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Introduction

Given a large n and an n-by-n symmetric matrix X , can we write it as

X = L+ S ,

where L is a low-rank symmetric positive semidefinite (PSD) matrix and S is
a sparse symmetric matrix? If so, how to find such L and S?

Why do we need to consider this, or why do we want to write X in this form?
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Motivation of Low-Rank Plus Sparse Matrices
Decomposition

Let n = 1, 000, 000, X is an n-by-n symmetric matrix and
X = L∗ + S∗ ∈ Rn×n.

Since L∗ is a low-rank PSD matrix, we can write it as L = VV⊤ where
rank(L) = r ≪ n, V ∈ Rn×r . Since S∗ is sparse, we assume it has m ≪ n
nonzero entries and we use another 2m units to store the indices of them.

Then we only need to store 3m + rn numbers to have all information of X
instead of n2/2.

Also the decomposition increases the efficiency for matrix operations. For
example, if we have a vector y ∈ Rn and compute Xy , the direct
computation costs 2n2 − n operations. But if we consider VV⊤y + S∗y , it
takes approximately 4rn + 2m − r − n − 1 ≪ 2n2 − n operations.
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Factor Analysis Model

Factor Analysis Model in Statistics describes the difference of observed X ∈ Rn1×n2

and the mean values M ∈ Rn1×n2 as X −M = UF + ϵ, where U ∈ Rn1×r ,
F ∈ Rr×n2 , E[F ] = 0, cov(F ) = I , ϵ is an error and F and ϵ are independent. We
assume U to have a low rank and the error term ϵ has independent columns. Then

cov(X −M) = Ucov(F )U⊤ + cov(ϵ) = UU⊤ +Diag(d)

for some d ∈ Rn1 .
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Low-Rank Plus Diagonal Decomposition

Given A ∈ Sn, we want to solve

min
x∈Rn,L∈Sn

rank(L)

s.t. A = L+Diag(x)

L ⪰ 0
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Low-Rank Plus Diagonal Decomposition

By changing the sign of the variable, given A ∈ Sn, we want to solve

min
x∈Rn

rank(A+Diag(x))

s.t. A+Diag(x) ⪰ 0.

By [Fazel, 2002], we may relax the problem by replacing the rank(·) by its convex
envelope ∥·∥∗ and get:

min
x∈Rn

∥A+Diag(x)∥∗

s.t. A+Diag(x) ⪰ 0

By A+Diag(x) ⪰ 0, we have

min∥A+Diag(x)∥∗= min tr(A+Diag(x)) = min tr(Diag(x)) = min1⊤x

Then we get the Minimum Trace Factor Analysis (MTFA) problem:

min 1⊤x

s.t. A+Diag(x) ⪰ 0
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MaxCut as MTFA [Goemans and Williamson, 1995]

Given a simple graph G := ([n],E ), and a weight matrix W ∈ Sn, then the
MaxCut problem can be represented as:

max
1

4

∑
i∈V

∑
j∈V

Wij(1− uiuj) s.t. u ∈ {1,−1}n.

Then MaxCut problem can be relaxed as

max − 1

4
tr(WX )

(
+
1

4
1
⊤W1

)
s.t. diag(X ) = 1,

X ⪰ 0

and its dual is defined as:

min 1⊤y

(
+
1

4
1
⊤W1

)
s.t.

1

4
W +Diag(y) ⪰ 0,

which is in the form of MTFA.
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Equivalent MTFA

By changing the sign of the variable, the MTFA problem:

min 1
⊤x s.t. A+Diag(x) ⪰ 0

is equivalent to

max ⟨1, y⟩
s.t. L+Diag(y) = A

L ⪰ 0

y ∈ Rn

(MTFA)

whose dual is defined as

min ⟨A,X ⟩
s.t. diag(X ) = 1

X ⪰ 0.

