x̄, X̄)− ε(x∗− x̄,X∗− X̄) is in the optimal face for
ε > 0 small enough. But x̃i = x̄i− εx∗i < 0, which is not feasible to (SDP-D), contradiction.

Thus, for VSDP, Algorithm 1 discards all vertices that are not in any maximum stable set during Phase I. Hence, VLP
and VSDP reach the same set of vertices after Phase I, and it remains to analyze Phase II. We now show that an optimal
solution of (LP-D) can be used to produce an optimal solution of (SDP-D).
Lemma 4.3. Consider vectors b ∈ RN and pC ∈ RN for C ∈ C (G), with entries

bi =

{
0, if i = 0
∑C∋i µ∗C−wi, if i > 0

and [pC]i :=


√

µ∗C, if i = 0
−
√

µ∗C, if i ∈C
0, otherwise

(6)

Then M := ∑C∈C (G) pC p⊤C +Diag(b) is optimal for (SDP-D).

Proof. First we verify feasibility. By µ∗ being feasible for (LP-D), we know ∑C∋i µ∗C−wi ≥ 0, so Diag(b) is PSD. Since
each pC p⊤C is PSD, M is PSD. Notice that Mi j = 0 for i j /∈ E, i ̸= j, since no clique contains both i, j and so [pC p⊤C ]i j = 0.

Consider the blocks M =

(
t p⊤
p P

)
. Since Pii = ∑C∋i µ∗C +∑C∋i µ∗C−wi = 2∑C∋i µ∗C−wi and pi =−∑C∋i µ∗C, then

M is feasible for (SDP-D). Finally, t = ∑C∈C (G) µ∗C = t∗, so M is optimal.

The next lemma establishes when VSDP(I) = VSDP(S) for some S⊆ I.

Lemma 4.4. Let
(

A C⊤
C D

)
⪰ 0, with A ∈ Ss, C ∈ R(n−s)×s and D ∈ Sn−s, and let a ∈ Range(A) ⊆ Rs, d ∈ Rn−s.

Consider

vI := min

t :

 t a⊤ d⊤

a A C⊤
d C D

⪰ 0

= (a d)
(

A C⊤
C D

)†(a
d

)
,

vS := min
{

t :
(

t a⊤
a A

)
⪰ 0
}
= a⊤A†a.

Let r = rank(A) and assume that the upper r× r principal matrix is invertible. So we may write

A =

(
Ã C̃⊤

C̃ D̃

)
, Ã ∈ Sr

++, C̃ =UÃ ∈ R(s−r)×r, D̃ =UÃU⊤ ∈ Ss−r

for some U ∈ R(s−r)×r. Using that a ∈ Range(A), we may also write

a =

(
ã
d̃

)
, ã ∈ Rr, d̃ =Uã ∈ Rs−r, C = (C1 C2) , C1 ∈ R(n−s)×r,C2 ∈ R(n−s)×(s−r).

Then, vI = vS if and only if there exists some V ∈ R(n−r)×r such that
(

d̃
d

)
=V ã,

(
C̃
C1

)
=V Ã,

(
D̃ C⊤2
C2 D

)
⪰V ÃV⊤.
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4.1 PROOF OF THEOREM 4.1

Proof. (⇐= ) Assume such a V exists. The inequality vI ≥ vS always holds, so it remains to see that vS ≥ vI . Let t be

feasible for the SDP defining vS, i.e.,
(

t ã⊤

ã Ã

)
⪰ 0. Since

 t a⊤ d⊤

a A C⊤
d C D

=

(1 0
0 I
0 V

)(
t ã⊤

ã Ã

)(
1 0 0
0 I V⊤

)
+


0 0 0
0 0 0

0 0
(

D̃ C⊤2
C2 D

)
−V ÃV⊤

 ,

the above matrix is PSD, so t is also feasible for the SDP defining vI ; hence, vS ≥ vI .

( =⇒ ) Suppose now that vI = vS. Consider first the case that r = s, i.e., A is positive definite. Notice that if vI = vS,
then the same still holds if we replace D by D+P for any PSD matrix P. Hence, we may assume that S := D−CA−1C⊤
is also positive definite. Recall the inverse formula for a block matrix:(

A C⊤
C D

)−1

=

(
A−1 +A−1C⊤S−1CA−1 −A−1C⊤S−1

−S−1CA−1 S−1

)
.

Using vI = (a d)
(

A C⊤
C D

)−1(a
d

)
,vS = a⊤A−1a, we obtain

vI− vS = a⊤A−1C⊤S−1CA−1a−2a⊤A−1C⊤S−1d +d⊤S−1d

= ∥S−1/2CA−1a−S−1/2d∥2.

Since vI = vS, then d =CA−1a. The wanted matrix is V =

(
U

CA−1

)
.

Consider now the case that r = rank(A)< s. Let

vS̃ := min
{

t :
(

t ã⊤

ã Ã

)
⪰ 0
}
= ã⊤Ã−1ã.

By the first part of this proof, we get that vS = vS̃. Since vI = vS̃ and Ã ≻ 0, we are back in the positive definite

case, and we can find a matrix Ṽ ∈ R(n−r)×r. Letting V =

(
C̃
C1

)
Ã−1 =

(
U
Ṽ

)
, we have

(
d̃
d

)
= V ã,

(
C̃
C1

)
= V Ã,(

D̃ C⊤2
C2 D

)
⪰V ÃV⊤, as required.

The following lemma is the key to prove Theorem 4.1.
Lemma 4.5. Let G = (N,E) and consider Algorithm 1 applied to VLP and VSDP. Consider an arbitrary iteration of
Phase II on an optimal trajectory, starting with the selected set of vertices S and the set of remaining vertices I. Then
for J ⊊ I, if VLP(I)> VLP(J), we have VSDP(I)> VSDP(J).