(MTFAD)
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MTFA Theorem

Theorem 1.1 ([Riccia and Shapiro, 1982])

When an MTFA instance has a feasible solution, it has a unique optimal solution.
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Three Problems [Saunderson, J. and Chandrasekaran, V.
and Parrilo, P. A. and Willsky, A. S., 2012]

1 Suppose X ∗ ∈ Sn can be written in the form of X ∗ = L∗ +Diag(y∗), where
L∗ is symmetric positive semidefinite. What properties or conditions of
(L∗, y∗) will ensure that (L∗, y∗) is the unique optimal solution of (MTFA)
with the input A = X ∗?
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Three Problems [Saunderson, J. and Chandrasekaran, V.
and Parrilo, P. A. and Willsky, A. S., 2012]

2 For a closed convex set C , a face F of C is a closed convex subset of C such
that

u, v ∈ C , α ∈ (0, 1) and αu + (1− α)v ∈ F =⇒ u, v ∈ F .

A face is proper if F ̸= C and F ̸= ∅.
Recall that every face of Sn+, FU , is by a subspace U of Rn, where

FU = {X ⪰ 0 : Null(X ) ⊇ U}.

We have that every face of En, the elliptope (the set of correlation
matrices:X ∈ Sn+, diag(X ) = 1), is in the form

En ∩ FU = {X ⪰ 0 : Null(X ) ⊇ U , diag(X ) = 1},

where U is a subspace of Rn. However, for some subspaces U of Rn, the set
En ∩ FU is empty. For example, consider U = span{e1}, there is no X ∈ En
such that Null(X ) ⊇ U , so En ∩ FU = ∅. Thus, another problem is, which
subspaces define a nonempty face of En?
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Three Problems [Saunderson, J. and Chandrasekaran, V.
and Parrilo, P. A. and Willsky, A. S., 2012]

3 A centered (degenerate) ellipsoid in Rn is a set in the form: given A ∈ Sn+:

Λ := {x ∈ Rn : x⊤Ax ≤ 1},

We say a centered ellipsoid passing through x ∈ Rn if x⊤Ax = 1.
Consider the lemma:

Lemma 2.1 ( [Saunderson, J. and Chandrasekaran, V. and
Parrilo, P. A. and Willsky, A. S., 2012])

Suppose V is a k × n matrix with row space V. If there exists a centered
ellipsoid in Rk passing through each column (which is a point in Rk) of
V , then there exists a centered ellipsoid such that for every matrix W
with row space V, this ellipsoid passes through all columns of W .

For which subspaces V of Rn, do there exist a positive integer k and a k × n
matrix V with row space V and a centered ellipsoid passing through all its
columns?
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Recoverability, Realizability and Ellipsoid Fitting

Definition 2.2 ( [Saunderson, J. and Chandrasekaran, V. and Parrilo,
P. A. and Willsky, A. S., 2012])

1 A subspace U of Rn is diagonally recoverable by MTFA if for every y∗ ∈ Rn

and every L∗ ∈ Sn+ with column space U , (L∗, y∗) is the unique optimal
solution of (MTFA) with input A = Diag(y∗) + L∗.

2 A subspace U of Rn is diagonally realizable if there exists a correlation matrix
Q ∈ En such that Null(Q) ⊇ U .

3 A subspace V of Rn has the ellipsoid fitting property if there exists V ∈ Rk×n

with row space V such that there is a centered ellipsoid in Rk passing
through each column of V .
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Equivalence

Proposition 2.3 ( [Saunderson, J. and Chandrasekaran, V. and Parrilo,
P. A. and Willsky, A. S., 2012])

Let U be a subspace of Rn, then the followings are equivalent:

1 U is diagonally recoverable.

2 U is diagonally realizable.

3 U⊥ has the ellipsoid fitting property.

Proposition 2.4 (Gong 2023)

A subspace U of Rn is diagonally recoverable if and only if there exists y∗ ∈ Rn

and L∗ ∈ Sn with column space U such that (L∗, y∗) is the unique optimal
solution of (MTFA) with input A = Diag(y∗) + L∗.
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Low-Rank Plus Tridiagonal Decomposition

Given u ∈ Rn, v ∈ Rn−1, we define TriDiag(u, v) : Rn ⊕ Rn−1 → Sn, such that

TriDiag(u, v) =



u1 v1

v1
. . .

. . . 0
. . .

. . .
. . .

0
. . .