Before proving Lemma 4.5, we first show that it implies Theorem 4.1.

Lemma 4.5 =⇒ Theorem 4.1. Let S = {v1, . . . ,vt} be a stable set returned by Algorithm 1 with VSDP, where v j is the
j-th vertex selected in line 6. We claim that v1, . . . ,vt are also valid choices of selected vertices when using Algorithm 1
with VLP. If we prove this claim, then S would be a maximum stable set by the assumption on Algorithm 1 with VLP.

Let Si = {v1, . . . ,vi−1} be the set of selected vertices and let ISDP
i ⊆ N \Si be the set of remaining vertices before vi

is selected by Algorithm 1 with VSDP. We have that Si+1 = Si ∪{vi} and ISDP
i+1 ⊆ ISDP

i \ (vi ∪ δvi). We will prove by
induction on i that Algorithm 1 with VLP can select the vertices in Si for the first i− 1 rounds, and that the set of
remaining vertices ILP

i is a superset of ISDP
i .

For the base case, ILP
1 , ISDP

1 are the sets of remaining vertices after Phase I of Algorithm 1. Since S1 = /0 is on an
optimal trajectory, the LP solution is strictly complementary, and the SDP solution is in the relative interior of the
optimal face, by Section 3.1 and Lemma 4.2 we have ILP

1 = ISDP
1 . Thus, Algorithm 1 with VLP can select v1 ∈ ILP

1 .

Assume now that Algorithm 1 with VLP selects the vertices in Si, and let ILP
i ⊇ ISDP

i be the set of remaining vertices.
Since vi ∈ ISDP

i ⊆ ILP
i , then we can select vertex vi in Algorithm 1 with VLP. Notice that (5) holds, as it is a special case

of Lemma 4.5. Hence, after vi is selected, any vertex in ISDP
i (a subset of ILP

i ) that is discarded using VLP can also be
discarded when using VSDP. It follows that ISDP

i+1 ⊆ ILP
i+1.
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4.1 PROOF OF THEOREM 4.1

Proof of Lemma 4.5. For the sake of contradiction, suppose that VSDP(I) = VSDP(J). The proof strategy consists of
constructing two matrices M1,M2 with M1 ⪰M2 but such that VLP(J) = VLP(I) implies M1 ̸⪰M2.

Let J′ ⊆ J be such that Q̄J′ is positive definite and rank(Q̄J′) = rank(Q̄J). By Lemma 4.4, there exists a matrix
V ∈ R|I\J′|×|J′| such that  t∗ q̄⊤J′ q̄⊤I\J′

q̄J′ Q̄J′ Q̄J′,I\J′
q̄I\J′ Q̄I\J′,J′ Q̄I\J′

=

 t∗ q̄⊤J′ q̄⊤J′V
⊤

q̄J′ Q̄J′ Q̄J′V⊤

V q̄J′ V Q̄J′ Q̄I\J′

 ,

where Q̄I\J′ ⪰V Q̄J′V⊤. Define δI := {i ∈ N \ I : ∃ j ∈ I, i j ∈ E(G)}; the above inequality implies
t∗ q̄⊤J′ q̄⊤J′V

⊤ q̄⊤
δI

q̄J′ Q̄J′ Q̄J′V⊤ Q̄J′,δI
V q̄J′ V Q̄J′ Q̄I\J′ Q̄I\J′,δI
q̄δI Q̄δI ,J′ Q̄δI ,I\J′ Q̄δI

⪰


t∗ q̄⊤J′ q̄⊤J′V
⊤ q̄⊤

δI
q̄J′ Q̄J′ Q̄J′V⊤ Q̄J′,δI

V q̄J′ V Q̄J′ V Q̄J′V⊤ Q̄I\J′,δI
q̄δI Q̄δI ,J′ Q̄δI ,I\J′ Q̄δI

 .

To simplify notation, let R :=
(
q̄J′ Q̄J′ Q̄J′V⊤

)
, and rewrite the inequality as

M1 :=


t∗ q̄⊤J′ q̄⊤J′V

⊤ q̄⊤
δI

R Q̄J′,δI
V q̄J′ V Q̄J′ Q̄I\J′ Q̄I\J′,δI
q̄δI Q̄δI ,J′ Q̄δI ,I\J′ Q̄δI

⪰M2 :=


t∗ q̄⊤J′ q̄⊤J′V

⊤ q̄⊤
δI

R Q̄J′,δI
V R Q̄I\J′,δI

q̄δI Q̄δI ,J′ Q̄δI ,I\J′ Q̄δI

 .

Our goal is to show that there exists ν ∈ R{0}∪J′∪(I\J′)∪δI such that ν⊤M1ν < ν⊤M2ν , which would be a contradiction.

We proceed to construct the vector ν . By the way VLP is constructed and VLP(J)< VLP(I), we know that there is an
essential clique C′ ∈ C (G|I) such that C′∩ J = /0. And there exists a strictly essential clique C̄ of G such that C′ ⊆ C̄.
With this C̄ and µ∗C̄ > 0, we construct a vector pC̄ ∈ R{0}∪N as in Lemma 4.3:

[pC̄]i :=


√

µ∗C̄, if i = 0;

−
√

µ∗C̄, if i ∈ C̄;

0, otherwise.

Let M be as defined in Lemma 4.3, where it is shown to be an optimal solution of (SDP-D) over G. By definition of
M, it is clear that pC̄ ∈ Range(M) by Lemma A.1. Let H (G) be the feasible set of (SDP-D) defined over G. Since(

t∗ q̄⊤

q̄ Q̄

)
is in the relative interior of the optimal face of H (G), or equivalently, the optimal face is the minimal face

of H (G) containing
(

t∗ q̄⊤

q̄ Q̄

)
, by [10, Lemma 4] we have

pC̄ ∈ Range(M)⊆ Range
(

t∗ q̄⊤

q̄ Q̄

)
.

For the rest of the proof, let Ξ be N \ (I∪δI), and consider the block structure

(
t∗ q̄⊤

q̄ Q̄

)
=


t∗ q̄⊤I q̄⊤

δI
q̄⊤

Ξ

q̄I Q̄I Q̄I,δI 0
Q̄δI Q̄δI ,I Q̄δI Q̄δI ,Ξ

q̄⊤
Ξ

0 Q̄Ξ,δI Q̄Ξ

 .

Let p̃C′ ∈ R{0}∪I∪Ξ be the restriction of pC̄ to {0} ∪ I ∪ Ξ. Since pC̄ ∈ Range
(

t∗ q̄⊤

q̄ Q̄

)
, then p̃C ∈

Range

 t∗ q̄⊤I q̄⊤
Ξ

q̄I Q̄I 0
q̄⊤

Ξ
0 Q̄Ξ

. Hence, there exists ỹ ∈ R{0}∪I∪Ξ such that p̃C =

 t∗ q̄⊤I q̄⊤
Ξ

q̄I Q̄I 0
q̄⊤

Ξ
0 Q̄Ξ

 ỹ. Consider the vec-

tors

ℓ :=

 1
x̃J′

x̃I\J′
x̃δI

 , ȳ :=

ỹ{0}
ỹJ′

ỹI\J′
0

 , ν(γ) = ȳ+ γℓ ∈ R{0}∪J′∪(I\J′)∪δI
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It remains to show that ν(γ)⊤M1ν(γ)< ν(γ)⊤M2ν(γ) for a suitable choice of γ .

Let us first evaluate M1ȳ and M2ȳ. Consider the equation

 t∗ q̄⊤I q̄⊤
Ξ

q̄I Q̄I 0
q̄⊤

Ξ
0 Q̄Ξ

 ỹ = p̃C. By replacing I by J′∪ (I \ J′) and

adding rows and columns corresponding to δI , we can rewrite this equation as
t∗ q̄⊤J′ q̄⊤J′V

⊤ q̄⊤
δI

q̄⊤
Ξ

q̄J′ Q̄J′ Q̄J′V⊤ Q̄J′,δI 0
V q̄J′ V Q̄J′ Q̄I\J′ Q̄I\J′,δI 0
q̄δI Q̄δI ,J′ Q̄δI ,I\J′ Q̄δI Q̄δI ,Ξ

q̄Ξ 0 0 Q̄Ξ,δI Q̄Ξ




ỹ{0}
ỹJ′

ỹI\J′
0
ỹΞ

= (
√

µ∗C̄︸ ︷︷ ︸
{0}

0︸︷︷︸
J′

−
√

µ∗C̄ · · · −
√

µ∗C̄︸ ︷︷ ︸
C′

0︸︷︷︸
I\J′\C′

∗· · ·∗︸ ︷︷ ︸
N\I

)⊤,

where ∗· · ·∗ represent irrelevant entries. Since ȳ =
(
ỹ{0} ỹJ′ ỹI\J′ 0

)
, then

M1ȳ =


t∗ q̄⊤J′ q̄⊤J′V

⊤ q̄⊤
δI

q̄J′ Q̄J′ Q̄J′V⊤ Q̄J′,δI
V q̄J′ V Q̄J′ Q̄I\J′ Q̄I\J′,δI
q̄δI Q̄δI ,J′ Q̄δI ,I\J′ Q̄δI

 ȳ = ( α︸︷︷︸
{0}

0︸︷︷︸
J′

−
√

µ∗C̄ · · · −
√

µ∗C̄︸ ︷︷ ︸
C′

0︸︷︷︸
I\J′\C′

∗· · ·∗︸ ︷︷ ︸
δI

)⊤,

for a constant α . While for M2, by [M1]J′,: ȳ = [R Q̄J′,δI ]ȳ = 0, the row dependence of M2 and ȳδI = 0, we have

M2ȳ = ( α︸︷︷︸
{0}

0︸︷︷︸
J′

0︸︷︷︸
C′

0︸︷︷︸
I\J′\C′

∗· · ·∗︸ ︷︷ ︸
δI

)⊤.

Since we are following the optimal trajectory, all vertices in δI are discarded, and I \ J contains an essential clique.

We now evaluate M1ℓ and M2ℓ. Since we are following an optimal trajectory and reach I, we know there exists a
maximum stable set containing no vertices in δI . Thus, by (3), there exists an optimal solution x̃, X̃ of (SDP-P) such that

x̃δI = 0. By complementary slackness,
(

t∗ q̄⊤

q̄ Q̄

)(
1
x̃

)
= 0. Also, since C̄ is strictly essential over G, C̄ \C′ ⊆ δI and

x̃δI = 0, x̃ j > 0 for some j ∈C′ ⊆ I \ J. Since ℓ :=
(

1 x̃⊤J′ x̃⊤I\J′ x̃⊤
δI

)⊤
, then ℓ j > 0 and ℓδI = 0. Since Q̄I,Ξ = 0,

then (
t∗ q̄⊤

q̄ Q̄

)(
1
x̃

)
= 0 =⇒

(
R Q̄J′,δI

V q̄J′ V Q̄J′ Q̄I\J′ Q̄I\J′,δI

)
ℓ= 0,

and by the row dependence of M2,

M1ℓ= ( λ︸︷︷︸
{0}

0︸︷︷︸
J′

0︸︷︷︸
C′

0︸︷︷︸
I\J′\C′

∗· · ·∗︸ ︷︷ ︸
δI

)⊤ = M2ℓ,

for some constant λ .