. . . vn−1

vn−1 un


Its adjoint is defined as:

tridiag(X ) :=

[
diag(X )
bidiag(X )

]
,

where bidiag(X ) := 2


X12

X23

...
X(n−1)n

 .
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Definition 3.1 (Low-Rank Plus Tridiagonal Decomposition)

Given A ∈ Sn, we want to solve

min
x∈Rn,L∈Sn

rank(L)

s.t. A = L+ TriDiag(u, v)

L ⪰ 0
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Motivations

(Rough) Truss Design:

Time-Dependent Models

General chain-like Models

Banded symmetric matrices with bandwidth one
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Relaxations

By relaxing rank to ∥·∥∗ and changing the sign of variables:

min 1⊤u

s.t. TriDiag(u, v) ⪰ −A

u ∈ Rn

v ∈ Rn−1.
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Relaxations

Adding regularizations on v : for λ ≥ 0,

min 1⊤u + λ∥v∥1
s.t. TriDiag(u, v) ⪰ −A

u ∈ Rn

v ∈ Rn−1.
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Tridiagonal Perturbation

min 1⊤u + λ1⊤t

s.t. TriDiag(u, v) ⪰ −A

t − v ≥ 0

t + v ≥ 0

u ∈ Rn

t, v ∈ Rn−1,

(TriRegP)

and we define the linear map on the
left-hand side of the constraints as
A∗(u, v , t) : Rn ⊕ Rn−1 ⊕ Rn−1 →
Sn ⊕ Rn−1 ⊕ Rn−1.

max− ⟨A,X ⟩
diag(X ) = 1

bidiag(X ) + w − ξ = 0

w + ξ = λ1

X ⪰ 0,w ≥ 0, ξ ≥ 0

(TriRegD)

where the linear map on the left-hand
side of the constraints is A(X , ξ, ω) :
Sn ⊕Rn−1 ⊕Rn−1 → Rn ⊕Rn−1 ⊕Rn−1.
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Equivalent Dual

For the dual, notice that the constraints

diag(X ) = 1

bidiag(X ) + w − ξ = 0

w + ξ = λ1

X ⪰ 0,w ≥ 0, ξ ≥ 0

are equivalent to

diag(X ) = 1

− λ1 ≤ bidiag(X ) ≤ λ1

X ⪰ 0.
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Uniqueness of Optimal Solutions

Is the optimal solution to the relaxation unique?

If it is not unique, then our problem becomes a new problem of comparing the
optimal solutions for the relaxation.
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Uniqueness of Optimal Solutions

Theorem 3.2 (Gong 2023)

When λ ∈ R+ \ {2}, the relaxation (TriRegP) has a unique optimal solution.
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Infinitely Many Optimal Solutions

Given λ = 2, A =

[
0 1
1 0

]
∈ S2. Then for every feasible solution X of (TriRegD),

we have X ⪰ 0 and tridiag(X ) = (u, 2v) = (1, 2v), ξ + w = 2, then
⟨−A,X ⟩ = −2v . Since X ⪰ 0, we have 1 = u1u2 ≥ v2, hence
⟨−A,X ⟩ = −2v ≤ 2. Then,

X =

[
1 −1
−1 1

]
,w = 2, ξ = 0

is an optimal solution for (TriRegD).

And we consider an arbitrary optimal solution (u, v , t) of (TriRegP). By Strong
Duality Theorem, we know

X (TriDiag(u, v) + A) = 0,Diag(t − v) Diag(ξ) = 0 = Diag(t + v) Diag(w)

which implies t + v = 0 and u1 = u2 = 1 + v = 1− t, so
1
⊤u + λt = 1− t + 1− t + 0 + 2t = 2. That is, given any 1 ≥ t ≥ 0,

((1− t, 1− t),−t, t) is an optimal solution of (TriRegP).
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3 Problems for the Tridiagonal Perturbation

1 Given λ ∈ Rn
+ \ {2}, suppose X ∗ can be written in the form of

X ∗ = L∗ −TriDiag(u∗, v∗), where l∗ is positive semidefinite. What properties
or conditions of (L∗, u∗, v∗, |v |∗) will ensure that (L∗, u∗, v∗, |v |∗) is the
unique optimal solution of (TriRegP) with the input A = X ∗?
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3 Problems for the Tridiagonal Perturbation

2 Given λ ∈ Rn
+ \ {2}, we first consider a closed convex set

K := {X ∈ Sn : diag(X ) = 1,−λ1 ≤ bidiag(X ) ≤ λ1}.