Let ν(γ) = y+ γℓ for γ > 0. We finally proceed to evaluate ν(γ)⊤M1ν(γ) and ν(γ)⊤M2ν(γ). Since ℓδI = x̃δI = 0,

ν(γ)⊤M1ν(γ) = ȳ⊤M1ȳ+2γℓ⊤M1ȳ+ γ
2ℓ⊤M1ℓ= ȳ⊤M1ȳ+2γα +2γ ∑

i∈C′

(
−
√

µ∗C̄

)
ℓi +0+λγ

2

and
ν(γ)⊤M2ν(γ) = ȳ⊤M2ȳ+2γℓ⊤M2ȳ+ γ

2ℓ⊤M2ℓ= ȳ⊤M2ȳ+2γα +λγ
2.

Since −
√

µ∗C̄ < 0, ℓ ≥ 0 and ℓ j = x̃ j > 0, j ∈C′ ⊆ I \ J, then ν(γ)⊤M1ν < ν(γ)⊤M2ν(γ) for large enough γ . This
contradicts the fact that M1 ⪰M2.

We emphasize that even though the analysis of Algorithm 1 with VSDP relies on VLP, there is no need to compute VLP in
practice.

5 Computational Experiments

In this section, we discuss computational experiments on a variant of Algorithm 1 applied to arbitrary graphs; we
detail this version in Algorithm 2. This algorithm variant does not assume that the VFA is tight, so it can be applied in
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Algorithm 2 Retrieving a stable set from an arbitrary VFA
Input: G = (N,E), a weight function w and a VFA V .
S← /0 and I← N ▷ Start with an empty stable set.
while I ̸= /0 do

i←
{

an isolated vertex or optimal leaf of G|I if one exists
argmax j∈I(V (I \ ({ j}∪δ j))+w j) otherwise

S← S∪{i} ▷ Select i to join the stable set.
I← I \ ({i}∪δi) ▷ Discard i and δi from remaining vertices.

Output: Return S, a stable set of G.

imperfect graphs. In particular, it does not discard vertices j for which V (I)>V (I \({ j}∪δ j))+w j, but instead selects
a vertex by maximizing V (I \ ({ j}∪δ j))+w j; this is how VFAs are typically used to generate heuristic solutions in
approximate DP. To reduce the number of VFA evaluations, Algorithm 2 selects isolated vertices or optimal leaves of
G|I whenever possible; the latter are leaves whose weight matches or exceeds that of their only neighbor.

We performed the experiments on a 2021 MacBook Pro with an 8-core Apple M1 Pro CPU and 16 GB of memory.
We solve the primal-dual pair (SDP-P), (SDP-D) using either the commercial solver COPT for dense graphs or the
SDP solver HALLaR [37] for sparse graphs; we implement Algorithm 2 in Julia. We solve all SDPs within a relative
precision of εSDP = 10−5. We evaluate VSDP using the quadratic minimization characterization from Lemma 2.7,
VSDP(S) = −miny∈RS(y⊤QSy− 2q⊤S y), including a regularization term λ∥y∥2 with λ = 10−4. We solve the VFA
quadratic minimization to a precision of εVFA = 10−6 with an iterative method, warm-started with the previous solution;
this characterization allows us to trade precision for efficiency. Note that it is possible to get better results by tuning the
precision parameters to each individual instance; however, we present results using uniform parameters for consistency.

In our first set of experiments, we test Algorithm 2 on special classes of perfect graphs. More precisely, we generate
chordal and co-chordal graphs using the random generators with algorithms "growing", "connecting" and "pruned"
from SageMath [45] with default parameters. We also generate uniformly random generalized split graphs using the
algorithm by McDiarmid and Yolov [36]. In total, we tested 300 chordal and co-chordal graphs (100 generated by each
algorithm) and 100 generalized split graphs, using the cardinality objective. Table 1 summarizes the results; for all
instances, we obtain an optimal solution, which agrees with our theoretical results.

In the second set of experiments, we test Algorithm 2 on graphs that are not necessarily perfect, including graphs
from DIMACS2 [29], GSet [48] DIMACS10 [6], and SNAP [31]; for DIMACS2, we use graph complements, as the
instances were designed for the maximum clique problem. As before, we use the cardinality objective. We compare
Algorithm 2 against the Benson-Ye (BY) rounding method [11] and the Walteros-Buchanan (WB) fixed-parameter
tractable algorithm [46]. We run BY on the same graphs as Algorithm 2, and WB on the complements, as it is designed
for the maximum clique problem. BY is randomized and inexpensive, so we run it |N| times as suggested in [11] and
report its best and average performance. For all three methods, we first apply a pre-processing step so that the graph is
connected and has no leaves: if it is disconnected, we consider each component separately, and if there is a leaf, we
select it. We implement BY and use the WB code provided in [46]. The latter is an exact algorithm taking exponential
time in the worst case, but it performs well in practice in many large instances. However, some instances are challenging
for WB; for more details, we refer the reader to [46]. We only include results for instances that are solved in 30 minutes
and leave the solution time blank otherwise.