Claim 3.2.1

Every proper face F of K can be written as:

F = {X ∈ Sn : diag(X ) = 1,

k ∈ [n − 1] entries of bidiag(X ) is fixed as λ or − λ}.
Consider a set

E ′
n := {X ∈ En : −λ1 ≤ bidiag(X ) ≤ λ1} = Sn+ ∩ K .

Every face of E ′
n can be written as F ∩ FU , where F is a face of K and FU is

a face of Sn+ uniquely defined by a subspace U of Rn. E.g.

E ′
n ∩ FU = {X ⪰ 0 : Null(X ) ⊇ U , diag(X ) = 1,−λ1 ≤ bidiag(X ) ≤ λ1},

is a face of E ′
n. Which subspaces U define a nonempty face of E ′

n?
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3 Problems for the Tridiagonal Perturbation

3 Given λ ∈ Rn
+ \ {2}, then we consider the problem: for which subspaces V of

Rn, do there exist a positive integer k and a k × n matrix V with row space
V and a centered ellipsoid passing through all its columns such that when the
points are projected onto the unit ball corresponding to the ellipsoid, the
absolute value of the cosine value of the angle between the projected ith and
(i + 1)th columns is upper bounded by λ/2?

Figure: 1-tridiagonal ellipsoid fitting
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λ-Tridiagonal Recoverability, Realizability and Ellipsoid
Fitting

Definition 3.3 (Gong 2023)

Consider a subspace U of Rn and λ ∈ R+ \ {2}.
We say U is λ-tridiagonally recoverable if there exists u ∈ Rn, v ∈ Rn−1,
L ∈ Sn+ such that col(L) = U , (u, v , |v |) is the unique solution of (TriRegP)
given A = L− TriDiag(u, v).

We say U is λ-tridiagonally realizable if there exists Q ∈ Sn+ such that
U ⊆ Null(Q), diag(Q) = 1,−λ1 ≤ bidiag(Q) ≤ λ1.

We say U has the λ-tridiagonal ellipsoid fitting property if there is a k × n
matrix V with row space U such that

1 there is a centered ellipsoid in Rk passing through each column of V .
2 Let M ∈ Sk

+ represent the ellipsoid, and write M = BB⊤, and let
B := {B⊤v : v⊤Mv = 1}, which is the projected unit ball corresponding to
the ellipsoid. And the angle θi between projections of the ith and (i + 1)th
column of V onto the ball satisfies |cos(θi )|≤ λ/2.
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3 Equivalent Tridiagonal Definitions

Proposition 3.4 (Gong 2023)

Consider subspaces U of Rn with λ ∈ R+ \ {2}, the followings are equivalent:

1 U is λ-tridiagonally recoverable.

2 U is λ-tridiagonally realizable.

3 U⊥ has the λ-tridiagonal ellipsoid fitting property.
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Converge to MTFA

Recall that the constraints of (TriRegD),

diag(X ) = 1

bidiag(X ) + w − ξ = 0

w + ξ = λ1

X ⪰ 0,w ≥ 0, ξ ≥ 0

are equivalent to

diag(X ) = 1

− λ1 ≤ bidiag(X ) ≤ λ1

X ⪰ 0.

Hence, when λ → ∞, −λ1 ≤ bidiag(X ) ≤ λ1 becomes a redundant constraint.
So (TriRegD) is equivalent to the dual of MTFA (MTFAD).

Rui Gong (Uwaterloo) MMath Thesis Presnetation 30 / 46



Converge to MTFA

When λ → ∞, since the objective function is

1
⊤u + λ1⊤t,

every optimal solution of (TriRegP) has t = 0 and v = 0. That is, (TriRegP) is
equivalent to the minimum trace factor analysis problem (MTFA).

Corollary 3.5 (Gong 2023)

In fact, when λ > 2, both (TriRegP) and (TriRegD) are equivalent to (MTFA)
and (MTFAD) respectively.

λ-tridiagonal recoverability, realizability and ellipsoid fitting property are also
equivalent to the diagonal ones when λ → ∞ (or λ > 2).
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Coherence

Definition 4.1 ( [Candès and Recht, 2008])

Let U be a subspace of Rn of dimension r and PU ∈ Sn be the orthogonal
projection matrix onto U . Then the coherence of U (with respect to the standard
basis ei ) is defined to be

µ(U) := max
1≤i≤n

∥PUei∥2.

For a subspace U of Rn of dimension r , we have

r

n
≤ µ(U) ≤ 1.
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Interpreting the Coherence

We can view the coherence of U as an indicator of how close it is to containing
any ei .
Consider U1 := span{[1/

√
2, 1/

√
2]⊤}, and U2 := span{[

√
3/2, 1/2]⊤} where

PU1 =

[
1/2 1/2
1/2 1/2

]
and PU1 =

[
3/4

√
3/4√

3/4 1/4

]
, µ(U1) = 1/2 < µ(U2) = 3/4.
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Suff. Condition for Diag. Realizability

Theorem 4.2 ( [Saunderson, J. and Chandrasekaran, V. and Parrilo, P.
A. and Willsky, A. S., 2012])

If a subspace U of Rn has µ(U) < 1/2 then U is diagonally realizable. On the
other hand, for every α > 1/2, there exists a diagonally unrealizable subspace U
with µ(U) = α.
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Suff. Condition for TriDiag. Realizability

Proposition 4.3 (Gong 2023)

Consider subspace U of Rn with coherence µ(U) < 1/2 and let p > 0 be a
constant such that ∥PU⊥(:, i) ◦ PU⊥(:, i + 1)∥≤ p for every i ∈ [n − 1]. If

p
√
n

(1−µ)2 < λ
2 , there exists infinitely many Q satisfying Q ⪰ 0, diag(Q) = 1,

U ⊆ Null(Q) and
−λ1 ≤ bidiag(Q) ≤ λ1.

Proposition 4.4 (Gong 2023)

Consider a subspace U with dimension r , coherence µ < 1/2 and let p > 0 be a
constant such that ∥PU⊥(:, i) ◦ PU⊥(:, i + 1)∥≤ p for every i ∈ [n − 1]. If

κ(p, r , µ) := p

√
n +

(
1

(1−µ)4 − 1
)

r
µ < λ

2 , then there exists infinitely many Q

satisfying Q ⪰ 0, diag(Q) = 1, U ⊆ Null(Q) and

−λ1 ≤ bidiag(Q) ≤ λ1.
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Computational Example

Figure: Sufficient Conditions of 1.5-tridiagonally realizable subspaces
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Algorithms

We can solve the low-rank plus sparse matrices decomposition in two different
ways:

1 Solve one relaxation of the problem and treat the optimal solutions to the
relaxation as the solutions to the original problem.

2 Solve the problem exactly.
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Exact Algorithm

Given a low-rank plus tridiagonal decomposition problem whose optimal value is
r̄ ∈ O(1), there is an algorithm solving this instance in polynomial time, which is
an extension from an algorithm in [Tunçel, Vavasis, and Xu, 2022].

Fancy Algorithm Solves such a Complicated Nonconvex Problem
Exactly in Polynomial Time.

Please see read the thesis
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Conclusion

Low-Rank Plus Diagonal Decomposition, MTFA and the diagonal
recoverability, realizability and ellipsoid fitting.

Low-Rank Plus Tridiagonal Decomposition, a relaxation of it and the
λ-tridiagonal recoverability, realizability and ellipsoid fitting.

Sufficient Condition for Realizability.

Algorithms for solving low-rank plus tridiagonal decomposition problem
exactly in polynomial time.
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Future Research

For problem (TriRegP), we used a linear objective function with a penalty
parameter on the absolute values of bidiagonal entries. Can we replace this
objective function with more general functions? In particular, can we replace
it with other norms or other general convex functions and extend the
properties like realizability, and uniqueness of optimal solutions to those
cases?

In this thesis, we introduced the low-rank plus tridiagonal decomposition
problem, and analyzed its optimality conditions and different properties. Can
we apply similar analyses and expect results from more general sparsity
patterns? For example, if we change tridiagonal matrices to matrices with a
chordal sparsity pattern, we would expect more general results because
tridiagonal matrices represent a chordal sparsity pattern, but what are we
gaining by having more freedom on the sparsity pattern?

Since the tridiagonal matrices are banded matrices with bandwidth one, can
we generalize our problem to banded matrices with larger bandwidth? If so,
will similar properties like recoverability, realizability and ellipsoid fitting
properties begeneralized? What about the uniqueness of optimal solutions?
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Thank you!
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