Tables 2 and 3 respectively summarize the results for DIMACS2 (78 graphs) and GSet (71 graphs). Table 4 summarizes
the results for the larger instances from DIMACS10 (19 graphs) and SNAP (7 graphs). Overall, Algorithm 2 significantly
outperforms the BY average in every single instance, and also beats the BY best solution (often significantly) except
in instances san200-0-7-2 and san200-0-9-3 from DIMACS2. For these two instances, we can obtain an optimal
solution by tuning the parameters λ ,εVFA, but we do not include those results for consistency. WB returns the optimal
value whenever it terminates within the time limit, but does not terminate for many of our instances. We highlight in
bold the instances where Algorithm 2 matches α or the best known bound per [43, 46]. The performance is noteworthy
for the large instances; our algorithm matches α whenever this quantity is known, and otherwise outperforms BY by a
significant amount. Finally, note that the computational effort to run Algorithm 2 is typically much smaller than the
cost of solving the SDP.

6 Conclusion and Future Directions

We provide a novel rounding scheme for the Lovász theta function to solve the maximum stable set problem. Algorithm 1
relies on a VFA approximation constructed from the optimal solution of the SDP. Theorem 2.11 guarantees that
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Algorithm 1 paired with VFA VSDP solves the maximum stable set problem for several important subclasses of perfect
graphs, which asymptotically cover almost all perfect graphs. Only the initial SDP needs to be solved to run the
algorithm. To the best of our knowledge, this is the only known rounding strategy for the Lovász theta function that
recovers a maximum stable set for large subclasses of perfect graphs.

Our computational experiments show that Algorithm 2, a simplified variant of Algorithm 1, works well in practice.
Algorithm 2 recovers the maximum stable set for all the random instances of perfect graphs we tested. The algorithm
performs very well even for imperfect graphs, matching the best-known bound in many of the instances we tested.
We believe that Algorithm 2 should perform well on graphs for which the theta function ϑ(G) is close to the stability
number α(N). Importantly, the computational cost of our rounding procedure is much lower than the cost of solving
the SDP with a state-of-the-art method.

In this paper we rely on a VFA constructed from the solution of (SDP-D). Unfortunately, it is known that there are
graphs for which ϑ(G) is far from α(N), and our method may not perform as well in such instances. One avenue of
future research involves investigating the use of alternative VFAs that may work better for such instances.

Furthermore, none of our computational experiments use look-ahead. We conjecture that the requirement of using
look-ahead is only an artifact of our proof technique, and that Algorithm 1 without look-ahead still returns an optimal
stable set for generalized split graphs, chordal, and co-chordal graphs.

Our analysis of VSDP uses the LP-based VFA VLP. The need for VLP comes from its combinatorial interpretation, and
we do not have a similar interpretation for VSDP. An interesting future direction is finding a combinatorial interpretation
of VSDP, or perhaps constructing a different VFA that optimizes the stable set problem for a larger family of perfect
graphs.

Further research includes applying similar techniques to related problems, such as the dynamic stable set problem
proposed in [38].

Generation algorithm |N| #graphs optimal%

Chordal
growing 20 20 100
growing 50 20 100
growing 100 20 100
growing 200 20 100
growing 500 20 100

connecting 20 20 100
connecting 50 20 100
connecting 100 20 100
connecting 200 20 100
connecting 500 20 100

pruned 20 20 100
pruned 50 20 100
pruned 100 20 100
pruned 200 20 100
pruned 500 20 100

Co-Chordal
growing 20 20 100
growing 50 20 100
growing 100 20 100
growing 200 20 100
growing 500 20 100

connecting 20 20 100
connecting 50 20 100
connecting 100 20 100
connecting 200 20 100
connecting 500 20 100

pruned 20 20 100
pruned 50 20 100
pruned 100 20 100
pruned 200 20 100
pruned 500 20 100

Generalized Split
McDiarmid&Yolov 20 20 100
McDiarmid&Yolov 50 20 100
McDiarmid&Yolov 100 20 100
McDiarmid&Yolov 200 20 100
McDiarmid&Yolov 500 20 100

Table 1: Random instances of chordal and co-chordal graphs generated using [45] with default parameters, and random instances of generalized split graphs generated
using [36]. Algorithm 2 returns the optimal solution for every instance tested.
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Graph Solution value Time (s)
Name |N| |E| ϑ α Alg.2 BYavg BYbest WB SDP Alg.2 BYtotal WB

MANN-a27 378 702 132.77 126 126 113.2 124 126 7.92 1.02 0.02 0.16
MANN-a45 1035 1980 356.05 345 343 307.06 339 345 38.89 10.76 0.14 129.97
MANN-a81 3321 6480 1126.64 1100 1098 985.88 1089 1100 543.92 151.41 1.91 55958.3
MANN-a9 45 72 17.48 16 16 14.64 16 16 0.2 1.99 0.06 <0.01
brock200-1 200 5066 27.46 21 19 7.11 13 21 3.4 0.85 0.05 12.25
brock200-2 200 10024 14.23 12 10 2.66 6 12 18.87 0.57 0.08 0.19
brock200-3 200 7852 18.82 15 13 4.22 8 15 9.59 0.65 0.06 0.99
brock200-4 200 6811 21.29 17 14 4.73 9 17 6.93 0.74 0.05 3.22
brock400-1 400 20077 39.7 27 22 6.4 12 142.46 2.98 0.3
brock400-2 400 20014 39.56 29 21 6.46 12 150.39 3.04 0.32
brock400-3 400 20119 39.48 31 24 6.57 12 142.73 2.66 0.31
brock400-4 400 20035 39.6 33 22 6.57 12 143.57 3.73 0.32
brock800-1 800 112095 42.22 23 20 3.78 9 183.06 10.32 3.34
brock800-2 800 111434 42.47 24 18 3.78 9 177.83 10.85 3.31
brock800-3 800 112267 42.24 25 19 3.66 9 180.22 10.51 3.37
brock800-4 800 111957 42.35 26 20 3.58 9 177.56 11.53 3.34
c-fat200-1 200 18366 12 12 12 3.46 12 12 44.17 0.81 0.16 <0.01
c-fat200-2 200 16665 24 24 24 23.91 24 24 0.45 0.27 0.16 <0.01
c-fat200-5 200 11427 60.35 58 58 31.38 58 58 1.14 0.04 0.1 <0.01

c-fat500-10 500 78123 126 126 126 114.32 126 126 12.40 1.1 1.66 0.02
c-fat500-1 500 120291 14 14 14 3.18 14 14 4.17 1.83 2.12 <0.01
c-fat500-2 500 115611 26 26 26 5.86 26 26 18.12 1.27 2.03 <0.01
c-fat500-5 500 101559 64 64 64 59.12 64 64 201.85 0.84 1.99 <0.01

c1000.9 1000 49421 123.49 ≥ 68 62 18.42 33 675.64 32.1 1.88
c125.9 125 787 37.81 34 34 21.76 32 3.24 0.28 <0.01 0.45

c2000.5 2000 999164 44.87 16 14 1.84 7 1556.79 117.96 82.91
c2000.9 2000 199468 178.93 ≥ 80 68 16.41 31 35044.21 272.68 19.54
c250.9 250 3141 56.24 44 40 21.36 31 6.53 0.75 0.03

c4000.5 4000 3997732 64.57 18 15 1.68 6 518753.57 4840.99 680.11
c500.9 500 12418 84.2 ≥ 57 52 20.51 35 49.55 4.78 0.25

dsjc1000_5 1000 249674 31.89 15 12 2.03 6 15 13610.94 75.32 9.63 3045.79
dsjc500_5 500 62126 22.74 13 11 2.31 6 13 890/11 9.96 1.11 179.96

gen200_p0.9_44 200 1990 44.01 44 38 22.66 38 5.10 0.98 0.02 361.19
gen200_p0.9_55 200 1990 55 55 55 54.7 55 1.81 0.24 0.02 172.09
gen400_p0.9_55 400 7980 55 55 45 20.88 33 72.46 1.55 0.14
gen400_p0.9_65 400 7980 65.02 65 44 21.18 34 28.22 3.01 0.16
gen400_p0.9_75 400 7980 75 75 75 74.54 75 44.17 1.66 0.14
hamming10-2 1024 5120 512 512 512 512 512 0.1 4.07 0.34 8.62
hamming10-4 1024 89600 51.2 ≥ 40 35 3.56 18 104.78 18.7 3.75
hamming6-2 64 192 32 32 32 32 32 32 0.11 0.01 <0.01 <0.01
hamming6-4 64 1312 5.33 4 4 1.53 3 4 0.07 0.01 <0.01 <0.01
hamming8-2 256 1024 128 128 128 128 128 128 0.05 0.21 0.02 0.05
hamming8-4 256 11776 16 16 16 2.25 9 16 34.76 0.46 0.12 6.83

johnson16-2-4 120 1680 8 8 8 2.75 6 8 0.33 0.01 0.01 3.33
johnson32-2-4 496 14880 16 16 16 3.87 12 45.22 0.06 0.32
johnson8-2-4 28 168 4 4 4 2.11 4 4 0.02 2.22 0.07 0.01
johnson8-4-4 70 560 14 14 14 5.74 14 14 0.06 0.09 <0.01 <0.01

keller4 171 5100 14.01 11 11 2.95 7 11 2.77 1.2 0.04 0.82
keller5 776 74710 31 27 21 3.82 12 79.41 4.34 2.26
keller6 3361 1026582 66.89 59 47 9.49 39 9662.47 1275.15 147.79

p-hat1000-1 1000 377247 17.61 10 9 1.68 6 10 241.39 26.67 14.36 54.62
p-hat1000-2 1000 254701 55.61 44 19.14 38 10622.85 49.4 10.32
p-hat1000-3 1000 127754 84.8 63 24.8 50 6577.31 27.14 5.03
p-hat1500-1 1500 839327 22.01 12 10 1.61 5 12 663.11 95.44 50.08 1122.13
p-hat1500-2 1500 555290 77.56 65 63 26.04 53 66738.36 171.87 35.82
p-hat1500-3 1500 277006 115.43 94 91 34.58 74 68850.02 623.32 32.34
p-hat300-3 300 11460 41.17 36 34 16.45 29 38.51 7.22 0.73 167.74
p-hat500-1 500 93181 13.07 9 8 1.75 6 32.59 30.22 1.79 0.54
p-hat500-2 500 61804 38.97 36 34 17.72 34 1492.97 53.84 1.33 208.03
p-hat500-3 500 30950 58.57 50 48 22.28 42 1100.74 35.55 0.66
p-hat700-1 700 183651 15.12 11 8 1.67 7 95.68 67.09 4.94 8.09
p-hat700-2 700 122922 49.02 44 43 21.45 39 4091.29 155.49 4.69
p-hat700-3 700 61640 72.7 62 62 26.98 54 4256.37 2.84 2.10

san1000 1000 249000 15 15 10 1.67 8 75.06 22.29 16.00
san200-0-7-1 200 5970 30 30 30 30 30 5.12 0.95 0.06 674.78
san200-0-7-2 200 5970 18 14 17.95 18 7.39 2.14 0.05
san200-0-9-1 200 1990 70 70 70 70 70 0.78 1.34 0.05 3.82
san200-0-9-2 200 1990 60 60 60 60 60 0.68 0.96 0.04 130.23
san200-0-9-3 200 1990 44 37 43.88 44 1.07 2.04 0.02 1351.19
san400-0-5-1 400 39900 13 13 13 12.92 13 24.38 20.09 0.63
san400-0-7-1 400 23940 40 40 40 40 40 219.62 9.33 0.54
san400-0-7-2 400 23940 30 30 30 30 30 245.79 18.95 0.48
san400-0-7-3 400 23940 22 16 4.15 9 275.76 0.14 0.36
san400-0-9-1 400 7980 100 100 100 100 100 12.80 9.56 0.22
sanr200-0-7 200 6032 23.84 18 16 5.76 12 5.76 1.99 0.10 4.89
sanr200-0-9 200 2037 49.3 42 41 21.92 33 0.75 0.36 0.02 966.90
sanr400-0-5 400 39816 20.32 13 12 2.49 7 31.23 11.08 0.63 12.54
sanr400-0-7 400 23931 34.28 21 19 5.27 10 247.17 20.65 0.66

Table 2: Comparison of Algorithm 2 with Benson-Ye (BY) and Walteros-Buchanan (WB) on graphs from the DIMACS2 dataset [29]. All instances are complemented
first; |E| is the number of edges after taking the complement. Algorithm 2 reaches optimality or the best known bound for bolded instances. We run the randomized BY
method |N| times and report the average and best value obtained.
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Graph Solution value Time (s)
Name |N| |E| ϑ Alg.2 BYavg BYbest WB SDP Alg.2 BYtotal WB

G1 800 19176 145.03 86 34.61 54 144.62 5.26 0.95
G2 800 19176 145.35 86 34.38 54 144.35 2.65 1.26
G3 800 19176 145.3 86 34.25 57 136.46 2.83 1.01
G4 800 19176 145.37 85 34.87 54 142.12 2.29 0.86
G5 800 19176 145.36 85 34.91 53 139.21 2.52 0.73
G6 800 19176 145.03 86 34.1 55 147.05 2.49 0.76
G7 800 19176 145.35 86 34.43 54 148.82 3.1 1.27
G8 800 19176 145.3 86 34.21 56 144.48 3.21 0.75
G9 800 19176 145.37 85 34.58 54 142.7 2.42 0.8
G10 800 19176 145.36 85 34.83 53 137.69 2.39 0.75
G11 800 1600 400.02 400 400 400 400 2.21 1.55 0.14 0.27
G12 800 1600 400.01 400 400 400 400 0.13 0.11 0.09 0.28
G13 800 1600 398.42 384 381.42 384 1.37 0.17 0.09
G14 800 4694 279 279 275.45 279 42.65 0.34 0.17
G15 800 4661 283.85 283 270.32 282 220.98 26.45 0.18
G16 800 4672 285.16 285 266.85 284 220.98 81.01 0.24
G17 800 4667 286.23 286 271.54 285 191.85 24.56 0.18
G18 800 4694 279 279 275.45 279 41.01 0.27 0.17
G19 800 4661 283.85 283 269.63 283 226.4 27.16 0.19
G20 800 4672 285.16 285 267.93 285 224.62 78.44 0.19
G21 800 4667 286.23 286 269.91 286 191.94 24.94 0.21
G22 2000 19990 578.51 410 238.82 305 377.25 36.83 3.74
G23 2000 19990 577.93 415 237.18 299 378.67 33.63 4.21
G24 2000 19990 580.01 411 239.74 308 378.68 35.27 3.78
G25 2000 19990 578.09 406 237.85 301 379.84 33.88 4.08
G26 2000 19990 577.99 411 238.09 299 368.94 35.1 3.86
G27 2000 19990 578.51 410 238.37 309 366 33.38 6.37
G28 2000 19990 577.93 415 238.72 300 367.88 34.05 3.95
G29 2000 19990 580.01 411 239.24 303 369.62 37.82 3.77
G30 2000 19990 578.09 406 237.12 301 370.36 38.12 4.42
G31 2000 19990 577.99 411 237.74 301 371.64 34.09 4.02
G32 2000 4000 1000 1000 1000 1000 1000 0.35 0.64 0.53 20.95
G33 2000 4000 996.04 960 945.7 960 191.85 304.3 0.55
G34 2000 4000 1000 1000 1000 1000 1000 0.27 0.56 0.52 20.44
G35 2000 11778 718.27 718 693.53 716 378.97 0.89 1.13
G36 2000 11766 696.03 695 671.48 695 586.57 101.99 1.11
G37 2000 11785 708.02 708 687.27 707 306.7 0.95 1.16
G38 2000 11779 716.02 716 694.83 715 298.5 0.91 1.11
G39 2000 11778 718.27 718 693.53 716 372.92 1.17 1.12
G40 2000 11766 696.03 695 670.97 695 571.55 103.25 1.1
G41 2000 11785 708.02 708 687.27 707 299.61 1.04 1.13
G42 2000 11779 716.02 716 694.83 715 306.85 1.22 1.11
G43 1000 9990 280.62 199 114.89 151 42.47 6.6 0.72
G44 1000 9990 280.58 206 117.66 152 42.35 4.72 0.68
G45 1000 9990 280.19 198 115.24 149 41.16 5.03 1.03
G46 1000 9990 279.84 199 115.75 155 40.47 7.43 0.66
G47 1000 9990 281.89 203 117.81 152 40.65 4.91 0.66
G48 3000 6000 1500 1500 1500 1500 1500 0.48 142.93 1.18 23.40
G49 3000 6000 1500 1500 1500 1500 1500 0.47 0.86 1.17 23.99
G50 3000 6000 1494.06 1440 1418.94 1440 226.4 1104.64 1.27
G51 1000 5909 349.01 349 333.54 348 184.94 0.38 0.29
G52 1000 5916 348.43 348 332.37 348 220.98 2.16 0.36
G53 1000 5914 348.39 346 324.99 346 255.35 0.4 0.29
G54 1000 5916 341.01 341 330.08 341 120.39 23.68 0.29
G55 5000 12498 2324.17 2172 1877.34 2060 120.82 19.77 3.73
G56 5000 12498 2324.17 2172 1877.34 2060 124.67 18.9 3.7
G57 5000 10000 2500 2500 2500 2500 0.96 1.87 3.53
G58 5000 29570 1782.62 1782 1714.53 1778 1291.86 8.22 7.62
G59 5000 29570 1782.62 1782 1714.53 1778 1286.69 7 6.9
G60 7000 17148 3265.04 3056 2643.67 2883 251.85 47 7.53
G61 7000 17148 3265.04 3056 2643.67 2883 246.22 47.75 8.32
G62 7000 14000 3500 3500 3500 3500 2.89 3.78 6.93
G63 7000 41459 2493.42 2486 2381.93 2484 1831.07 21.6 13.96
G64 7000 41459 2493.42 2486 2381.93 2484 6426.76 21.35 14.05
G65 8000 16000 4000 4000 4000 4000 2.97 199.94 8.53
G66 9000 18000 4500 4500 4500 4500 4.46 239.33 11.19
G67 10000 20000 5000 5000 5000 5000 3.32 291.93 13.94
G70 10000 9999 6077.24 6077 6077 6077 0.05 <0.01 <0.01
G72 10000 20000 5000 5000 5000 5000 4.61 296.21 14.32
G77 14000 28000 7000 7000 6999.5 7000 5.34 21.42 28.55
G81 20000 40000 10000 10000 10000 10000 11.28 1046.98 56.23

Table 3: Same experiments as Table 2 using graphs in the GSet dataset [48]
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Graph Solution value Time (s)
Name |N| |E| ϑ α Alg.2 BYavg BYbest WB SDP Alg.2 BYtotal WB

DIMACS10

uk 4824 6837 2286.98 2173 2066.26 2115 53.32 18.33 2.68
data 2851 15093 690.01 683 621.34 674 118 5.07 2.37

fe_4elt2 11143 32818 3631.78 3544 2780.99 3239 371.03 93.07 24
vsp_p0291_seymourl_iiasa 10498 53868 6301.12 6301 6301 6232.51 6301 753.19 6.57 20.62

cti 16840 48232 8198.1 8083 7798.45 8080 3420.47 152.84 68.99
fe_sphere 16386 49152 5462.00 5462 5462 4279.16 5462 49.70 2575.14 51.34

cs4 22499 43858 9738.86 8987 8099.92 8273 534.88 2221.8 84.03
hi2010 25016 62063 11022.07 11012 10743.45 10926 1464.83 81.59 21.19
ri2010 25181 62875 10819.96 10792 10460.01 10653 1281.81 1307.78 82.03
vt2010 32580 77799 15127.13 15118 14826.15 14980 1564.35 1287.42 103.47
nh2010 48837 117275 22890.74 22878 22452.91 22687 2467.79 3164.02 170.91

delaunay_n14 16384 49122 5230.5 5132 4141.92 4503 548.09 229.26 54.14

SNAP

ca-CondMat 23133 93497 9612.17 9612 9612 9477.4 9585 8328.38 29.85 47.59
p2p-Gnutella31 62586 76950 47974 47974 47974 47974 47974 47974 0.13 <0.01 <0.01 <0.01

Oregon-2 11806 32730 9889 9889 9889 9888.94 9889 9889 2.53 5.01 0.39 <0.01
p2p-Gnutella25 22687 30751 17116 17116 17116 17116 17116 17116 0.02 <0.01 <0.01 <0.01
p2p-Gnutella24 26518 35828 19872 19872 19872 19872 19872 19872 0.01 <0.01 <0.01 <0.01
as-caida_G_001 31379 32955 29037 29037 29037 29037 29037 29037 1.13 <0.01 <0.01 <0.01
p2p-Gnutella30 36682 48507 28094 28094 28094 28094 28094 28094 0.1 <0.01 <0.01 <0.01

Table 4: Same experiments as in Table 2, using graphs from the DIMACS10 and SNAP datasets [6, 31]
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A Additional proofs

Lemma A.1. Given fixed Q ∈ Sn
+, q ∈ Rn, there exists ϕ > 0 such that ϕqq⊤ ⪯ Q if and only if q ∈ Range(Q).

Proof. Suppose there exists ϕ > 0 such that ϕqq⊤ ⪯ Q. For contradiction, assume q /∈ Range(Q); then q = a+ b,
where a ∈ Range(Q) and b ∈ Null(Q)\{0} by the orthogonal decomposition. Then

0 < ϕ∥b∥2
2= ϕb⊤qq⊤b≤ b⊤Qb = 0,

which gives a contradiction.

Suppose q ∈ Range(Q); then we can write q = Qy for some y. By the singular value decomposition, there is an
orthonormal matrix U and a diagonal matrix D such that Q = UDU⊤. Without loss of generality, assume D11 ≥
. . .Drr > 0, for r := rank(Q). Thus, we have

U⊤qq⊤U = DU⊤yy⊤UD,

where [U⊤qq⊤U ]i j = 0 if i > r or j > r. Hence, U⊤qq⊤U ⪯ ϕD for some ϕ > 0, and ϕ−1qq⊤ ⪯UDU⊤.
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